Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl fir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www.b-it-center.de/Wob/en/view/class211_id569.html

B-IT, Bonn, Winter term 2006/07

Rm Foundations of Informatics Winter 2006/07

noll@cs.rwth-aachen.de
http://www.b-it-center.de/Wob/en/view/class211_id569.html

Part II

Context—Free Languages

Rm Foundations of Informatics Winter 2006/07

@ Context-Free Grammars and Languages

Rm Foundations of Informatics

Introductory Example I

Syntax definition of programming languages by “Backus Naur” rules
Here: simple arithmetic expressions

(Ezxpression) == 0

1
(Expression) + (Expression)
(Expression) * (Ezpression)
((Ezpression))

Meaning:
An expression is either 0 or 1, or it is of the form u + v,
ux v, or (u) where u,v are again erpressions

Foundations of Informatics Winter 2006/07

Introductory Example II

Example I1.2 (continued)

Here we abbreviate (Ezpression) as E, and use — instead of ::=. Thus:

E — 0|1|E+E|E«E|(E)

m Foundations of Informatics Winter 2006/07

Introductory Example II

Example I1.2 (continued)

Here we abbreviate (Ezpression) as E, and use — instead of ::=. Thus:
E — 0|1|E+E|ExE|(FE)

Now expressions can be generated by applying rules to the start
symbol E:

E ExE
(E)xE
(F)*1
(E+E)*1
(0O+E)x1

(0+1)x1

R

m' Foundations of Informatics Winter 2006/07

Context—Free Grammars 1

Definition 11.3

A context—free grammar (CFG) is a quadruple
G=(N,%,P,S)

where

@ N is a finite set of nonterminal symbols

©

Y is the (finite) alphabet of terminal symbols (disjoint from)

©

P is a finite set of production rules of the form A — « where
AeNand ae (NUL)*

@ S € N is a start symbol

Foundations of Informatics Winter 2006/07

Context—Free Grammars 11

Example 11.4

For the above example, we have:
o N={FE}
o X ={0,1,4+,%,(,)}
e P={E—-0,E—-1,E—-FE+EFE—>ExEFE— (E)}
o S=F

m' Foundations of Informatics Winter 2006/07

Context—Free Grammars 11

Example 11.4

For the above example, we have:
o N={FE}
o X ={0,1,4+,%,(,)}
e P={E—-0,E—-1,E—-FE+EFE—>ExEFE— (E)}
o S=F

Naming conventions:

@ nonterminals start with uppercase letters

@ terminals start with lowercase letters

@ start symbol = symbol on LHS of first production
— grammar completely defined by productions

m' Foundations of Informatics Winter 2006/07

Context—Free Languages I
Definition II.5

Let G = (N,X%, P, S) be a CFG.
@ A sentence vy € (N UX)* is directly derivable from 8 € (N U X)* if
there exist m = A — a € P and 61,92 € (N U X)* such that
B = 61Ad and vy = 618, (notation: B = ~ or just B = 7) .

@ A derivation (of length n) of « from £ is a sequence of direct
derivations of the form dg = 61 = ... = §,, where dg = 3, o, = 7,
and 0;—1 = 0; for every 1 < i < n (notation: 8 =* 7).

@ A word w € £* is called derivable in G if S =* w.

The language generated by G is L(G) := {w € ¥* | § =* w}.

A language L C Y* is called context—free (CFL) if it is generated

by some CFG.

e Two grammars G1,G> are equivalent if L(G1) = L(G2).

©

©

Foundations of Informatics Winter 2006/07

Context—Free Languages 11

The language {a"b"™ | n € N} is context—free (but not regular—see
previous part). It is generated by the grammar G = (N, X, P, S) with

o N={S}

o ¥ ={a,b}

o P={S —aSb|e}
(proof: on the board)

Foundations of Informatics Winter 2006/07

Context—Free Languages 11

The language {a"b"™ | n € N} is context—free (but not regular—see
previous part). It is generated by the grammar G = (N, X, P, S) with
o N={S}
o ¥ ={a,b}
o P={S —aSb|e}
(proof: on the board)

Remark: illustration of derivations by derivation trees
@ root labeled by start symbol
o leafs labeled by terminal symbols

@ successors of node labeled according to right—hand side of
production rule

(example on the board)

Foundations of Informatics Winter 2006/07

Context—Free Grammars and Languages

Seen:
o Context—free grammars
@ Derivations

o Context—free languages

Rm Foundations of Informatics Winter 2006/07

Context—Free Grammars and Languages

Seen:
o Context—free grammars
@ Derivations

o Context—free languages

Open:

@ Relation between context—free and regular languages

Rm Foundations of Informatics Winter 2006/07

© Context-Free and Regular Languages

Rm Foundations of Informatics Winter 2006/07

Context—Free and Regular Languages

@ FEvery reqular language is context—free.

© There exist CFLs which are not reqular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Rm Foundations of Informatics Winter 2006/07

Context—Free and Regular Languages

@ FEvery reqular language is context—free.

© There exist CFLs which are not reqular.

(In other words: the class of regular languages is a proper subset of the
class of CFLs.)

Proof.
© Let L be a regular language, and let 2A = (Q, X, d, qo, F') be a DFA
which recognizes L. G := (N, X, P, S) is defined as follows:
o N =@, S :=q
o if 6(q,a) = ¢/, then ¢ — aq’ € P
o ifge F,then g —e€ P

Obviously a w—labeled run in 2 from gg to F' corresponds to a
derivation of w in G, and vice versa. Thus L(2() = L(G)
(example on the board).

© An example is {a"b" | n € N}.

m' Foundations of Informatics Winter 2006/07

Context—Free Grammars and Languages

Seen:

o CFLs are more expressive than regular languages

Rm Foundations of Informatics Winter 2006/07

Context—Free Grammars and Languages

Seen:

o CFLs are more expressive than regular languages

Open:
o Decidability of word problem

Rm Foundations of Informatics Winter 2006/07

© The Word Problem for Context-Free Languages

Rm Foundations of Informatics Winter 2006/07

The Word Problem

o Goal: given G = (N, %, P,S) and w € ¥*, decide whether

w € L(G) or not

For regular languages this was easy: just let the corresponding
DFA run on w.

©

But here: how to decide when to stop a derivation?

©

Solution: establish normal form for grammars which guarantees
that each nonterminal produces at least one terminal symbol

= only finitely many combinations

Rm Foundations of Informatics Winter 2006/07

Chomsky Normal Form 1
Definition II.8

A CFG is in Chomsky normal form (Chomsky NF) if every of its
productions is of the form

A—BC or A—a

(and maybe S — ¢, in which case S does not occur on the right—hand
side of any production).

Foundations of Informatics Winter 2006/07

Chomsky Normal Form 1
Definition II.8

A CFG is in Chomsky normal form (Chomsky NF) if every of its
productions is of the form

A—BC or A—a

(and maybe S — ¢, in which case S does not occur on the right—hand
side of any production).

Example I1.9
Let S — aSb | € be the known grammar which generates L := {a™b" | n € N}.
An equivalent grammar in Chomsky NF is

S —el| AC (generates L)

A—a (generates {a})

B—b (generates {b})

C — SB (generates {a™b"*1 | n € N})

Foundations of Informatics Winter 2006/07

Chomsky Normal Form II

FEvery CFL is generatable by a CFG in Chomsky NF.

Rm Foundations of Informatics Winter 2006/07

Chomsky Normal Form II

FEvery CFL is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, X, P, S) be some CFG which
generates L. The transformation of P into rules of the form A — BC
and A — a proceeds in three steps:

@ terminal symbols only in rules of the form A — a
(thus all other rules have the shape A — A; ... 4,)

@ eclimination of rules of the form A — B

@ elimination of rules of the form A — A;... A, where n > 2

Foundations of Informatics Winter 2006/07

Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only A — a)
Q let N':={B,|acX}
QltP ={A—-d|A—-aecP}U{B,—alack}
where o == ala— B, | a € X]
This yields G’ (example: on the board)

m' Foundations of Informatics Winter 2006/07

Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only A — a)

Q let N':={B,|acX}

QltP ={A—-d|A—-aecP}U{B,—alack}
where o == ala— B, | a € X]

This yields G’ (example: on the board)
Step 2: (elimination of A — B)

@ determine all derivations A; = ... = A,, with rules
of the form A — B without repetition of
nonterminals (= only finitely many!)

QltP =(PU{Ad1—alA1=...= A, =q,

a ¢ N})
\{A—-B|A— BeP}
This yields G” (example: on the board)

m Foundations of Informatics Winter 2006/07

Chomsky Normal Form IV

Proof of Theorem I1.10 (continued).

Step 3: for every A — Aj... A, with n > 2:

© add new symbols By,...,B, > to N”
Q replace A — A;... A, by

A — A1B;
B — AyB;

B, 3 — A, 2B,
B, 2 — A, 14,

This yields G (example: on the board)

One can show: G,G’',G",G" are equivalent O

m' Foundations of Informatics Winter 2006/07

The Word Problem Revisited

Goal: given G = (N, %, P,S) and w € X*, decide if w € L(G) or not

Approach by Cocke, Younger, Kasami (CYK algorithm):
@ assume G in Chomsky NF
Qletw=ai...a,
© if n =0, then the word problem is trivial (since G in Chomsky NF)
@ otherwise let w[i, j] :==a;...aj forevery 1 <i<j<n
@ consider segments wli, j| in order of increasing length, starting
with wli, 7] (i.e., single letters)
Q in each case, determine N; ; :={A € N | A =" w[i, j|}
@ test whether S € Ny, (and thus, whether S =* w[l,n] = w)

m' Foundations of Informatics Winter 2006/07

The CYK Algorithm I

Algorithm I1.11 (CYK Algorithm)

Input: G =(N,X,P,S), w=ay...a, €L*
Question: w € L(G)?
Procedure: for ¢ :=1 to n do
Niﬂ; :{AEN|A—>CLZ€P}
next ¢
ford:=1ton—1do % compute N; 14
fori:=1ton—ddo
ji=1+d;N;j:=0;
for k:=1 to j—1do
N;;j=N;;U{A € N | thereis A— BC € P
with B € NZ'J{,C S Nk—i—l,j}
next k
next 17
next d
Output: “yes” if S € N1, otherwise “no”

m Foundations of Informatics Winter 2006/07

The CYK Algorithm II

Example 11.12

o G: S—SAla

A — BS

B — BB|BS|b|c
o w = abaaba

o Matrix representation of Nj ;

(on the board)

Foundations of Informatics Winter 2006/07

The Word Problem for Context—Free Languages

Seen:

@ Word problem decidable using CYK algorithm

Rm Foundations of Informatics Winter 2006/07

The Word Problem for Context—Free Languages

Seen:

@ Word problem decidable using CYK algorithm

Open:

o Emptiness problem

Rm Foundations of Informatics Winter 2006/07

@ The Emptiness Problem for Context-Free Languages

Rm Foundations of Informatics Winter 2006/07

The Emptiness Problem

e Goal: given G = (N, %, P, S), decide whether L(G) = 0 or not

o For regular languages this was easy: check whether some final
state is reachable from the initial state.

@ Here: test whether start symbol is productive, i.e., whether it
generates a terminal word

Rm Foundations of Informatics Winter 2006/07

The Productivity Test

Algorithm I1.13 (Productivity Test)

Input: G =(N,X,P,S)
Question: L(G) =07
Procedure: let i :=0,Xo:=0,X; :=%; (* productive symbols *)

while Xi-i-l 75 XZ do
let 7:=17+1;
let X;11 = X;U{AeN|A—-aecPacX/}

od

Output: “yes” if S ¢ X;, otherwise “no”

m Foundations of Informatics Winter 2006/07

The Productivity Test

Algorithm I1.13 (Productivity Test)

Input: G = (N, %, P,S)
Question: L(G) =07
Procedure: let i :=0,Xo:=0,X; :=%; (* productive symbols *)

while X;11 # X, do
let 7:=17+1;
let X;11 = X;U{AeN|A—-aecPacX/}

od

Output: “yes” if S ¢ X;, otherwise “no”

Example I1.14

G: S— AB|CA
A—a
B — BC| AB
C —aB|b
(on the board)

m' Foundations of Informatics Winter 2006/07

The Emptiness Problem for Context—Free

Languages

Seen:

o Emptiness problem decidable using productivity test

m' Foundations of Informatics Winter 2006/07

The Emptiness Problem for Context—Free

Languages

Seen:

o Emptiness problem decidable using productivity test

Open:

@ Characterizing automata model

m' Foundations of Informatics Winter 2006/07

@ Pushdown Automata

Rm Foundations of Informatics

Pushdown Automata I

o Goal: introduce an automata model which exactly accepts CFLs
o Clear: DFA not sufficient

(missing “counting capability”, e.g. for {a"b" | n € N})
o DFA will be extended to pushdown automata by

¢ adding a pushdown store which stores symbols from a pushdown
alphabet and uses a specific bottom symbol
¢ adding push and pop operations to transitions

Rm Foundations of Informatics Winter 2006/07

Pushdown Automata I1
Definition II.15

A pushdown automaton (PDA) is of the form

A=(Q,x,T,A, qo, Zo, F) where

Q is a finite set of states

Y is the (finite) input alphabet

[is the (finite) pushdown alphabet
AC(QxTxX.)x(QxT*)is a finite set of transitions
qo € @ is the initial state

Zy is the (pushdown) bottom symbol

F C @ is a set of final states

e © &6 ¢ ¢ ¢ ¢

Interpretation of ((¢, Z,x), (¢, 6)) € A: if the PDA 2 is in state ¢
where Z is on top of the stack and x is the next input symbol (or
empty), then 2 reads z, replaces Z by §, and changes into the state ¢'.

Foundations of Informatics Winter 2006/07

Configurations, Runs, Acceptance
Definition I1.16

Let A = (Q,X,T, A, qo, Zo, F') be a PDA.
@ An element of @@ x '™ x X* is called a configuration of 2.
@ The initial configuration for input w € X* is given by (qo, Zo, w).
@ The set of final configurations is given by F' x I'* x {e}.
If ((¢,Z,x),(¢',9)) € A, then (q, Zv,zw) F (¢, dv,w) for every
yeTl* wexr.
A accepts w € X* if (qo, Zo, w) H* (g,7,¢) for some g € F, v € T*.
The language accepted by 2 is L(2) := {w € * | A accepts w}.
A language L is called PDA-recognizable if L = L(2A) for some
PDA .

Two PDA 24,2, are called equivalent if L(2;) = L(22).

©

©

©

©

©

Foundations of Informatics Winter 2006/07

© PDA which recognizes L = {a"b" | n € N}
(on the board)

Rm Foundations of Informatics Winter 2006/07

© PDA which recognizes L = {a"b" | n € N}
(on the board)

@ PDA which recognizes L = {ww® | w € {a,b}*}
(palindromes of even length; on the board)

Rm Foundations of Informatics Winter 2006/07

Deterministic PDA

Observation: 2, is nondeterministic: in every construction step, the
pushdown could also be deconstructed

Rm Foundations of Informatics Winter 2006/07

Deterministic PDA

Observation: 2, is nondeterministic: in every construction step, the
pushdown could also be deconstructed

Definition II.18

A PDA A =(Q,%,T,A, qo, Zo, F) is called deterministic (DPDA) if for
every g € Q,Z €T,

o for every x € ¥, at most one (¢, Z, x)-step in A and

o if there is a (¢, Z,a)-step in A for some a € ¥, then no
(¢, Z,€)-step is possible.

Foundations of Informatics Winter 2006/07

Deterministic PDA

Observation: 2, is nondeterministic: in every construction step, the
pushdown could also be deconstructed

Definition II.18

A PDA A =(Q,%,T,A, qo, Zo, F) is called deterministic (DPDA) if for
every q € Q,Z €T,

o for every x € ¥, at most one (¢, Z, x)-step in A and

o if there is a (¢, Z,a)-step in A for some a € ¥, then no
(¢, Z,€)-step is possible.

One can show: determinism restricts the set of acceptable languages
(DPDA-recognizable languages are closed under complement, which is
generally not true for PDA-recognizable languages)

The set of palindromes of even length is PDA-recognizable, but not
DPDA-recognizable.

m' Foundations of Informatics Winter 2006/07

PDA and Context—Free Languages I

Theorem I1.20

A language is context—free iff it is PDA—recognizable.

Rm Foundations of Informatics Winter 2006/07

PDA and Context—Free Languages I

Theorem I1.20

A language is context—free iff it is PDA—recognizable.

Proof.
<— omitted

— let G = (N,%, P, S) be a CFG. Construction of PDA 20
recognizing L(G):

o AU, simulates a derivation of G where the leftmost
nonterminal of a sentence form is replaced (“leftmost
derivation”)

@ begin with S on pushdown

o if nonterminal on top: apply corresponding
production rule

o if terminal on top: match with next input symbol

m Foundations of Informatics Winter 2006/07

PDA and Context—Free Languages I1

Proof of Theorem I1.20 (continued).

— Formally: ¢ = (Q,X,I, A, qo, Zo, F) is given by
° Q:={q}
o[=NUX
o if A— a € P, then ((qo, 4,¢),(q,) € A
o for every a € X, ((qo,a,a),(qo,€)) € A
o 7y =S
o F:=Q
1

m Foundations of Informatics Winter 2006/07

PDA and Context—Free Languages I1

Proof of Theorem I1.20 (continued).

— Formally: ¢ = (Q,X,I, A, qo, Zo, F) is given by
° Q= {qo}
o[=NUYXL
o if A— a € P, then ((qo, 4,¢),(q,) € A
o for every a € X, ((go,a,a),(qo,€)) € A
o 7y =S
o F:=0Q

|D

Example I1.21
“Bracket language”, given by G:

§—=(1(5)]85

(on the board)

m' Foundations of Informatics Winter 2006/07

Pushdown Automata

Seen:
@ Definition of PDA

o Equivalence of PDA-recognizable and context—free languages

Rm Foundations of Informatics Winter 2006/07

Pushdown Automata

Seen:
@ Definition of PDA

o Equivalence of PDA-recognizable and context—free languages

Open:

@ Description of concurrent systems

Rm Foundations of Informatics Winter 2006/07

© Outlook

Rm Foundations of Informatics

Outlook

Equivalence problem for CFG and PDA (“L(X1) = L(X>2)?”)
(generally undecidable, decidable for DPDA)

Pumping Lemma for CFL

©

Construction of parsers for compilers

Non-context—free grammars and languages (context—sensitive and
recursively enumerable languages, Turing machines—see Week 4)

Rm Foundations of Informatics Winter 2006/07

	Context--Free Grammars and Languages
	Context--Free and Regular Languages
	The Word Problem for Context--Free Languages
	The Emptiness Problem for Context--Free Languages
	Pushdown Automata
	Outlook

