Cryptography, winter 2006

PROF. DR. WERNER SCHINDLER, DIPL.-INF. DANIEL LOEBENBERGER

2. Exercise sheet (15.11.2006) Hand in solutions to the homework exercises on Wednesday, November 29th, in the tutorial/the lecture.

Exercise 2.1 (Repetition: Euler's φ function).

Let $p \in \mathbb{N}$ be a prime number and $m, n \in \mathbb{N}_{\geq 2}$. Euler's φ function is defined by

$$\varphi \colon \mathbb{N}_{\geq 2} \to \mathbb{N}, n \mapsto \# \left\{ k \in \mathbb{Z}_n \mid \gcd(k, n) = 1 \right\}.$$

Give proofs for the following formulae:

(i)
$$\varphi(p) = p - 1$$
,

(ii)
$$\varphi(p^e) = p^{e-1}(p-1)$$
 for all $e \in \mathbb{N}_{\geq 1}$,

(iii)
$$\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)$$
, if $gcd(m, n) = 1$.

Exercise 2.2 (Combining encryption algorithms).

Assume you define the Doubled Caesar cipher by the following encryption function, where α, β are chosen from \mathbb{Z}_{26} and the function ξ is the Caesar cipher defined in exercise 1.3:

$$\xi_{\alpha,\beta}^{(2)} \colon \mathbb{Z}_{26} \times \mathbb{Z}_{26} \to \mathbb{Z}_{26}, x \mapsto \xi_{\beta}(\xi_{\alpha}(x)).$$

- (i) Show that this cipher is as (in)secure as the Caesar cipher.
- (ii) Discuss the reasons why the combination of these two ciphers doesn't give you more security.

Hint: The set $\{\xi_{\alpha} \mid \alpha \in \mathbb{Z}_{26}\}$ forms a group with respect to composition!

Exercise 2.3 (Affine Codes in higher dimensions).

Consider the affine cipher over \mathbb{Z}_{26} with m=3. Suppose you know that the plaintext

ADISPLAYEDEQUATION

was encrypted to give the ciphertext

DSRMSIOPLXLJBZULLM

Determine the key.

Exercise 2.4 (Homework: Linear Algebra).

(2 points)

Compute the determinant and the inverse of the following matrix A over \mathbb{Z}_{26} . **Hint:** We are computer scientists...

$$A := \left(\begin{array}{ccc} 1 & 11 & 12 \\ 4 & 23 & 2 \\ 17 & 15 & 9 \end{array}\right)$$

Exercise 2.5 (Homework: Combinatorics).

(8 points)

Let be $n \in \mathbb{N}$.

4

2

- (i) Determine the number of permutations of a set M with n elements. Show that the set S(M) of all permutations of M forms a group with respect to composition.
- 2
- (ii) Determine the number of possible bitstrings of length n.
- 2

5

(iii) Determine the number of strings of length n over an alphabet Σ that do not change if they are reversed.

Exercise 2.6 (Homework: Substitution Cipher).

(5 points)

The following table gives the frequency distribution of the 26 letters in typical English texts:

letter	probability	letter	probability
A	0.082	N	0.067
В	0.015	Ο	0.075
C	0.028	P	0.019
D	0.043	Q	0.001
Е	0.127	R	0.060
F	0.022	S	0.063
G	0.020	T	0.091
Н	0.061	U	0.028
I	0.070	V	0.010
J	0.002	W	0.023
K	0.008	Χ	0.001
L	0.040	Y	0.002
M	0.024	Z	0.001

Suppose you know that the plaintext of the following ciphertext, taken from "The Diary of Samuel Marchbanks" by. R. Davies and C. Irwin, was encryyted using a substitution cipher (i.e. the improved variant of Caesar's cipher). You can find this text on the tutorial's webpage.

EMGLOSUDCGDNCUSWYSFHNSFCYKDPUMLWGYICOXYSIPJCK
QPKUGKMGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCG
OIDPKZCNKSHICGIWYGKKGKGOLDSILKGOIUSIGLEDSPWZU
GFZCCMDGYYSFUSZCNXEOJNCGYEOWEUPXEZGACGNFGLKNS
ACIGOIYCKXCJUCIUZCFZCCNDGYYSFEUEKUZCSOCFZCCNC
IACZEJNCSHFZEJZEGMXCYHCJUMGKUCY

Find the plaintext! **Hint:** F decrypts to W.

Exercise 2.7 (Homework: Combining encryption algorithms). (5 points)

Assume you encrypt a text using first the Vigenère cipher followed by an application of the Caesar cipher. Discuss whether the resulting encryption algorithm is more secure than the Caesar/the Vigenère cipher.

