Cryptography, winter 2006 Prof. Dr. Werner Schindler, Dipl.-Inf. Daniel Loebenberger

6. Exercise sheet (20.12.2006) Hand in solutions to the homework exercises on Wednesday, January 17th, in the tutorial/the lecture.

The design of AES uses different rings. The construction starts with the field \mathbb{F}_2 . Building on that the field $\mathbb{F}_{256} = \mathbb{F}_2[x]/\langle x^8 + x^4 + x^3 + x + 1 \rangle$ is defined, its elements requiring 8 bits a.k.a. 1 byte. E.g. 23 in decimal, 17 in hexadecimal representation, corresponds to $\overline{x}^4 + \overline{x}^2 + \overline{x} + \overline{1}$. We will omit the bar which we used to illustrate that we are working with remainders (in this case modulo $x^8 + x^4 + x^3 + x + 1$). At some other point in the standard bytes are interpreted as elements of the ring $R = \mathbb{F}_2[z]/\langle z^8 + 1 \rangle$. Finally, there is also the ring $S = \mathbb{F}_{256}[y]/\langle y^4 + 1 \rangle$. Let us compute a little with elements of these rings...

Exercise 6.1 (Modular arithmetic).

We want to show that the rings R and S are not fields.

- (i) Show: $(\overline{z} + \overline{1})^8 = 0$ in R.
- (ii) Name a zero divisor in R.
- (iii) Show that $\overline{z} + \overline{1}$ does not have an inverse in *R*.
- (iv) Show: $(\overline{y} + \overline{1})^4 = 0$ in S.
- (v) Name a zero divisor in S.
- (vi) Show that $\overline{y} + \overline{1}$ does not have an inverse in *S*.

Note: A zero divisor is an element *a* of a ring that is not zero and for which there is an element $b \neq 0$ so that ab = 0.

Exercise 6.2 (Correlation). The security of a block cipher like AES depends crucially on a sufficient amount of nonlinearity. The following notion is an important measure of nonlinearity.

Given two functions $f, \ell \colon \mathbb{F}_{256} \to \mathbb{F}_2$ we define their correlation

$$\operatorname{corr}(f, \ell) = \sum_{a \in \mathbb{F}_{256}} (-1)^{f(a) + \ell(a)},$$

Thus we add 1 for every element where f and ℓ coincide and we subtract 1 for every element where they differ. The higher the value, the more f and g coincide. In fact $1/256 \operatorname{corr}(f, \ell) = 2 \operatorname{prob}(f(X) = \ell(X)) - 1$, if X is uniformly

distributed in \mathbb{F}_{256} ; the correlation of f and ℓ is thus a direct measure for the probability that f and ℓ coincide on a random input.

A field element $a \in \mathbb{F}_{256}$ can be represented in the form $a = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 \pmod{x^8 + x^4 + x^3 + x + 1} \in \mathbb{F}_{256}$.

- (i) A function $\ell : \mathbb{F}_{256} \to \mathbb{F}_2$ is linear if $\ell(a+b) = \ell(a) + \ell(b)$ for all $a, b \in \mathbb{F}_{256}$. Show that a linear function ℓ is always of the form $\ell(a) = \sum_i \ell_i a_i \in \mathbb{F}_2$ with suitable $\ell_i \in \mathbb{F}_2$.
- (ii) Compute all possible values of $corr(f, \ell)$, if f and ℓ are linear. Hint: Without loss of generatility you can assume that f is the zero function.
- (iii) Use MAPLE to compute the correlations $corr(\ell_i \circ f_j, \ell_k)$ of the following functions. Compute a little matrix for each of the f_j .
 - $f_{-1}(a) := a^{-1}$ for $a \neq 0$ and $f_{-1}(0) = 0$,
 - $\circ f_1(a) := a,$
 - $f_2(a) := a^2$,
 - $\circ f_3(a) := a^3,$
 - $\circ f_*(a) := (a_7 + a_6)x^7 + (a_3 + a_5)x^6 + (a_6 + a_5)x^5 + (a_2 + a_7 + a_4)x^4 + (a_5 + a_7 + a_4 + a_6)x^3 + (a_1 + a_5)x^2 + (a_7 + a_4 + a_6)x + a_6 + a_0 + a_4.$
 - $\circ \ \ell_0(a) := a_0,$
 - $\circ \ \ell_1(a) := a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7,$
 - $\circ \ \ell_2(a) := a_0 + a_4 + a_7,$
 - $\circ \ \ell_3(a) := a_5 + a_7 + 1,$
 - $\ell_4(a) := a_5 + a_7.$

Hint: On our web page you will find a MAPLE Worksheet containing the definitions of these functions and some helpful information.

(iv) Draw conclusions from the results.

```
Exercise 6.3 (Homework: Computing in \mathbb{F}_{256}). (8 points)
```

Let M be your student registration number. Let

 $a = M \mod 256, b = (M \operatorname{div} 256) \mod 256, \text{ and } c = (a + b) \mod 256$

Now interpret *a*, *b* and *c* as elementes of \mathbb{F}_{256} , just as in AES. Compute in \mathbb{F}_{256}

- (i) a + b (Attention! Usually the result will not be c!),
- (ii) $a \cdot b$ and
- (iii) 1/a (or 1/b in case a = 0).

Note: If $x = x_1 \cdot 256 + x_0$ with $0 \le x_0 < 256$, then $x \operatorname{div} 256 = x_1$ and $x \operatorname{rem} 256 = x_0$.

Exercise 6.4 (Homework: Encryption and decryption with AES). (12 points)

- (i) Given the output of the function ByteSub, how can you find the corresponding input?
- (ii) Compute the inverse of $t_1 = x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_{256}$.
- (iii) Compute the inverse of $t_2 = z^4 + z^3 + z^2 + z + 1 \in \mathbb{F}_2[z]/\langle z^8 + 1 \rangle$.
- (iv) Verify that the product of the polynomial $d = 0By^3 + 0Dy^2 + 09y + 0E$ and the polynomial $c = 03y^3 + 01y^2 + 01y + 02$ is equal to 1 in the ring $\mathbb{F}_{256}[y]/\langle y^4 + 1 \rangle$.

2

2

4

2

2