Cryptography, winter 2006

Prof. Dr. Werner Schindler, Dipl.-Inf. Daniel Loebenberger

10. Exercise sheet (31.01.2007)

Exercise 10.1 (Discrete Logarithms). Compute the smallest nonnegative solution to the equation $2^{x} \equiv 3(\bmod 23)$.

Exercise 10.2 (Blind signatures). Particular applications demand a signature protocol between two parties A and B where B signs implicitly a message m on behalf of A, but does not know the explicit message he is signing. Thus B cannot associate the message to the user A. Such protocols are called blind signatures and play a key role, i.e. in electronic cash schemes and Trusted Computing.

We describe a blinding protocol based on the RSA signature scheme. Let B have the RSA public key (N, e) and secret exponent d. In order to receive blind signatures from B, party A uses a randomly chosen blinding key $k \in \mathbb{Z}_{N}^{\times}$.
(i) Suppose A wants B to sign the message $m \in \mathbb{Z}$, or more precisely, wants B to generate a signature from which A can deduce B 's signature on m. Additionally, B shall not be able to recover m. Show that the following protocol fulfills the requirements for a blind signature scheme:

1. A sends $M=m \cdot k^{e} \in \mathbb{Z}_{N}$ to B.
2. B generates the signature $S(M)=M^{d} \in \mathbb{Z}_{N}$ and sends it to A.
3. A recovers $S(m)=k^{-1} \cdot S(M) \in \mathbb{Z}_{N}$. Then $S(m)$ is a valid signature of m by B.
(ii) Let $n=p \cdot q$ where $p=1000000000039, q=10000001000029$ and $e=$ $2^{16}+1=65537$. Compute the secret exponent d of B. Let $k \in \mathbb{Z}_{N}^{\times}$be a random number and $m \in \mathbb{Z}_{N}$ be the integer value of the ASCII text:
blinded
4. Compute the blinded message M.
5. Compute B's blinded signature $S(M)$. What was B 's signature on the cleartext m ?
6. Compute the clear text signature $S(m)$ such as A recovers it using k. Compare this signature to B^{\prime} 's signature on m computed in (ii.2).
