
1

C.b) RSA with Applications

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

2
C.31 RSA

The RSA algorithm was introduced by Rivest, Shamir
and Adleman in 1977.

• p,q large primes (to be kept secret)
• n := pq modulus (publicly known)
• d secret key (private key; to be kept

secret) with gcd(d, ϕ(n))=1
• e public exponent (publicly known);

e ≡ d-1 (mod ϕ(n))

Note: The public key is the pair (n,e).

3
C.31 (continued)

Fact: (xd(mod n))e ≡ x (mod n) and
(xe(mod n))d ≡ x (mod n) for all x ∈ Zn.

In other words: x → xd (mod n) and x → xe (mod n)
define inverse bijections on Zn.

Proof of the fact: Exercises (Hint: Use the CRT)

Note: For x ∈ Zn* the fact follows immediately from
Euler’s Theorem (C.10).

4

C.32 Example

p=11
q=23

n=243 } ϕ(243)) = ϕ(11*23) = 10*22 =220

e=3 } d=147 (Note that ed = 441 ≡ 1 (mod 220).)

RSA with artificially small parameters:

5
C.33 RSA: Fields of Application

• (different types of) digital signatures
• key exchange protocols for symmetric keys
• hybrid protocols
• communication protocols (SSL,TLS etc.)
• Home banking, e-commerce
• Credit cards (chip), GeldKarte (internet usage)
• …
Remark: In this section we will discuss several

applications in detail.
Note: The RSA algorithm is by far the mostly

widespread public key algorithm.

6

C.34 Efficiency

If d is in the same order of magnitude as n (usual
case, cf. C.38) the s&m algorithm (C.6) requires
about

• log2(n) modular squarings
• 0.5*log2(n) modular multiplications
of log2(n)-integers to compute yd (mod n).

Note: In general asymmetric algorithms need much
more computation time than symmetric ciphers.

7

C.35 RSA with CRT

Usually RSA implementations use the CRT (C.27) to
compute yd (mod n).

Setup Step (to be carried out once):
Compute

dp:=d (mod(p-1))
dq:=d (mod(q-1))

Determine integers Np and Nq with
Np ≡ 1 (mod p) Nq ≡ 0 (mod p)
Np ≡ 0 (mod q) Nq ≡ 1 (mod q)

8

C.35 (continued)

Computation Step:
xp:= y(mod p)d_p (mod p)
xq:= y(mod q)d_q (mod q)
yd ≡ Npxp + Nqxq (mod n).

9

C.36 RSA with CRT: Efficiency

If d is in the same order of magnitude as n (usual
case, cf. C.38) the CRT with the s&m algorithm
(C.6) requires about

• log2(n) modular squarings
• 0.5*log2(n) modular multiplications
of 0.5*log2(n)-integers to compute yd (mod n).

Note: For identical hardware the CRT reduces the
computation time to about 25 %.

10
C.37 Recovery Attack on the Secret Key

Goal: Determine d from (n,e).

Fact: If the adversary knows the factorization n=pq he
concludes ϕ(n) = ϕ(p)ϕ(q) = (p-1)(q-1).
Then he computes
d ≡ e-1 (mod (p-1)(q-1))
with the extended Euclidean algorithm.
→ RSA is broken

Note: For that reason factorization algorithms have
intensively been studied over the last 25 years.

11

C.38 Selection of the Parameters

• To reduce the computation time the designer
clearly preferred small parameters n and d.

• However, to prevent factorization today usually
1024 bit to 2048 bit moduli n are used. The prime
factors p and q are of the same order of magnitude
(although they should not be too close together!).

• Attention: If d < n0.29 the secret key d can be found
with lattice-based attacks.

12

C.38 (continued)

• After the modulus n usually the public exponent e is
selected next. As e is publicly known it may be
small.

• The CRT cannot be applied for the public key as p
and q revealed d.

• The numbers 3, 17, 216+1 are favourite values
since they are small and have low Hamming weight
(→ s&m algorithm). Normally, the secret key
d ≡ e-1 (mod ϕ(n)) is of the same order of
magnitude as n.

Warning: The value e=3 may be critical (cf. Remark
C.63).

13
C.39 Digital Signatures

Goal: Alice wants to send Bob a message over the
internet.

Security Requirements:
• The message need not be kept secret but
• Bob shall be convinced
w that the message was generated by Alice (authenticity).
w that the message has not been altered on the

transmission channel (data integrity).

14
C.39 (continued)

Alice generates a digital signature
dA Alice’s secret RSA key,
nA Alice’s modulus

• Alice generates a digital document T (a word file
that formulates a contract, an applet etc.)

• Alice (resp., her computer) computes H(T) where
H denotes an appropriate hash function. The hash
value H(T) is interpreted as an integer ∈ Zn (cf.
C.43)

• Alice sends T || H(T)d_A (mod nA)

15
C.39 (continued)

Bob validates the digital signature
eA Alice’s public exponent,
nA Alice’s modulus

• Bob receives T’ || sig and interprets sig as Alice’s
signature of T’

• Bob checks whether (sig)e_A (mod nA) = H(T’)
• In case of equality sig is Alice’s signature of T’.

Bob is convinced Alice has signed the message
and that it has not been altered. (Justification:
(H(T)d_A (mod nA))e_A ≡ H(T) (mod nA) .)

16

C.40 Comparison with Handwritten Signatures

Compliances with handwritten signatures:

• Only the authentic signer is able to generate a
valid signature (requires access to his / to her
secret key).

• The signature is ‘connected’ with the signed
document by the properties of the hash function
(handwritten signatures: by the paper).

• Everyone can validate a digital signature with the
public key (e,n).

17

C.40 (continued)

Important differences to handwritten signatures:
• A digital signature depends on the signer and the

signed document.
• A digital signature signs the binary representation

of a digital document (e.g. a word file) but not its
content.

• An expert can (at least in principle) distinguish a
forged handwritten signature from an authentic
one. A forged digital signature can either be
detected very easily (since at least one bit is
false), or the forged signature is identical to the
correct one.

18

C.41 Remark

• The signer does not need to know his secret key
d. He merely must have access to d, i.e. be able
to use it.

• This is even a desirable security feature,
especially for sensitive applications. The secret
key d is stored in a PSE (personal security
environment), typically on the disk (encrypted with
a password) or on a smart card. The user enters
his password to decrypt d or to activate the smart
card signing application.

19

C.42 Digital Signatures: Applications

• contracts (preventing forgery)
• software (provides trust that it is no malware)
• authentication of web sites
• electronic money, electronic purses (preventing

forgery, providing authenticity)
• Trusted Computing (provides trust, blind

signatures provide anonymity)
• …

Details: later + Exercises

20

C.43 Padding

C.39 explained the generation and validation of digital
signatures. It was loosely said that the hash value
H(T) is interpreted as an integer.

More precisely, we exponentiate the integer

(I || P || H(T))2

with I information bytes
P padding bytes (fixed (known), random or

pseudorandom)

2 indicates binary representation

21

C.43 (continued)

• The information bytes provide information on the
used algorithms.

• The padding bytes ‘extend’ the bit representation
of the hash value to the bit length of n.

Note:
The choice of an appropriate padding scheme helps

to prevent various attacks.
Security properties of padding schemes are beyond

the scope of this course.

22

C.44 Attacks on Individual Signatures

C.37 and C.38 considered recovery attacks on the
secret key d, which allow (e.g.) the forgery of
arbitrarily many digital signatures.

Weak hash functions enable attacks on single
signatures even if an adversary cannot find the
private key d.

23

C.44 (continued)

Missing second pre-image property:
• Assume that Alice has sent Bob the signed

message T || H(T)d_A (mod nA) and that Bob is able
to find a second message T’≠ T with H(T’)=H(T),
which is more favourable for him (e.g.,
T’ ≅ “I buy Bob’s car for 10000 €. Alice.” instead of
T ≅ “I buy Bob’s car for 1000 €. Alice.”)

• Then H(T)d_A (mod nA) is also a valid signature for
T’ in place of T. If Bob replaces T by T’ everyone
will believe that Alice had signed this contract.

• Depending on the legal framework (cf. C.57) the
contract may be legally binding for Alice.

24

C.44 (continued)

Missing collision resistance:
• Assume that Bob is able to find any two messages

T’≠ T with H(T’)=H(T) where T’ is more favourable
for him (e.g.,
T ≅ “I buy Bob’s car for 1000 €. Alice”
T’ ≅ “I donate Bob 1000 €. Alice”)

• As Bob is a nice guy he prepares the contract T
and sends T to Alice. Alice reads the contract,
signs it and mails the signed contract to Bob.

• However, if Bob later replaces T by T’ everyone
will believe that Alice had signed the contract T’.

25

C.45 RSA: Multiplicity Property

• Note that y1
d y2

d ≡ (y1 y2)d (mod n).
• That is, from signatures / RSA decryption values

of y1 and y2 one immediately gets the signature /
decryption value of their modular product y1y2
(mod n).

• The use of hash functions and also of an
appropriate padding scheme prevents /
counteracts the aimed construction of such
messages.

Details: Blackboard + Exercises

26C.46 Wherefrom does Bob know
Alice’s public key (nA,eA)?

Proposals:
a) Alice hands Bob a CD with her public key.
Assessment: This solution is surely appropriate for specific

scenarios but unacceptable for open networks, for
instance, since Alice and Bob may not even know each
other.

b) Alice transmits T || H(T)d_A (mod nA)|| (nA,eA)
Assessment: This solution is absolutely insecure! An active

adversary could easily replace the above message by T’ ||
H(T’)d_E (mod nE)|| (nE,eE) where (nE,eE) is arbitrarily
selected. Bob validates the signature with (nE,eE) since he
erroneously believes that this was Alice’s public key.

c) Certificates
Assessment: Appropriate solution (see C.47 ff.)

27

C.47 What is a Certificate?

• A certificate contains a data part and a signature
part which contains the issuer’s signature of the
data part.

• The data part typically contains
w certificate owner’s name (alias, ID or similar)
w public key
w algorithm IDs (asymmetric algorithm, hash function)
w permitted use (signing, encryption (key exchange))
w validity (not before, not after)
w certificate issuer
w …

28

C.47 (continued)

Remark: The most important standard for certificates
is X.509

29

C.48 How to use a Certificates

• Alice sends T || H(T)d_A (mod nA)|| CertA

• Bob first checks the signature of the certificate
CertA with the public key of the certificate issuer

• If this signature is valid he uses the public key
(nA,eA) from CertA to validate the signature
H(T)d_A (mod nA) as explained in C.39.

30C.49 Wherefrom does Bob know the authentic
public key of the certificate issuer?

• Usually there are clearly less certificate issuers
than certificate owners. This means that Bob
needs to know considerably less public keys than
users.

• The public key of the certificate issuer itself may
be contained in a certificate, i.e. Alice may
transmit a chain of certificates.

31

C.50 Public Key Infrastructure (PKI)

• Roughly speaking a PKI (public key infrastructure)
is a system that allows the issuing, control and
validation of (public key) certificates. In particular,
it allows the binding of a public key to a user. The
notion of a PKI also comprises organisational
measures and technical components.

• The next slide shows a hierarchic structure with a
root. Certificates are issued by dedicated
certification authorities (CAs).

32

C.51 Hierarchic PKI

Root CA

CAs

user

... ...
.
.
.

...

... ...

Alice

CAs

33

C.52 Remark

• In a hierarchic PKI the receiver of a message only
needs to know the authentic public key of the root.
The signer sends a chain of certificates, the first
one being the root certificate while the last one
contains the signer’s public key.

• The root key might be published in a newspaper
or a journal, for instance. Bob stores this public
key in his web browser.

• 2 layers (root, user) and 3 layers (root, CAs, user)
are typical.

34

C.52 (continued)

• It was clearly desirable if all users belonged to the
same PKI. Unfortunately, in ‘real life’ this is not the
case. Instead, there exist many “parallel”PKIs.

• In principal, so-called cross certificates enable the
secure use of certificates from other PKIs.

• Validated certificates may be stored to improve
later signature validations.

35

C.53 Certificates in e-commerce Applications

• In typical e-commerce applications the user
enters sensitive information (password, credit
card number) to websites.

• The website (resp., its owner) usually
authenticates itself with a certificate.

• If neither this certificate nor a corresponding root
certificate are not contained in the certificate
store of the web browser the user is asked
whether he wants to stop the process or continue
(i.e., whether he accepts the certificate which
may be then added to the store).

• What should the user do?

36C.54 Tasks of the Certification Issuer
(main aspects)

• The certification issuer (a CA, for instance)
should check the identity of the applicant of the
certificate carefully.

• Verisign Inc., for instance, issues different types
of certificates. To obtain a so-called Class 1
certificate the applicant only has to transmit a
valid e-mail address. Hence the trust in Verisign
Class 1 certificates is low .

• In home banking applications banks usually have
Class 3 Verisign certificates. As there are careful
identity checks the trust in Class 3 certificates is
high.

37

C.54 (continued)

• The certificate issuer should keep the private key
confofential that is used to sign certificates to
prevent the forgery of certificates.

• If the certificate issuer generates the key pair for
the certificate owner (which is not unusual for
CAs) the certificate issuer should be very
trustworthy. If he is a crook he might use
duplicates of the private keys in the name of the
certificate owners.

38

C.54 (continued)

• A CA usually publish a list of valid certificates
and a certificate revocation list on his server.

• To be on the safe side the receiver of a signed
message can check whether the signer’s
certificate has been revoked before he accepts
the signature.

39

C.55 Self-signed Certificates

• A certificate is said to be self-signed if the
certification issuer coincides with the certificate
owner.

• The trust in self-signed certificates depends
essentially on the trustworthiness of the
certificate owner (= issuer)

Note: In a hierarchic PKI only the root certificate is
self-signed.

40

C.56 Web of Trust

• The PGP and GnuPG community have no
hierarchic PKI but use a web of trust.

• User Alice generates his own key pair (secret
key, public key). She generates her own
certificate, which is uploaded on a public key
server.

• Other users who trust Alice and are convinced that
the public key is authentic (e.g. because Alice has
transmitted its hash value over the phone) sign
this certificate.

41

C.56 (continued)

Basic idea: Assume that some users have confirmed
Alice’s certificate. If Bob trusts at least some of
them he also trusts Alice and her certificate.

Security Risk: Certifying users might endorse
certificates with too little care.

42C.53 (continued) Certificates in e-commerce
Applications

• Should the user accept a certificate if its issuer,
resp. its authentic public key?

• If sensitive information shall be entered the user
should be very careful!

• In particular, for home banking applications he /
she should stop the process!

• In other cases the user should at least
w check details of the certificate (issuer, algorithms, type

of certificate etc.)
w try to check whether he is on the authentic website.

43

C.57 Legal Framework

• In Germany the Digital Signature Act defines different
(security) classes of digital signatures. The highest class,
the so-called qualified electronic signatures, demands very
restrictive conditions on the cryptographic algorithms, the
signing device and on the CA.

• If permitted (for a particular application) qualified electronic
signatures are legally binding as handwritten signatures.

• However, in e-commerce applications today only a very
small fraction of digital signatures meet these strict
requirements.

• For non-qualified electronic signatures the consequences
are not defined by the law.

44

C.58 Key exchange

• When using symmetric ciphers (Chapter B) all
involved parties have to share secret key(s).

• How can a secure exchange of symmetric keys be
realized? This questions reminds on the secure
exchange of public keys.

• Clearly, also symmetric keys may be exchanged
on CDs. As for public keys this solution is limited
to specific situations (cf. C.46).

45

C.58 (continued)

• Note that symmetric keys additionally have to be
kept secret. This excludes the use of certificates
that contain these keys. Moreover, in many
application symmetric keys are changed regularly
(maybe even for each message).

• RSA also supports secure key exchange.

46

C.59 Elementary Key Exchange Protocol

Goal: Alice wants to transmit a symmetric key to Bob

Alice knows
(nB,eB) Bob’s public RSA key
Alice transmits ke_B (mod nB) where k is interpreted as

an integer (cf. C.39 and C.43 (padding)).

Bob computes (ke_B (mod nB))d_B ≡ k (mod nB).

Note: Only Bob has access to his secret RSA key dB.

47

C.59 (continued)

Remark: To illustrate the interaction of the different
types of keys in C.60 and C.61 private keys, public
exponents and symmetric keys are coloured red,
green and blue, respectively.

48

C.60 Hybrid Protocol (simplified protocol fragment)

Goal: Alice wants to transmit a message T to Bob
Security requirements:
Secrecy, data integrity, authenticity
Situation: Alice and Bob do not share a secret key
Alice knows:
(nB,eB) Bob’s public RSA key (Bob’s certificate

ensures its authenticity)

49

C.60 (continued)

Alice:
• generates randomly an AES session key

kRND(valid only for one session)
• computes C:=AES(T || H(T)d_A (mod nA) || CertA,

kRND)
• transmits C || kRND

e_B (mod nB)

50

C.60 (continued)

Bob:
• computes (kRND

e_B (mod nB))d_B ≡ kRND (mod nB).
• decrypts C with the session key kRND

• validates Alice’s certificate CertA
• validates Alice’s signature H(T)d_A (mod nA) with

Alice’s public key (nA,eA)

51

C.61 Remark

• Only Bob has access to his secret key dB.
• It is strongly recommended to use different RSA

keys for signing and key exchange (different keys
for different purposes!).

• Key exchange / key agreement mechanisms (cf.
Section C.c) are part of many security protocols as
SSL, TSL, PGP, for instance.

52

C.62 Padding

• As for signature applications padding is also
applied to key exchange mechanisms, i.e.
y:=(I || P || kRND)2

is exponentiated (see also C.43).

53

C.63 Remark

• Assume that fixed (known) padding bytes are used. Then
ye_B ≡(D+kRND_2)e_B ≡ c (mod nB)
with known constant D and c (= transmitted value).

• Finding kRND is then equivalent to finding a small zero of
the modular polynomial equation p(x):=(D+x)e_B – c ≡ 0
(mod nB)

• Note that for a large modulus nB it is usually very difficult to
solve non-linear equations if the factorization of nB is
unknown.

• However, with lattice-based methods it is feasible to find all
zeroes that are < nB

1/e_B .

54

C.63 (continued)

Example:
w nB = 1024 RSA modulus
w e = 3
Up to 340 least significant bits can be recovered (e.g.

2 AES keys).
Note: For e =17 a 1024 / 17 ≈ 60 bit key can be

recovered with this method. Hence e=216+1 is a
widely used value for key exchange mechanisms.

Note: This attack does not find the secret RSA key dB
but only one encrypted value (here: the session
key kRND)

55

C.63 (continued)

Remark:
• This attack is irrelevant for signing applications.
• However, in 2006 Bleichenbacher demonstrated

that e=3 can also be dangerous for signing
applications in case of careless signature
validation, i.e. if the padding format is not
checked. The public exponent e =216+1 also
prevents this attack.

56

C.64 Key Exchange / Key Agreement

• C.59 ff. discuss key exchange mechanism. The
(symmetric) key kRND is selected by one party (the
sender).

• In key agreement protocols both parties influence
the value of the key (see Section C.c), i.e. they
“agree”upon a key.

57

C.65 HMAC

• Let H denote a hash function (cf. C.30). The
HMAC of a bitstring m is given by
HMAC(m,k):=H(k ⊕ opad || H(k ⊕ ipad || m))
where opad and ipad are constants (specified in
RFC 2104).

• For long messages m on computers the HMAC
runs much faster than all the MAC constructions
from Section B.c (cf. C.30).

Note: SSL V3.0 (see C.65) uses a similar keyed hash
function: MAC(m,k):=H (k || p1 || H(k || p2 || m)).
Here p1 and p2 denote constants.

58

C.66 SSL (Secure Socket Layer)

• SSL is a communication protocol that is widely
used for home banking and e-commerce.

• Currently, SSL V3.0 and its successor TLS
(Transport Layer Protocol) are used. TSL V1.0 is
able to communicate with SSL V3.0.

• Security Goal: Secure exchange of messages,
ensuring secrecy, authenticity, data integrity.

59

C.66 (continued)

• SSL is a two-party protocol. The party that starts
the protocol is assigned the role of the client, the
other the role of the server.

• SSL falls into two phases
w Handshake protocol
w Encryption of application data

60

C.67 The Handshake Protocol

Within the handshake protocol both parties
• agree upon a cipher suite (= set of cryptographic

algorithms with parameters), see C.69
• exchange resp., agree on four keys and two IVs:
w IVC, IVS

w Session keyC, Session keyS

w MAC keyC, MAC keyS

where the indices C and S stand for “client”and “server”, respectively.

• The client uses IVC, Session keyC, MAC keyC, to encrypt
messages, the server IVS, Session keyS, MAC keyS.

Note: Keys and IVs may be reused in later sessions with the
same client-server pair to save negotiation time.

61

C.68 Mutual Authentication

Within the handshake protocol client and server
should authenticate themselves. The following
combinations are typical:

• Client and server have a trustworthy certficate
(ideal case, rare)

• The client authenticates himself / herself with a
PIN (and possibly with a TAN), the server has a
(trustworthy) certificate (typical for home banking)

• The client does not authenticate, the server has a
certificate (normal for e-commerce applications).

62

C.69 Encryption of Application Data

• The application data are encrypted with a
symmetric cipher.

• In SSL V 3.0 authenticity and data integrity are
ensured by a keyed hash function (→ Note in
C.63). TLS uses the HMAC.

63

C.70 Cipher Suites

SSL requires three types of cryptographic primitives:
• asymmetric algorithms (purpose: authentication of

certificates, key exchange / key agreement)
• Symmetric ciphers (purpose: encryption of

application data)
• Hash function (purpose: ensure authenticity and

data integrity of the application data)

64

C.70 (continued)

Example (cipher suite):
SSL_RSA_WITH_3DES_EDE_CBC_SHA1
This means
• RSA: used for key exchange
• 3DES_EDE_CBC: Triple-DES (DES ° DES-1°

DES, cf. B.88) in CBC mode
• SHA1: hash algorithm

65

C.70 (continued)

Note:
(i) Client and server usually support many cipher

suites.
(ii) Within the handshake protocol client and server

agree upon the strongest cipher suite that is
supported by both parties.

(iii) ‘no encryption’ is possible.
(iv) Any party may abort the handshake protocol if the

other party offers only too weak cipher suites.

66

C.71 PGP (Pretty Good Privacy)

• widespread computer program to encrypt data; the
first version was published by Phil Zimmermann in
1991.

• Security goals: secrecy, authenticity, data
integrity; uses hybrid mechanisms

• No hierarchic PKI (→ web of trust, C.56)

67

C.72 GeldKarte: Internet Usage

• The GeldKarte is a German electronic purse
system (cf. Chap. A, Sect. B.b).

• Usually, the customer inserts his GeldKarte into
the merchant’s terminal. The GeldKarte chip
communicates with the terminal, or more
precisely, with the merchant’s smart card.

• To transfer payment records symmetric algorithms
are applied (cf. B.29ff., B.58).

68

C.72 (continued)

• The GeldKarte can also be used for payments
over the internet.

• Principal security risk: The cardholder does not
enter the merchant’s shop physically. With a faked
website a crook could pretend to be another
(reliable) merchant.

• If the card reader is integrated in the PC different
price might be displayed on the screen than finally
requested from the card.

69

C.72 (continued)

• Solution: The GeldKarte is inserted into an
external smart card reader (more precisely: into a
Class 3 card reader with own display and own
keyboard).

• The cryptographic protocol runs between the
GeldKarte chip and the merchant’s smart card.

• The relevant information (price, merchant’s name)
is displayed on the card reader.

• The cardholder thus can detect if the price or the
merchant’s name on the PC screen are not
correct. He must explicitly agree to the payment.

• The merchant’s card authenticates itself with a
certificate.

