10. Exercise sheet (31.01.2007)

Exercise 10.1 (Discrete Logarithms). Compute the smallest nonnegative solution to the equation $2^x \equiv 3 \pmod{23}$.

Exercise 10.2 (Blind signatures). Particular applications demand a signature protocol between two parties A and B where B signs implicitly a message m on behalf of A, but does not know the explicit message he is signing. Thus B cannot associate the message to the user A. Such protocols are called blind signatures and play a key role, i.e. in electronic cash schemes and Trusted Computing.

We describe a blinding protocol based on the RSA signature scheme. Let B have the RSA public key (N, e) and secret exponent d. In order to receive blind signatures from B, party A uses a randomly chosen blinding key $k \in \mathbb{Z}_N^\times$.

(i) Suppose A wants B to sign the message $m \in \mathbb{Z}_N$ or more precisely, wants B to generate a signature from which A can deduce B’s signature on m. Additionally, B shall not be able to recover m. Show that the following protocol fulfills the requirements for a blind signature scheme:

1. A sends $M = m \cdot k^e \in \mathbb{Z}_N$ to B.
2. B generates the signature $S(M) = M^d \in \mathbb{Z}_N$ and sends it to A.
3. A recovers $S(m) = k^{-1} \cdot S(M) \in \mathbb{Z}_N$. Then $S(m)$ is a valid signature of m by B.

(ii) Let $n = p \cdot q$ where $p = 1000000000039$, $q = 10000001000029$ and $e = 2^{16} + 1 = 65537$. Compute the secret exponent d of B. Let $k \in \mathbb{Z}_N^\times$ be a random number and $m \in \mathbb{Z}_N$ be the integer value of the ASCII text:

\texttt{blinded}

1. Compute the blinded message M.
2. Compute B’s blinded signature $S(M)$. What was B’s signature on the cleartext m?
3. Compute the clear text signature $S(m)$ such as A recovers it using k. Compare this signature to B’s signature on m computed in (ii.2).