Cryptography, winter 2006

Prof. Dr. Werner Schindler, Dipl.-Inf. Daniel Loebenberger

9. Exercise sheet (24.01.2007)

Hand in solutions to the homework exercises on Wednesday, February 7th, in the tutorial/the lecture.

Exercise 9.1 (Pollard's $p-1$ method). We consider Pollard's $p-1$ method from the lecture.

- How can one find all primes $\leq B$, where $B \in \mathbb{N}$?

Solution. Sieving techniques like the sieve of Eratosthenes.

- Assume we want to factor $n=12827$ using Pollard's $p-1$ method. The bound B is choosen as $B=6,13,27$ respectively. Discuss the impact of these choices on the outcome of the algorithm.

Solution. We have $n=101 * 127$ and $100=2^{2} \cdot 5^{2}, 126=2 \cdot 3^{2} \cdot 7$. We consider the follwing cases:
$B=6$: The prime powers are $2^{13}, 3^{8}, 5^{5}$ and $g=101$.
$B=13$: The prime powers are $2^{13}, 3^{8}, 5^{5}, 7^{4}, 11^{3}, 13^{3}$ and $g=12827=n$.
$B=27:$ The prime powers are $2^{13}, 3^{8}, 5^{5}, 7^{4}, 11^{3}, 13^{3}, 17^{3}, 19^{3}, 23^{3}$ and $g=$ $12827=n$.

- Discuss in general the cases where the algorithm fails to find a factor of n.

Solution. Discussed in the lecture.

Exercise 9.2. The public key of an RSA cryptosystem is given by $(n, e)=(247,17)$.

- Encrypt the message $m=101$ using the public key.

Solution. We have $m^{e}(\bmod n)=225(\bmod 274)$.

- Compute the private key.

Solution. This can be done by factoring $n=13 \cdot 19$ and computing $\varphi(n)=12 \cdot 18=216$. Now compute

$$
e^{-1} \quad(\bmod \varphi(n))=89 \quad(\bmod 216)=: d
$$

Thus the private key is $d=89$

- Decrypt the message $m=42$ using the private key you computed.

Solution. We have $m^{d}(\bmod n)=100(\bmod 274)$.

- Assume that the exponentiation with the secret exponent dare performed with the CRT. Calculate $d(\bmod p-1)$ and $d(\bmod q-1), N_{p}, N_{q}($ notation as in C.35).

Solution. We have $d(\bmod p-1)=89(\bmod 12)=5(\bmod 12)$ and d $(\bmod q-1)=89(\bmod 18)=17(\bmod 18)$. Now we are looking for the unique $N_{p} \in \mathbb{Z}_{n}$ such that $N_{p} \equiv 1(\bmod p)$ and $N_{p} \equiv 0(\bmod q)$. In other words: We have $k, \ell \in \mathbb{N}$, such that $N_{p}-1=k p$ and $N_{p}=\ell q$. This is equivalent to $\ell q-k p=1$. Since $\operatorname{gcd}(p, q)=1$ the values k, ℓ can be found using the extended Euclidean algorithm. Carrying out the computation we find $N_{p}=209$ and $N_{q}=39$.

- Decrypt the message $m=42$ using the CRT.

Solution. We compute $x_{p}:=m^{d \bmod (p-1)}(\bmod p)=42^{5}(\bmod 13)=9$ $(\bmod 13)$ and $x_{q}:=m^{d \bmod (q-1)}(\bmod q)=42^{17}(\bmod 19)=5(\bmod 19)$. We have $m^{d} \equiv N_{p} x_{p}+N_{q} x_{q} \equiv 209 \cdot 9+39 \cdot 5 \equiv 100(\bmod 247)$, which was what we expected.

Exercise 9.3 (Homework: Multiplicativity of RSA).
(6 points)
Let m_{1}, m_{2}, m_{3} be three messages with known signatures $m_{1}^{d}(\bmod n)$, $m_{2}^{d}(\bmod n)$ and $m_{3}^{d}(\bmod n)$. Let $m:=m_{1} \cdot m_{2}^{2} \cdot m_{3}(\bmod n)$. Compute m^{d} $(\bmod n)$.
Remark: Hash functions prevent the aimed construction of meaningful messages m to exploit the multiplicity of the RSA algorithm. Also padding has positive influence since finding such relations is more difficult for larger integers.

Solution. We have $m_{1}^{d} \cdot m_{2}^{d} \cdot m_{2}^{d} \cdot m_{3}^{d} \equiv\left(m_{1} \cdot m_{2}^{2} \cdot m_{3}\right)^{d} \equiv m^{d}(\bmod n)$.

Exercise 9.4 (Homework: RSA).

Let $n=p q \in \mathbb{N}$ with p, q prime be an RSA modulus, $e \in \mathbb{Z}_{n}^{\times}$and $d=e^{-1}$ $(\bmod \varphi(n))$. Prove:

$$
\left(x^{e}\right)^{d}=x=\left(x^{d}\right)^{e} \quad(\bmod n)
$$

Hint: CRT!
Solution. Two solutions possible: Either you apply Euler's theorem on the equation modulo the composite number n (you have to take special care if x is a multiple of p or $q!$). Or you apply two times Fermat's little theorem on the equations $\bmod p$ and $\bmod q$, respectively.

Exercise 9.5 (Homework: Pollard $p-1$).
Here you have the choice which task you want to solve:

- Either: Implement Pollard's $p-1$ algorithm (presented in class) and factor the number $n=504380101$. Hand in the (commented) source code, the search bound B you used as well as the factors.
- Or: Factor $n=289593956703807855037$ with a computer algebra system of your choice. Use this knowledge to propose an appropriate smoothness bound B for Pollard's $p-1$ algorithm that yields a successful attack. Justify your proposal. Estimate the number of modular squarings and multiplications that are necessary for one run of Pollard's algorithm.

Solution. We have $289593956703807855037=p \cdot q$ with $p=15728234383$ and $q=18412362739$. Further $p-1=2 \cdot 3^{2} \cdot 7 \cdot 124827257$ and $q-1=$ $2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 41 \cdot 457 \cdot 709$. Thus an appropriate smoothness bound would be $B=709$.

