
1

C.c) DSA and Diffie-Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

2

C.73 DSA (Digital Signature Algorithm)

• standardized by NIST
A) Generation of a key pair
• Select a prime q with 2159 < q < 2160

• Select a prime p with q | p-1 and 21023 < p < 21024

• Select a generator α of Zp* (i.e., < α> =Zp*)
• Set g:= α (p-1)/q (in particular, |< g >| = q)
• Select a random number x ∈ {1,… ,q-1}
• y := gx (mod p)

Secret key: x
Public Key: (y,p,q,g)

3

C.73 (continued)

B) Generation of a digital signature
• generate a random number k ∈ {1,… ,q-1}

(ephemeral key)
• r:= (gk (mod p)) (mod q)
• s:= k-1(H(m)+xr) (mod q)

H denotes a hash function. In the DSS (Digital
Signature Standard) H=SHA-1.

4

?

C.73 (continued)

C) Verification of a digital signature
• verify that 0< r,s < q
• u1:= s-1 H(m) (mod q)
• u2:= s-1 r (mod q)
• v:= (gu_1 yu_2 (mod p)) (mod q) = r

Justification:
gu_1 yu_2 ≡ gs^(-1)H(m) gxs^(-1)r ≡ gs^(-1)(H(m)+xr) ≡ gk (mod p)

5

C.74 DSA (Security)

• The security of DSA essentially grounds on the discrete log
problem in the subgroup < g > ⊆ Zp* (recall that y := gx

(mod p)).
• Unlike RSA the DSA algorithm needs a fresh random

number k (ephemeral key) for each signature. In particular,
if Alice signs the same message m several times all
signatures will be different.

• If an attacker knows k it is easy to solve the linear equation
s:= k-1(H(m)+xr) (mod q) over the field GF(q) to determine
the secret key x.

• Applying lattice-based attacks it is sufficient if an attacker
knows small parts of the ephemeral keys from a large
number of signatures.

6

C.75 DSA (Efficiency)

• Since k is only a 160 bit integer the signature
generation is much faster than for 1024-bit RSA,
for instance. Moreover, the value r may be
precomputed.

• The signature verification is significantly more
costly than for RSA signatures with small public
exponents.

Note: DSA can only be used for signing, not for
encryption (key exchange).

7C.76 Diffie Hellman Key Agreement Protocol
(Basic Variant)

• Goal: Alice and Bob want to agree upon a secret
key. An adversary shall not be able to recover this
key.

First Step: Alice and Bob agree upon a prime p, a
generator g ∈ Zp* (or at least on an element with
large order) and a key derivation function f. These
parameters may be made public.

8

C.76 (continued)

• Alice selects randomly a ∈ {1,… ,p-2} and keeps
this value secret.

• Bob selects randomly b ∈ {1,… ,p-2} and keeps
this value secret.

• Alice sends A:=ga (mod p)
• Bob sends B:=gb (mod p)
• Alice computes C:=Ba ≡ gab (mod p) and k=f(C)
• Bob computes C:=Ab ≡ gab (mod p) and k=f(C)

Note: Alice and Bob have agreed upon the key k.

9

C.77 Remark

• The basic version of Diffie-Hellman’s key
agreement protocol is vulnerable against active
adversaries. An active adversary could e.g. send
any value E:=ge (mod p) to Bob, pretending being
Alice.

• Hence the basic protocol is embedded into more
advanced protocols.

• The underlying idea can also be used to encrypt
messages (cf. e.g. the ElGamal encryption
scheme).

10

C.78 Elliptic Curve Cryptography

• Key agreement protocols and signature applications that
are based on elliptic curves have become increasingly
important. Compared to RSA shorter key lengths provide a
similar security level (→ efficiency).

• Elliptic curve-based cryptographic algorithms are more
difficult to understand than RSA. Elliptic curves are beyond
the scope of this course.

• We just mention that elliptic curves over finite fields are
finite abelian groups. For suitably selected parameters the
discrete log problem on elliptic curves is intractable.

• In particular, there exists a pendant to the DSA algorithm
(ECDSA).

11

C.79 Final Remark

• In this course we merely scratched the field of
public key cryptography.

• There exist several other mechanisms and
protocols that we have not even addressed, e.g.
blind signatures (discussed in the exercises) and
zero-knowledge proofs.

