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C.31  RSA

The RSA algorithm was introduced by Rivest, Shamir
and Adleman in 1977.

• p,q large primes (to be kept secret)
• n := pq modulus (publicly known)
• d secret key (private key; to be kept 

secret) with gcd(d, ϕ(n))=1 
• e public exponent (publicly known);

e ≡ d-1 (mod  ϕ(n))

Note: The public key is the pair (n,e).
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C.31  (continued)

Fact: (xd(mod n))e ≡ x (mod n)  and
(xe(mod n))d ≡ x (mod n)  for all x ∈ Zn.

In other words: x → xd (mod n) and  x → xe (mod n)
define inverse bijections on Zn. 

Proof of the fact: Exercises (Hint: Use the CRT)

Note: For x ∈ Zn* the fact follows immediately from 
Euler’s Theorem (C.10).
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C.32  Example

p=11
q=23

n=243 }  ϕ(243)) = ϕ(11*23) = 10*22 =220 

e=3 } d=147  (Note that ed = 441 ≡ 1 (mod 220). )

RSA with artificially small parameters:
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C.33  RSA: Fields of Application

• (different types of) digital signatures
• key exchange protocols for symmetric keys
• hybrid protocols
• communication protocols (SSL,TLS etc.) 
• Home banking, e-commerce
• Credit cards (chip), GeldKarte (internet usage)
• …
Remark: In this section we will discuss several 

applications in detail.
Note: The RSA algorithm is by far the mostly 

widespread public key algorithm.
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C.34  Efficiency 

If d is in the same order of magnitude as n (usual 
case, cf. C.38) the s&m algorithm (C.6) requires 
about

• log2(n) modular squarings
• 0.5*log2(n) modular multiplications
of log2(n)-integers to compute yd (mod n).

Note: In general asymmetric algorithms need much 
more computation time than symmetric ciphers.
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C.35  RSA with CRT

Usually RSA implementations use the CRT (C.27) to 
compute yd (mod n). 

Setup Step (to be carried out once):
Compute 

dp:=d (mod(p-1)) 
dq:=d (mod(q-1))

Determine integers Np and Nq with
Np ≡ 1 (mod p) Nq ≡ 0 (mod p) 
Np ≡ 0 (mod q) Nq ≡ 1 (mod q)
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C.35  (continued)

Computation Step:
xp:= y(mod p)d_p (mod p)
xq:= y(mod q)d_q (mod q)
yd ≡ Npxp + Nqxq (mod n).
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C.36  RSA with CRT: Efficiency 

If d is in the same order of magnitude as n (usual 
case, cf. C.38) the CRT with the s&m algorithm 
(C.6) requires about

• log2(n) modular squarings
• 0.5*log2(n) modular multiplications
of 0.5*log2(n)-integers to compute yd (mod n).

Note: For identical hardware the CRT reduces the 
computation time to about 25 %.
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C.37  Recovery Attack on the Secret Key

Goal: Determine d from (n,e).

Fact: If the adversary knows the factorization n=pq he 
concludes ϕ(n) = ϕ(p)ϕ(q) = (p-1)(q-1).
Then he computes 
d ≡ e-1 (mod  (p-1)(q-1))
with the extended Euclidean algorithm.
→ RSA is broken

Note: For that reason factorization algorithms have 
intensively been studied over the last 25 years.
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C.38  Selection of the Parameters

• To reduce the computation time the designer 
clearly preferred small parameters n and d.

• However, to prevent factorization today usually 
1024 bit  to 2048 bit moduli n are used. The prime 
factors p and q are of the same order of magnitude 
(although they should not be too close together!).

• Attention: If d < n0.29 the secret key d can be found 
with lattice-based attacks.
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C.38  (continued)

• After the modulus n usually the public exponent e is 
selected next. As e is publicly known it may be 
small. 

• The CRT cannot be applied for the public key as p 
and q revealed d.

• The numbers 3, 17, 216+1 are favourite values 
since they are small and have low Hamming weight 
(→ s&m algorithm). Normally, the secret key           
d ≡ e-1 (mod ϕ(n)) is of  the same order of 
magnitude as n.

Warning: The value e=3 may be critical (cf. Remark 
C.63). 
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C.39  Digital Signatures

Goal: Alice wants to send Bob a message over the 
internet. 

Security Requirements:
• The message need not be kept secret but
• Bob shall be convinced 
w that the message was generated by Alice (authenticity).
w that the message has not been altered on the   

transmission channel (data integrity).
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C.39  (continued)

Alice generates a digital signature
dA Alice’s secret RSA key, 
nA Alice’s modulus

• Alice generates a digital document T (a word file 
that formulates a contract, an applet etc.)

• Alice (resp., her computer) computes H(T) where 
H denotes an appropriate hash function. The hash 
value H(T) is interpreted as an integer ∈ Zn (cf. 
C.43)

• Alice sends T || H(T)d_A (mod nA)
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C.39  (continued)

Bob validates the digital signature
eA Alice’s public exponent, 
nA Alice’s modulus

• Bob receives T’ || sig  and interprets sig as Alice’s 
signature of T’

• Bob checks whether (sig)e_A (mod nA) = H(T’)
• In case of equality sig is Alice’s signature of T’. 

Bob is convinced Alice has signed the message 
and that it has not been altered. (Justification: 
(H(T)d_A (mod nA))e_A ≡ H(T) (mod nA) .)
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C.40  Comparison with Handwritten Signatures

Compliances with handwritten signatures:

• Only the authentic signer is able to generate a 
valid signature (requires access to his / to her 
secret key).

• The signature is ‘connected’ with the signed 
document by the properties of the hash function    
(handwritten signatures: by the paper).

• Everyone can validate a digital signature with the 
public key (e,n).
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C.40  (continued)

Important differences to handwritten signatures:
• A digital signature depends on the signer and the

signed document. 
• A digital signature signs the binary representation 

of a digital document (e.g. a word file) but not its 
content.

• An expert can (at least in principle) distinguish a 
forged handwritten signature from an authentic 
one. A forged digital signature can either be 
detected very easily (since at least one bit is 
false), or the forged signature is identical to the 
correct one. 
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C.41  Remark

• The signer does not need to know his secret key 
d. He merely must have access to d, i.e. be able 
to use it. 

• This is even a desirable security feature, 
especially for sensitive  applications. The secret 
key d is stored in a PSE (personal security 
environment), typically on the disk (encrypted with 
a password) or on a smart card. The user enters 
his password to decrypt d or to activate the smart 
card signing application.
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C.42  Digital Signatures: Applications

• contracts (preventing forgery) 
• software (provides trust that it is no malware)
• authentication of web sites
• electronic money, electronic purses (preventing 

forgery, providing authenticity)
• Trusted Computing (provides trust, blind 

signatures provide anonymity)
• …

Details: later + Exercises
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C.43  Padding

C.39 explained the generation and validation of digital 
signatures. It was loosely said that the hash value 
H(T) is interpreted as an integer.

More precisely, we exponentiate the integer 

( I || P || H(T))2

with     I    information bytes 
P   padding bytes (fixed (known), random or 

pseudorandom)

2 indicates binary representation
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C.43  (continued)

• The information bytes provide information on the 
used algorithms.

• The padding bytes ‘extend’ the bit representation 
of the hash value to the bit length of n. 

Note:
The choice of an appropriate padding scheme helps 

to prevent various attacks. 
Security properties of padding schemes are beyond 

the scope of this course.
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C.44  Attacks on Individual Signatures

C.37 and C.38 considered recovery attacks on the 
secret key d, which allow (e.g.) the forgery of 
arbitrarily many digital signatures.

Weak hash functions enable attacks on single 
signatures even if an adversary cannot find the 
private key d. 
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C.44  (continued)

Missing second pre-image property:
• Assume that Alice has sent Bob the signed 

message T || H(T)d_A (mod nA) and that Bob is able 
to find a second message T’≠ T with H(T’)=H(T), 
which is more favourable for him (e.g., 
T’ ≅ “I buy Bob’s car for 10000 €. Alice.” instead of 
T  ≅ “I buy Bob’s car for 1000 €. Alice.”)

• Then H(T)d_A (mod nA) is also a valid signature for 
T’ in place of T. If Bob replaces T by T’ everyone 
will believe that Alice had signed this contract.

• Depending on the legal framework (cf. C.57) the 
contract may be legally binding for Alice.
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C.44  (continued)

Missing collision resistance:
• Assume that Bob is able to find any two messages   

T’≠ T with H(T’)=H(T) where T’ is more favourable 
for him (e.g., 
T ≅ “I buy Bob’s car for 1000 €. Alice”
T’ ≅ “I donate Bob 1000 €. Alice”)

• As Bob is a nice guy he prepares the contract T 
and sends T to Alice. Alice reads the contract, 
signs it and mails the signed contract to Bob. 

• However, if Bob later replaces T by T’ everyone 
will believe that Alice had signed the contract T’.
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C.45  RSA: Multiplicity Property

• Note that y1
d y2

d ≡ (y1 y2)d (mod n).
• That is, from signatures / RSA decryption values 

of y1 and y2 one immediately gets the signature / 
decryption value of their modular product y1y2
(mod n).

• The use of hash functions and also of an 
appropriate padding scheme prevents / 
counteracts the aimed construction of such 
messages.

Details: Blackboard + Exercises
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Alice’s public key (nA,eA)?

Proposals:
a) Alice hands Bob a CD with her public key.
Assessment: This solution is surely appropriate for specific 

scenarios but unacceptable for open networks, for 
instance, since Alice and Bob may not even know each 
other.

b) Alice transmits T || H(T)d_A (mod nA)|| (nA,eA)
Assessment: This solution is absolutely insecure! An active 

adversary could easily replace the above message by T’ || 
H(T’)d_E (mod nE)|| (nE,eE) where (nE,eE) is arbitrarily 
selected. Bob validates the signature with (nE,eE) since he 
erroneously believes that this was Alice’s public key.

c)   Certificates 
Assessment: Appropriate solution (see C.47 ff.)
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C.47  What is a Certificate?

• A certificate contains a data part and a signature 
part which contains the issuer’s signature of the 
data part. 

• The data part typically contains
w certificate owner’s name (alias, ID or similar)
w public key
w algorithm IDs (asymmetric algorithm, hash function)
w permitted use (signing, encryption (key exchange))
w validity (not before, not after) 
w certificate issuer
w …
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C.47 (continued)

Remark: The most important standard for certificates 
is X.509
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C.48  How to use a Certificates

• Alice sends T || H(T)d_A (mod nA)|| CertA

• Bob first checks the signature of the certificate 
CertA with the public key of the certificate issuer

• If this signature is valid he uses the public key 
(nA,eA) from CertA to validate the signature  
H(T)d_A (mod nA) as explained in C.39.
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public key of the certificate issuer?

• Usually there are clearly less certificate issuers 
than certificate owners. This means that Bob 
needs to know considerably less public keys than 
users.

• The public key of the certificate issuer itself may 
be contained in a certificate, i.e. Alice may 
transmit a chain of certificates.
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C.50 Public Key Infrastructure (PKI)

• Roughly speaking a PKI (public key infrastructure) 
is a system that allows the issuing, control and 
validation of (public key) certificates. In particular, 
it allows the binding of a public key to a user. The 
notion of a PKI also comprises organisational 
measures and technical components.

• The next slide shows a hierarchic structure with a 
root. Certificates are issued by dedicated 
certification authorities (CAs).
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C.51  Hierarchic PKI

Root CA

CAs

user

... ...
.
.
.

... ... ... ......

... ...

Alice

CAs
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C.52  Remark

• In a hierarchic PKI the receiver of a message only 
needs to know the authentic public key of the root. 
The signer sends a chain of certificates, the first 
one being the root certificate while the last one 
contains the signer’s public key.

• The root key might be published in a newspaper 
or a journal, for instance. Bob stores this public 
key in his web browser. 

• 2 layers (root, user) and 3 layers (root, CAs, user) 
are typical.
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C.52  (continued)

• It was clearly desirable if all users belonged to the 
same PKI. Unfortunately, in ‘real life’ this is not the 
case. Instead, there exist many “parallel”PKIs.

• In principal, so-called cross certificates enable the 
secure use of certificates from other PKIs.

• Validated certificates may be stored to improve 
later signature validations.
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C.53  Certificates in e-commerce Applications

• In typical e-commerce applications the user 
enters sensitive information (password, credit 
card number) to websites.

• The website (resp., its owner) usually 
authenticates itself with a certificate.

• If neither this certificate nor a corresponding root 
certificate are not contained in the certificate 
store of the web browser the user is asked 
whether he wants to stop the process or continue 
(i.e., whether he accepts the certificate which 
may be then added to the store).

• What should the user do?
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(main aspects)

• The certification issuer (a CA, for instance) 
should check the identity of the applicant of the 
certificate carefully. 

• Verisign Inc., for instance, issues different types 
of certificates. To obtain a so-called Class 1 
certificate the applicant only has to transmit a 
valid e-mail address. Hence the trust in Verisign
Class 1 certificates is low .

• In home banking applications banks usually have 
Class 3 Verisign certificates. As there are careful 
identity checks the trust in Class 3 certificates is 
high.
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C.54 (continued)

• The certificate issuer should keep the private key 
confofential that is used to sign certificates to 
prevent the forgery of certificates.

• If the certificate issuer generates the key pair for 
the certificate owner (which is not unusual for 
CAs) the certificate issuer should be very 
trustworthy. If he is a crook he might use 
duplicates of the private keys in the name of the 
certificate owners.
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C.54 (continued)

• A CA usually publish a list of valid certificates 
and a certificate revocation list on his server.

• To be on the safe side the receiver of a signed 
message can check whether the signer’s 
certificate has been revoked before he accepts 
the signature.
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C.55 Self-signed Certificates

• A certificate is said to be self-signed if the 
certification issuer coincides with the certificate 
owner. 

• The trust in self-signed certificates depends 
essentially on the trustworthiness of the 
certificate owner (= issuer)

Note: In a hierarchic PKI only the root certificate is 
self-signed.
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C.56  Web of Trust

• The PGP and GnuPG community have no 
hierarchic PKI but use a web of trust.

• User Alice generates his own key pair (secret  
key, public key). She generates her own 
certificate, which is uploaded on a public key 
server.

• Other users who trust Alice and are convinced that 
the public key is authentic (e.g. because Alice has 
transmitted its hash value over the phone) sign 
this certificate.
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C.56  (continued)

Basic idea: Assume that some users have confirmed 
Alice’s certificate. If Bob trusts at least some of 
them he also trusts Alice and her certificate.

Security Risk: Certifying users might endorse 
certificates with too little care.
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Applications

• Should the user accept a certificate if its issuer, 
resp. its authentic public key?

• If sensitive information shall be entered the user 
should be very careful! 

• In particular, for home banking applications he / 
she should stop the process!

• In other cases the user should at least 
w check details of the certificate (issuer, algorithms, type 

of certificate etc.)
w try to check whether he is on the authentic website.
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C.57  Legal Framework

• In Germany the Digital Signature Act defines different 
(security) classes of digital signatures. The highest class, 
the so-called qualified electronic signatures, demands very 
restrictive conditions on the cryptographic algorithms, the 
signing device and on the CA. 

• If permitted (for a particular application) qualified electronic
signatures are legally binding as handwritten signatures.

• However, in e-commerce applications today only a very 
small fraction of digital signatures meet these strict 
requirements.

• For non-qualified electronic signatures the consequences 
are not defined by the law.
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C.58  Key exchange

• When using symmetric ciphers (Chapter B) all 
involved parties have to share secret key(s).

• How can a secure exchange of symmetric keys be 
realized? This questions reminds on the secure 
exchange of public keys.

• Clearly, also symmetric keys may be exchanged 
on CDs. As for public keys this solution is limited 
to specific situations (cf. C.46).
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C.58  (continued)

• Note that symmetric keys additionally have to be 
kept secret. This excludes the use of certificates 
that contain these keys. Moreover, in many 
application symmetric keys are changed regularly 
(maybe even for each message).

• RSA also supports secure key exchange.
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C.59   Elementary Key Exchange Protocol 

Goal: Alice wants to transmit a symmetric key to Bob

Alice knows
(nB,eB) Bob’s public RSA key 
Alice transmits ke_B (mod nB) where k is interpreted as 

an integer (cf. C.39 and C.43 (padding)).

Bob computes (ke_B (mod nB))d_B ≡ k (mod nB).

Note: Only Bob has access to his secret RSA key dB.
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C.59   (continued)

Remark: To illustrate the interaction of the different 
types of keys in C.60 and C.61 private keys, public 
exponents and symmetric keys are coloured red, 
green and blue, respectively.
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C.60  Hybrid Protocol (simplified protocol fragment)

Goal: Alice wants to transmit a message T to Bob
Security requirements:
Secrecy, data integrity, authenticity
Situation: Alice and Bob do not share a secret key
Alice knows:
(nB,eB) Bob’s public RSA key (Bob’s certificate 

ensures its authenticity)
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C.60  (continued)

Alice:
• generates randomly an AES session key 

kRND(valid only for one session)
• computes C:=AES(T || H(T)d_A (mod nA) || CertA, 

kRND)
• transmits C || kRND

e_B (mod nB) 
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C.60  (continued)

Bob:
• computes (kRND

e_B (mod nB))d_B ≡ kRND (mod nB). 
• decrypts C with the session key kRND

• validates Alice’s certificate CertA
• validates Alice’s signature H(T)d_A (mod nA) with 

Alice’s public key (nA,eA) 
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C.61  Remark 

• Only Bob has access to his secret key dB. 
• It is strongly recommended to use different RSA 

keys for signing and key exchange (different keys 
for different purposes!).

• Key exchange / key agreement mechanisms (cf. 
Section C.c) are part of many security protocols as 
SSL, TSL, PGP, for instance.
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C.62  Padding

• As for signature applications padding is also 
applied to key exchange mechanisms, i.e.
y:=( I || P || kRND)2

is exponentiated (see also C.43). 
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C.63  Remark

• Assume that fixed (known) padding bytes are used. Then
ye_B ≡(D+kRND_2)e_B ≡ c (mod nB) 
with known constant D and c (= transmitted value).

• Finding kRND is then equivalent to finding a small zero of 
the modular polynomial equation p(x):=(D+x)e_B – c ≡ 0 
(mod nB)       

• Note that for a large modulus nB it is usually very difficult to 
solve non-linear equations if the factorization of nB is 
unknown.

• However, with lattice-based methods it is feasible to find all 
zeroes that are < nB

1/e_B .
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C.63  (continued)

Example:
w nB = 1024 RSA modulus
w e  = 3
Up to 340 least significant bits can be recovered (e.g.         

2 AES keys).
Note: For e =17 a 1024 / 17 ≈ 60 bit key can be 

recovered with this method. Hence e=216+1 is a 
widely used value for key exchange mechanisms.

Note: This attack does not find the secret RSA key dB
but only one encrypted value (here: the session 
key kRND)
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C.63  (continued)

Remark:
• This attack is irrelevant for signing applications.
• However, in 2006 Bleichenbacher demonstrated 

that e=3 can also be dangerous for signing 
applications in case of careless signature 
validation, i.e. if the padding format is not 
checked. The public exponent e =216+1 also 
prevents this attack.
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C.64  Key Exchange / Key Agreement

• C.59 ff. discuss key exchange mechanism. The 
(symmetric) key kRND is selected by one party (the 
sender).

• In key agreement protocols both parties influence 
the value of the key (see Section  C.c), i.e. they 
“agree”upon a key.
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C.65  HMAC

• Let H denote a hash function (cf. C.30). The 
HMAC of a bitstring m is given by
HMAC(m,k):=H(k ⊕ opad || H(k ⊕ ipad || m) )
where opad and ipad are constants (specified in 
RFC 2104).

• For long messages m on computers the HMAC 
runs much faster than all the MAC constructions 
from Section B.c (cf. C.30). 

Note: SSL V3.0 ( see C.65) uses a similar keyed hash 
function: MAC(m,k):=H (k || p1 || H(k || p2 || m)). 
Here p1 and p2 denote constants.
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C.66  SSL (Secure Socket Layer)

• SSL is a communication protocol that is widely 
used for home banking and e-commerce.

• Currently, SSL V3.0 and its successor TLS 
(Transport Layer Protocol) are used. TSL V1.0 is 
able to communicate with SSL V3.0.

• Security Goal: Secure exchange of messages, 
ensuring secrecy, authenticity, data integrity.
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C.66  (continued)

• SSL is a two-party protocol. The party that starts 
the protocol is assigned the role of the client, the 
other the role of the server.

• SSL falls into two phases 
w Handshake protocol
w Encryption of application data
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C.67  The Handshake Protocol

Within the handshake protocol both parties
• agree upon a cipher suite (= set of cryptographic 

algorithms with parameters), see C.69
• exchange resp., agree on four keys and two IVs:
w IVC, IVS

w Session keyC, Session keyS

w MAC keyC, MAC keyS

where the indices C and S stand for “client”and “server”, respectively.

• The client uses IVC, Session keyC, MAC keyC, to encrypt 
messages, the server IVS, Session keyS, MAC keyS.

Note: Keys and IVs may be reused in later sessions with the 
same client-server pair to save negotiation time.
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C.68  Mutual Authentication 

Within the handshake protocol client and server 
should authenticate themselves. The following 
combinations are typical:

• Client and server have a trustworthy certficate 
(ideal case, rare)

• The client authenticates himself / herself with a 
PIN (and possibly with a TAN), the server has a 
(trustworthy) certificate (typical for home banking)

• The client does not authenticate, the server has a 
certificate (normal for e-commerce applications).
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C.69  Encryption of Application Data

• The application data are encrypted with a 
symmetric cipher. 

• In SSL V 3.0 authenticity and data integrity are 
ensured by a keyed hash function (→ Note in 
C.63). TLS uses the HMAC.
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C.70  Cipher Suites

SSL requires three types of cryptographic primitives:
• asymmetric algorithms (purpose: authentication of 

certificates, key exchange / key agreement)
• Symmetric ciphers (purpose: encryption of 

application data)
• Hash function (purpose: ensure authenticity and 

data integrity of the application data)
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C.70  (continued)

Example (cipher suite):
SSL_RSA_WITH_3DES_EDE_CBC_SHA1
This means
• RSA: used for key exchange
• 3DES_EDE_CBC: Triple-DES (DES ° DES-1°

DES, cf. B.88) in CBC mode
• SHA1: hash algorithm
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C.70  (continued)

Note:
(i) Client and server usually support many cipher 

suites.
(ii) Within the handshake protocol client and server 

agree upon the strongest cipher suite that is 
supported by both parties.

(iii) ‘no encryption’ is possible.
(iv) Any party may abort the handshake protocol if the 

other party offers only too weak cipher suites.
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C.71  PGP (Pretty Good Privacy)

• widespread computer program to encrypt data; the 
first version was published by Phil Zimmermann in 
1991.

• Security goals: secrecy, authenticity, data 
integrity; uses hybrid mechanisms

• No hierarchic PKI (→ web of trust, C.56)
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C.72  GeldKarte: Internet Usage

• The GeldKarte is a German electronic purse 
system (cf. Chap. A, Sect. B.b). 

• Usually, the customer inserts his GeldKarte into 
the merchant’s terminal. The GeldKarte chip 
communicates with the terminal, or more 
precisely, with the merchant’s smart card.

• To transfer payment records symmetric algorithms 
are applied (cf. B.29ff., B.58).
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C.72  (continued)

• The GeldKarte can also be used for payments 
over the internet.

• Principal security risk: The cardholder does not 
enter the merchant’s shop physically. With a faked 
website a crook could pretend to be another 
(reliable) merchant. 

• If the card reader is integrated in the PC different 
price might be displayed on the screen than finally 
requested from the card.



69

C.72  (continued)

• Solution: The GeldKarte is inserted into an 
external smart card reader (more precisely: into a 
Class 3 card reader with own display and own 
keyboard).

• The cryptographic protocol runs between the 
GeldKarte chip and the merchant’s smart card.

• The relevant information (price, merchant’s name) 
is displayed on the card reader.

• The cardholder thus can detect if the price or the 
merchant’s name on the PC screen are not 
correct. He must explicitly agree to the payment.

• The merchant’s card authenticates itself with a 
certificate. 


