Cryptography, winter 2006

Prof. Dr. Werner Schindler, Dipl.-Inf. Daniel Loebenberger

6. Exercise sheet (20.12.2006)

Hand in solutions to the homework exercises on Wednesday, January 17th, in the tutorial/the lecture.

The design of AES uses different rings. The construction starts with the field \mathbb{F}_{2}. Building on that the field $\mathbb{F}_{256}=\mathbb{F}_{2}[x] /\left\langle x^{8}+x^{4}+x^{3}+x+1\right\rangle$ is defined, its elements requiring 8 bits a.k.a. 1 byte. E.g. 23 in decimal, 17 in hexadecimal representation, corresponds to $\bar{x}^{4}+\bar{x}^{2}+\bar{x}+\overline{1}$. We will omit the bar which we used to illustrate that we are working with remainders (in this case modulo $x^{8}+x^{4}+x^{3}+x+1$). At some other point in the standard bytes are interpreted as elements of the ring $R=\mathbb{F}_{2}[z] /\left\langle z^{8}+1\right\rangle$. Finally, there is also the ring $S=$ $\mathbb{F}_{256}[y] /\left\langle y^{4}+1\right\rangle$. Let us compute a little with elements of these rings...

Exercise 6.1 (Modular arithmetic).
We want to show that the rings R and S are not fields.
(i) Show: $(\bar{z}+\overline{1})^{8}=0$ in R.
(ii) Name a zero divisor in R.
(iii) Show that $\bar{z}+\overline{1}$ does not have an inverse in R.
(iv) Show: $(\bar{y}+\overline{1})^{4}=0$ in S.
(v) Name a zero divisor in S.
(vi) Show that $\bar{y}+\overline{1}$ does not have an inverse in S.

Note: A zero divisor is an element a of a ring that is not zero and for which there is an element $b \neq 0$ so that $a b=0$.

Exercise 6.2 (Correlation). The security of a block cipher like AES depends crucially on a sufficient amount of nonlinearity. The following notion is an important measure of nonlinearity.

Given two functions $f, \ell: \mathbb{F}_{256} \rightarrow \mathbb{F}_{2}$ we define their correlation

$$
\operatorname{corr}(f, \ell)=\sum_{a \in \mathbb{F}_{256}}(-1)^{f(a)+\ell(a)},
$$

Thus we add 1 for every element where f and ℓ coincide and we subtract 1 for every element where they differ. The higher the value, the more f and g coincide. In fact $1 / 256 \operatorname{corr}(f, \ell)=2 \operatorname{prob}(f(X)=\ell(X))-1$, if X is uniformly
distributed in \mathbb{F}_{256}; the correlation of f and ℓ is thus a direct measure for the probability that f and ℓ coincide on a random input.

A field element $a \in \mathbb{F}_{256}$ can be represented in the form $a=a_{7} x^{7}+a_{6} x^{6}+$ $a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\left(\bmod x^{8}+x^{4}+x^{3}+x+1\right) \in \mathbb{F}_{256}$.
(i) A function $\ell: \mathbb{F}_{256} \rightarrow \mathbb{F}_{2}$ is linear if $\ell(a+b)=\ell(a)+\ell(b)$ for all $a, b \in \mathbb{F}_{256}$. Show that a linear function ℓ is always of the form $\ell(a)=\sum_{i} \ell_{i} a_{i} \in \mathbb{F}_{2}$ with suitable $\ell_{i} \in \mathbb{F}_{2}$.
(ii) Compute all possible values of $\operatorname{corr}(f, \ell)$, if f and ℓ are linear. Hint: Without loss of generatility you can assume that f is the zero function.
(iii) Use MAPLE to compute the correlations $\operatorname{corr}\left(\ell_{i} \circ f_{j}, \ell_{k}\right)$ of the following functions. Compute a little matrix for each of the f_{j}.

- $f_{-1}(a):=a^{-1}$ for $a \neq 0$ and $f_{-1}(0)=0$,
- $f_{1}(a):=a$,
- $f_{2}(a):=a^{2}$,
- $f_{3}(a):=a^{3}$,
- $f_{*}(a):=\left(a_{7}+a_{6}\right) x^{7}+\left(a_{3}+a_{5}\right) x^{6}+\left(a_{6}+a_{5}\right) x^{5}+\left(a_{2}+a_{7}+a_{4}\right) x^{4}+$ $\left(a_{5}+a_{7}+a_{4}+a_{6}\right) x^{3}+\left(a_{1}+a_{5}\right) x^{2}+\left(a_{7}+a_{4}+a_{6}\right) x+a_{6}+a_{0}+a_{4}$.
- $\ell_{0}(a):=a_{0}$,
- $\ell_{1}(a):=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}$,
- $\ell_{2}(a):=a_{0}+a_{4}+a_{7}$,
- $\ell_{3}(a):=a_{5}+a_{7}+1$,
- $\ell_{4}(a):=a_{5}+a_{7}$.

Hint: On our web page you will find a MAPLE Worksheet containing the definitions of these functions and some helpful information.
(iv) Draw conclusions from the results.

Exercise 6.3 (Homework: Computing in \mathbb{F}_{256}).
Let M be your student registration number. Let

$$
a=M \bmod 256, b=(M \operatorname{div} 256) \bmod 256, \text { and } c=(a+b) \bmod 256
$$

Now interpret a, b and c as elementes of \mathbb{F}_{256}, just as in AES. Compute in \mathbb{F}_{256}
(i) $a+b$ (Attention! Usually the result will not be $c!$),

Solution. My student registration number is $M=1111111$. We have $a=71, b=244$ and $c=59$. Interpreted as elements of \mathbb{F}_{256} we have:

$$
\begin{aligned}
a & =71_{(10)}=1000111_{(2)}=x^{6}+x^{2}+x+1 \\
b & =244_{(10)}=11110100_{(2)}=x^{7}+x^{6}+x^{5}+x^{4}+x^{2}
\end{aligned}
$$

Thus we have in $\mathbb{F}_{256}: a+b=x^{7}+x^{5}+x^{4}+x+1=10110011_{(2)}=$ $179_{(10)} \neq c$.
(ii) $a \cdot b$ and

Solution. We have $a \cdot b=x^{7}+x^{5}+x^{4}+x+1=10110011_{(2)}=179_{(10)}$.
(iii) $1 / a$ (or $1 / b$ in case $a=0$).

Solution. We have $1 / a=x^{6}+x^{5}+x^{3}+1$. This was computed using the extended euklidean algorithm.

Note: If $x=x_{1} \cdot 256+x_{0}$ with $0 \leq x_{0}<256$, then $x \operatorname{div} 256=x_{1}$ and $x \bmod 256=$ x_{0}.

Exercise 6.4 (Homework: Encryption and decryption with AES). (12 points)
(i) Given the output of the function ByteSub, how can you find the corresponding input?

Solution. In practice the whole S-Box is stored in a table. So a simple array lookup suffices.
(ii) Compute the inverse of $t_{1}=x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{F}_{256}$.

Solution. We have in $\mathbb{F}_{256}: 1 / t_{1}=x^{7}+x^{5}+x^{4}+x$.
(iii) Compute the inverse of $t_{2}=z^{4}+z^{3}+z^{2}+z+1 \in \mathbb{F}_{2}[z] /\left\langle z^{8}+1\right\rangle$.

Solution. We have in $\mathbb{F}_{2}[z] /\left\langle z^{8}+1\right\rangle: 1 / t_{2}=z^{6}+z^{3}+z$.
(iv) Verify that the product of the polynomial $d=0 \mathrm{~B} y^{3}+0 \mathrm{D} y^{2}+09 y+0 \mathrm{E}$ and the polynomial $c=03 y^{3}+01 y^{2}+01 y+02$ is equal to 1 in the ring $\mathbb{F}_{256}[y] /\left\langle y^{4}+1\right\rangle$.

Solution. Staightforward but lengthy calculation.

