Cryptography, winter 2006

PROF. DR. WERNER SCHINDLER, DIPL.-INF. DANIEL LOEBENBERGER

4. Exercise sheet (29.11.2006) Hand in solutions to the homework exercises on Wednesday, December 20th, in the tutorial/the lecture.

Exercise 4.1 (Repetition: Power of 3).

Compute $3^{1000003} \mod 101$ by hand. Note: Only a small calculation is needed!

Exercise 4.2 (Perfect secrecy).

In this exercise we study the impact of non-uniform key selection.

For this purpose consider the encryption system $y = e_k(x)$ when e is the encryption function, k is the encryption key, that can belong to a set $K = \{1, 2, 3, 4\}$. The plain text x and the cipher text y belong both to same set $P = C = \{a, b, c, d\}$. We express mapping rule with a table as follows:

		a	b	c	d	
	1	b	c	d	a	
	, 2	c	d	a	b	
	3	d	a	b	c	
	4	a	b	c	d	

This means, for instance, that key 1 maps the character a to b while key 4 induces the identity mapping.

Suppose that the character a appears as plain text with probability 1/2, that is $\operatorname{prob}(\mathcal{P}=a)=1/2$. Suppose further that $\operatorname{prob}(\mathcal{P}=b)=1/4$, $\operatorname{prob}(\mathcal{P}=c)=1/8$, $\operatorname{prob}(\mathcal{P}=d)=1/8$. The key is selected independently from the plaintext.

(i) Show the identity

$$\operatorname{prob}(\mathcal{C}=y) = \sum_{x,e_k(x)=y} \operatorname{prob}(\mathcal{P}=x) \cdot \operatorname{prob}(\mathcal{K}=k).$$

- (ii) Suppose $\operatorname{prob}(\mathcal{K}=1)=1/3$, $\operatorname{prob}(\mathcal{K}=2)=1/3$, $\operatorname{prob}(\mathcal{K}=3)=1/3$, $\operatorname{prob}(\mathcal{K}=4)=0$.
 - (a) For each of characters a, b, c, d compute probability of observing them as output.
 - (b) Compute conditional probability prob $(\mathcal{P} = x \mid \mathcal{C} = y)$ that the plain text was x if we observe the cypher text y for each $x \in \{a, b, c, d\}$, $y \in \{a, b, c, d\}$.

- (iii) Suppose $\operatorname{prob}(\mathcal{K}=1)=1/4$, $\operatorname{prob}(\mathcal{K}=2)=1/4$, $\operatorname{prob}(\mathcal{K}=3)=1/4$, $\operatorname{prob}(\mathcal{K}=4)=1/4$. Do the same as in (ii).
- (iv) Which of these key schedules is better for a one-time pad system?

Exercise 4.3 (Homework: Retail-CBC-MAC).

(7 points)

Suppose that the CBC-MAC is combined with CBC encryption with IV = 0. Consider the following attack (taken from the lecture): For $k_1=k_2=k$ we have $\text{MAC}(p_1,p_2,\ldots,p_t,k)=\text{Enc}(c_{t-1}\oplus p_t,k)=c_t$. If the adversary alters any blocks c_j for j< t-1 the CBC-MAC remains unchanged. The receiver will presumably not detect the loss of integrity.

Show that this attack also works against the strengthened CBC-MAC (Retail-CBC-MAC) if its first key k coincides with the encryption key.

Exercise 4.4 (Homework: Modes of operation).

(13 points)

- (i) Discuss advantages and disadvantages of each of the modes of operation presented in class: ECB (Electronic Codebook), CBC (Cipher Block Chaining), CFB (Cipher Feedback), OFB (Output Feedback), CTR (Counter).
- (ii) Answer the following questions concerning error propagation for each of the aforementioned modes.
 - (a) How many text blocks are false if one of the transmitted blocks is corrupted?
 - (b) How many text blocks are false if one of the transmitted blocks is dropped unnoticedly?

Try to draw conclusions from your observations.

(iii) We define a further mode PBC (Plain Block Chaining) that adds the message P_i to the encrypted message C_i as depicted in the following diagram.

Answer the questions under (ii) also for this mode.

4

7

3

3

3