Cryptography, winter 2006

Prof. Dr. Werner Schindler, Dipl.-Inf. Daniel Loebenberger

3. Exercise sheet (22.11.2006)

Hand in solutions to the homework exercises on Wednesday, December 13th, in the tutorial/the lecture.

Exercise 3.1 (Repetition: Elementary stochastics).

On a conference on Internet security are 15% of the people cryptographers. 90% of the cryptographers drink coffee. In total 25% of the participants of the conference drink coffee. In the morning you see a person drinking coffee. What is the probability that this person is a cryptographer?

Exercise 3.2 (Modes of Operation).
Recall that S_{n} is the set of all bit permutations of the set $\{0,1\}^{n}$. Let $\pi \in S_{n}$. Consider the following block cipher

$$
\eta_{\pi}: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n},\left(x_{0}, \ldots, x_{n-1}\right) \mapsto\left(x_{\pi(0)}, \ldots, x_{\pi(n-1)}\right)
$$

Decrypt the ciphertext 101010101010 using ECB mode, CBC mode and OFB mode. Use the cipher defined above with block length 3 and key

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

The initialization vector is 000 . For the OFB mode, use $r=2$.

Exercise 3.3 (Perfect secrecy: The Two Time Pad).
Show that the one-time pad is no longer unconditionally secure (perfect secrecy) if a key is used two (or more) times.

Exercise 3.4 (Homework: Forging the IV).
Consider the following ASCII table

Binary	Decimal	Hexadecimal	Glyph
01000001	65	41	A
01000010	66	42	B
01000011	67	43	C
01000100	68	44	D
01000101	69	45	E
01000110	70	46	F
01000111	71	47	G
01001000	72	48	H
01001001	73	49	I
01001010	74	4 A	J
01001011	75	4 B	K
01001100	76	4 C	L
01001101	77	4 D	M
01001110	78	4 E	N
01001111	79	4 F	O
01010000	80	50	P
01010001	81	51	Q
01010010	82	52	R
01010011	83	53	S
01010100	84	54	T
01010101	85	55	U
01010110	86	56	V
01010111	87	57	W
01011000	88	58	X
01011001	89	59	Y
01011010	90	5 A	Z

Assume you intercepted a message $(m$, IV $), m \in\{0,1\}^{*}$, IV $\in\{0,1\}^{64}$ where the plaintext was encoded according to the above ASCII table and encrypted with the CBC mode of a block cipher with block length 64 bit and initialization vector $I V=0 \times A A A A A A A A A A A A A A$ yielding m. Assume further you know that the plaintext of the message starts with the phrase DEAR SIR. Find an initialization vector IV' such that the decrypted message will start with DEAR MAM.

Exercise 3.5 (Homework: Perfect Secrecy).
Prove that the Caesar cipher is not unconditionally secure.

Exercise 3.6 (Homework: Modes of Operation).
Decrypt the ciphertext 111111111111 using ECB mode and CBC mode. Use the cipher defined in Exercise 3.2 with block length 3 and key

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

