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Part II

Context–Free Languages
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Introductory Example I

Example II.1

Syntax definition of programming languages by “Backus Naur” rules
Here: simple arithmetic expressions

〈Expression〉 ::= 0

| 1

| 〈Expression〉 + 〈Expression〉

| 〈Expression〉 ∗ 〈Expression〉

| (〈Expression〉)

Meaning:

An expression is either 0 or 1, or it is of the form u + v,
u ∗ v, or (u) where u, v are again expressions
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Introductory Example II

Example II.2 (continued)

Here we abbreviate 〈Expression〉 as E, and use → instead of ::=. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)
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Introductory Example II

Example II.2 (continued)

Here we abbreviate 〈Expression〉 as E, and use → instead of ::=. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by applying rules to the start
symbol E:

E ⇒ E ∗ E

⇒ (E) ∗ E

⇒ (E) ∗ 1

⇒ (E + E) ∗ 1

⇒ (0 + E) ∗ 1

⇒ (0 + 1) ∗ 1
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Context–Free Grammars I

Definition II.3

A context–free grammar (CFG) is a quadruple

G = 〈N,Σ, P, S〉

where

N is a finite set of nonterminal symbols

Σ is the (finite) alphabet of terminal symbols (disjoint from N)

P is a finite set of production rules of the form A → α where
A ∈ N and α ∈ (N ∪ Σ)∗

S ∈ N is a start symbol
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Context–Free Grammars II

Example II.4

For the above example, we have:

N = {E}

Σ = {0, 1,+, ∗, (, )}

P = {E → 0, E → 1, E → E + E,E → E ∗ E,E → (E)}

S = E
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Context–Free Grammars II

Example II.4

For the above example, we have:

N = {E}

Σ = {0, 1,+, ∗, (, )}

P = {E → 0, E → 1, E → E + E,E → E ∗ E,E → (E)}

S = E

Naming conventions:

nonterminals start with uppercase letters

terminals start with lowercase letters

start symbol = symbol on LHS of first production

=⇒ grammar completely defined by productions
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Context–Free Languages I

Definition II.5

Let G = 〈N,Σ, P, S〉 be a CFG.

A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if
there exist π = A → α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that
β = δ1Aδ2 and γ = δ1αδ2 (notation: β

π
⇒ γ or just β ⇒ γ) .

A derivation (of length n) of γ from β is a sequence of direct
derivations of the form δ0 ⇒ δ1 ⇒ . . . ⇒ δn where δ0 = β, δn = γ,
and δi−1 ⇒ δi for every 1 ≤ i ≤ n (notation: β ⇒∗ γ).

A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w.

The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.

A language L ⊆ Σ∗ is called context–free (CFL) if it is generated
by some CFG.

Two grammars G1, G2 are equivalent if L(G1) = L(G2).
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Context–Free Languages II

Example II.6

The language {anbn | n ∈ N} is context–free (but not regular—see
previous part). It is generated by the grammar G = 〈N,Σ, P, S〉 with

N = {S}

Σ = {a, b}

P = {S → aSb | ε}

(proof: on the board)
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Context–Free Languages II

Example II.6

The language {anbn | n ∈ N} is context–free (but not regular—see
previous part). It is generated by the grammar G = 〈N,Σ, P, S〉 with

N = {S}

Σ = {a, b}

P = {S → aSb | ε}

(proof: on the board)

Remark: illustration of derivations by derivation trees

root labeled by start symbol

leafs labeled by terminal symbols

successors of node labeled according to right–hand side of
production rule

(example on the board)
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Context–Free Grammars and Languages

Seen:

Context–free grammars

Derivations

Context–free languages
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Context–Free Grammars and Languages

Seen:

Context–free grammars

Derivations

Context–free languages

Open:

Relation between context–free and regular languages
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Outline

1 Context–Free Grammars and Languages

2 Context–Free and Regular Languages

3 The Word Problem for Context–Free Languages

4 The Emptiness Problem for Context–Free Languages

5 Pushdown Automata

6 Outlook
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Context–Free and Regular Languages

Theorem II.7
1 Every regular language is context–free.

2 There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)
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Context–Free and Regular Languages

Theorem II.7
1 Every regular language is context–free.

2 There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Proof.
1 Let L be a regular language, and let A = 〈Q,Σ, δ, q0, F 〉 be a DFA

which recognizes L. G := 〈N,Σ, P, S〉 is defined as follows:

N := Q, S := q0

if δ(q, a) = q′, then q → aq′ ∈ P
if q ∈ F , then q → ε ∈ P

Obviously a w–labeled run in A from q0 to F corresponds to a
derivation of w in G, and vice versa. Thus L(A) = L(G)
(example on the board).

2 An example is {anbn | n ∈ N}.

Foundations of Informatics Winter 2006/07 12



Context–Free Grammars and Languages

Seen:

CFLs are more expressive than regular languages
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Context–Free Grammars and Languages

Seen:

CFLs are more expressive than regular languages

Open:

Decidability of word problem
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Outline

1 Context–Free Grammars and Languages

2 Context–Free and Regular Languages

3 The Word Problem for Context–Free Languages

4 The Emptiness Problem for Context–Free Languages

5 Pushdown Automata

6 Outlook
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The Word Problem

Goal: given G = 〈N,Σ, P, S〉 and w ∈ Σ∗, decide whether
w ∈ L(G) or not

For regular languages this was easy: just let the corresponding
DFA run on w.

But here: how to decide when to stop a derivation?

Solution: establish normal form for grammars which guarantees
that each nonterminal produces at least one terminal symbol

=⇒ only finitely many combinations
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Chomsky Normal Form I

Definition II.8

A CFG is in Chomsky normal form (Chomsky NF) if every of its
productions is of the form

A → BC or A → a

(and maybe S → ε, in which case S does not occur on the right–hand
side of any production).
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Chomsky Normal Form I

Definition II.8

A CFG is in Chomsky normal form (Chomsky NF) if every of its
productions is of the form

A → BC or A → a

(and maybe S → ε, in which case S does not occur on the right–hand
side of any production).

Example II.9

Let S → aSb | ε be the known grammar which generates L := {anbn | n ∈ N}.
An equivalent grammar in Chomsky NF is

S → ε | AC (generates L)
A → a (generates {a})
B → b (generates {b})
C → SB (generates {anbn+1 | n ∈ N})
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Chomsky Normal Form II

Theorem II.10

Every CFL is generatable by a CFG in Chomsky NF.
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Chomsky Normal Form II

Theorem II.10

Every CFL is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = 〈N,Σ, P, S〉 be some CFG which
generates L. The transformation of P into rules of the form A → BC
and A → a proceeds in three steps:

1 terminal symbols only in rules of the form A → a
(thus all other rules have the shape A → A1 . . . An)

2 elimination of rules of the form A → B

3 elimination of rules of the form A → A1 . . . An where n > 2
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Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only A → a)

1 let N ′ := {Ba | a ∈ Σ}
2 let P ′ := {A → α′ | A → α ∈ P} ∪ {Ba → a | a ∈ Σ}

where α′ := α[a 7→ Ba | a ∈ Σ]

This yields G′ (example: on the board)
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Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only A → a)

1 let N ′ := {Ba | a ∈ Σ}
2 let P ′ := {A → α′ | A → α ∈ P} ∪ {Ba → a | a ∈ Σ}

where α′ := α[a 7→ Ba | a ∈ Σ]

This yields G′ (example: on the board)

Step 2: (elimination of A → B)

1 determine all derivations A1 ⇒ . . . ⇒ An with rules
of the form A → B without repetition of
nonterminals ( =⇒ only finitely many!)

2 let P ′′ := (P ∪ {A1 → α | A1 ⇒ . . . ⇒ An ⇒ α,
α /∈ N})

\ {A → B | A → B ∈ P ′}

This yields G′′ (example: on the board)
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Chomsky Normal Form IV

Proof of Theorem II.10 (continued).

Step 3: for every A → A1 . . . An with n > 2:

1 add new symbols B1, . . . , Bn−2 to N ′′

2 replace A → A1 . . . An by

A → A1B1

B1 → A2B2

...

Bn−3 → An−2Bn−2

Bn−2 → An−1An

This yields G′′′ (example: on the board)

One can show: G,G′, G′′, G′′′ are equivalent
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The Word Problem Revisited

Goal: given G = 〈N,Σ, P, S〉 and w ∈ Σ∗, decide if w ∈ L(G) or not

Approach by Cocke, Younger, Kasami (CYK algorithm):

1 assume G in Chomsky NF

2 let w = a1 . . . an

3 if n = 0, then the word problem is trivial (since G in Chomsky NF)

4 otherwise let w[i, j] := ai . . . aj for every 1 ≤ i ≤ j ≤ n

5 consider segments w[i, j] in order of increasing length, starting
with w[i, i] (i.e., single letters)

6 in each case, determine Ni,j := {A ∈ N | A ⇒∗ w[i, j]}

7 test whether S ∈ N1,n (and thus, whether S ⇒∗ w[1, n] = w)
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The CYK Algorithm I

Algorithm II.11 (CYK Algorithm)

Input: G = 〈N,Σ, P, S〉, w = a1 . . . an ∈ Σ∗

Question: w ∈ L(G)?

Procedure: for i := 1 to n do

Ni,i := {A ∈ N | A → ai ∈ P}
next i
for d := 1 to n − 1 do % compute Ni,i+d

for i := 1 to n − d do

j := i + d;Ni,j := ∅;
for k := i to j − 1 do

Ni,j := Ni,j ∪ {A ∈ N | there is A → BC ∈ P
with B ∈ Ni,k, C ∈ Nk+1,j}

next k
next i

next d

Output: “yes” if S ∈ N1,n, otherwise “no”
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The CYK Algorithm II

Example II.12

G : S → SA | a
A → BS
B → BB | BS | b | c

w = abaaba

Matrix representation of Ni,j

(on the board)
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The Word Problem for Context–Free Languages

Seen:

Word problem decidable using CYK algorithm
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The Word Problem for Context–Free Languages

Seen:

Word problem decidable using CYK algorithm

Open:

Emptiness problem

Foundations of Informatics Winter 2006/07 23



Outline

1 Context–Free Grammars and Languages

2 Context–Free and Regular Languages

3 The Word Problem for Context–Free Languages

4 The Emptiness Problem for Context–Free Languages

5 Pushdown Automata

6 Outlook
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The Emptiness Problem

Goal: given G = 〈N,Σ, P, S〉, decide whether L(G) = ∅ or not

For regular languages this was easy: check whether some final
state is reachable from the initial state.

Here: test whether start symbol is productive, i.e., whether it
generates a terminal word
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The Productivity Test

Algorithm II.13 (Productivity Test)

Input: G = 〈N,Σ, P, S〉

Question: L(G) = ∅?

Procedure: let i := 0,X0 := ∅,X1 := Σ; (* productive symbols *)
while Xi+1 6= Xi do

let i := i + 1;
let Xi+1 := Xi ∪ {A ∈ N | A → α ∈ P,α ∈ X∗

i }
od

Output: “yes” if S /∈ Xi, otherwise “no”
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The Productivity Test

Algorithm II.13 (Productivity Test)

Input: G = 〈N,Σ, P, S〉

Question: L(G) = ∅?

Procedure: let i := 0,X0 := ∅,X1 := Σ; (* productive symbols *)
while Xi+1 6= Xi do

let i := i + 1;
let Xi+1 := Xi ∪ {A ∈ N | A → α ∈ P,α ∈ X∗

i }
od

Output: “yes” if S /∈ Xi, otherwise “no”

Example II.14

G : S → AB | CA
A → a
B → BC | AB
C → aB | b

(on the board)
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The Emptiness Problem for Context–Free

Languages

Seen:

Emptiness problem decidable using productivity test
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The Emptiness Problem for Context–Free

Languages

Seen:

Emptiness problem decidable using productivity test

Open:

Characterizing automata model
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Outline

1 Context–Free Grammars and Languages

2 Context–Free and Regular Languages

3 The Word Problem for Context–Free Languages

4 The Emptiness Problem for Context–Free Languages

5 Pushdown Automata

6 Outlook
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Pushdown Automata I

Goal: introduce an automata model which exactly accepts CFLs

Clear: DFA not sufficient
(missing “counting capability”, e.g. for {anbn | n ∈ N})

DFA will be extended to pushdown automata by

adding a pushdown store which stores symbols from a pushdown
alphabet and uses a specific bottom symbol
adding push and pop operations to transitions
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Pushdown Automata II

Definition II.15

A pushdown automaton (PDA) is of the form
A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 where

Q is a finite set of states

Σ is the (finite) input alphabet

Γ is the (finite) pushdown alphabet

∆ ⊆ (Q × Γ × Σε) × (Q × Γ∗) is a finite set of transitions

q0 ∈ Q is the initial state

Z0 is the (pushdown) bottom symbol

F ⊆ Q is a set of final states

Interpretation of ((q, Z, x), (q′, δ)) ∈ ∆: if the PDA A is in state q
where Z is on top of the stack and x is the next input symbol (or
empty), then A reads x, replaces Z by δ, and changes into the state q′.
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Configurations, Runs, Acceptance

Definition II.16

Let A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 be a PDA.

An element of Q × Γ∗ × Σ∗ is called a configuration of A.

The initial configuration for input w ∈ Σ∗ is given by (q0, Z0, w).

The set of final configurations is given by F × Γ∗ × {ε}.

If ((q, Z, x), (q′, δ)) ∈ ∆, then (q, Zγ, xw) ⊢ (q′, δγ, w) for every
γ ∈ Γ∗, w ∈ Σ∗.

A accepts w ∈ Σ∗ if (q0, Z0, w) ⊢∗ (q, γ, ε) for some q ∈ F , γ ∈ Γ∗.

The language accepted by A is L(A) := {w ∈ Σ∗ | A accepts w}.

A language L is called PDA–recognizable if L = L(A) for some
PDA A.

Two PDA A1,A2 are called equivalent if L(A1) = L(A2).
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Examples

Example II.17

1 PDA which recognizes L = {anbn | n ∈ N}
(on the board)
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Examples

Example II.17

1 PDA which recognizes L = {anbn | n ∈ N}
(on the board)

2 PDA which recognizes L = {wwR | w ∈ {a, b}∗}
(palindromes of even length; on the board)
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Deterministic PDA

Observation: A2 is nondeterministic: in every construction step, the
pushdown could also be deconstructed
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Deterministic PDA

Observation: A2 is nondeterministic: in every construction step, the
pushdown could also be deconstructed

Definition II.18

A PDA A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 is called deterministic (DPDA) if for
every q ∈ Q,Z ∈ Γ,

for every x ∈ Σε, at most one (q, Z, x)–step in ∆ and

if there is a (q, Z, a)–step in ∆ for some a ∈ Σ, then no
(q, Z, ε)–step is possible.
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Deterministic PDA

Observation: A2 is nondeterministic: in every construction step, the
pushdown could also be deconstructed

Definition II.18

A PDA A = 〈Q,Σ,Γ,∆, q0, Z0, F 〉 is called deterministic (DPDA) if for
every q ∈ Q,Z ∈ Γ,

for every x ∈ Σε, at most one (q, Z, x)–step in ∆ and

if there is a (q, Z, a)–step in ∆ for some a ∈ Σ, then no
(q, Z, ε)–step is possible.

One can show: determinism restricts the set of acceptable languages
(DPDA–recognizable languages are closed under complement, which is
generally not true for PDA–recognizable languages)

Example II.19

The set of palindromes of even length is PDA–recognizable, but not
DPDA–recognizable.
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PDA and Context–Free Languages I

Theorem II.20

A language is context–free iff it is PDA–recognizable.
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PDA and Context–Free Languages I

Theorem II.20

A language is context–free iff it is PDA–recognizable.

Proof.

⇐= omitted

=⇒ let G = 〈N,Σ, P, S〉 be a CFG. Construction of PDA AG

recognizing L(G):

AG simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation”)
begin with S on pushdown
if nonterminal on top: apply corresponding
production rule
if terminal on top: match with next input symbol
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PDA and Context–Free Languages II

Proof of Theorem II.20 (continued).

=⇒ Formally: AG := 〈Q,Σ,Γ,∆, q0, Z0, F 〉 is given by

Q := {q0}
Γ := N ∪ Σ
if A → α ∈ P , then ((q0, A, ε), (q0, α)) ∈ ∆
for every a ∈ Σ, ((q0, a, a), (q0, ε)) ∈ ∆
Z0 := S
F := Q
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PDA and Context–Free Languages II

Proof of Theorem II.20 (continued).

=⇒ Formally: AG := 〈Q,Σ,Γ,∆, q0, Z0, F 〉 is given by

Q := {q0}
Γ := N ∪ Σ
if A → α ∈ P , then ((q0, A, ε), (q0, α)) ∈ ∆
for every a ∈ Σ, ((q0, a, a), (q0, ε)) ∈ ∆
Z0 := S
F := Q

Example II.21

“Bracket language”, given by G:

S → 〈〉 | 〈S〉 | SS

(on the board)
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Pushdown Automata

Seen:

Definition of PDA

Equivalence of PDA–recognizable and context–free languages
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Pushdown Automata

Seen:

Definition of PDA

Equivalence of PDA–recognizable and context–free languages

Open:

Description of concurrent systems
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Outline

1 Context–Free Grammars and Languages

2 Context–Free and Regular Languages

3 The Word Problem for Context–Free Languages

4 The Emptiness Problem for Context–Free Languages

5 Pushdown Automata

6 Outlook
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Outlook

Equivalence problem for CFG and PDA (“L(X1) = L(X2)?”)
(generally undecidable, decidable for DPDA)

Pumping Lemma for CFL

Construction of parsers for compilers

Non–context–free grammars and languages (context–sensitive and
recursively enumerable languages, Turing machines—see Week 4)
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