C.c) DSA and Diffie-Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

C. 73 DSA (Digital Signature Algorithm)

- standardized by NIST
A) Generation of a key pair
- Select a prime q with $2^{159}<q<2^{160}$
- Select a prime p with $q \mid p-1$ and $2^{1023}<p<2^{1024}$
- Select a generator α of $Z_{p}{ }^{*}$ (i.e., $\langle\alpha\rangle=Z_{p}{ }^{*}$)
- Set $\mathrm{g}:=\alpha^{(\mathrm{p}-1) / \mathrm{q}}$ (in particular, $|<\mathrm{g}>|=\mathrm{q}$)
- Select a random number $x \in\{1, \ldots, q-1\}$
- $y:=g^{x}(\bmod p)$

Secret key: x
Public Key: (y,p,q,g)

C. 73 (continued)

B) Generation of a digital signature

- generate a random number $k \in\{1, \ldots, q-1\}$ (ephemeral key)
- $\mathrm{r}:=\left(\mathrm{g}^{\mathrm{k}}(\bmod \mathrm{p})\right)(\bmod \mathrm{q})$
- $s:=k^{-1}(H(m)+x r)(\bmod q)$

H denotes a hash function. In the DSS (Digital Signature Standard) $\mathrm{H}=$ SHA-1.

C. 73 (continued)

C) Verification of a digital signature

- verify that $0<r, s<q$
- $\mathrm{u}_{1}:=\mathrm{s}^{-1} \mathrm{H}(\mathrm{m})(\bmod \mathrm{q})$
- $\mathrm{u}_{2}:=\mathrm{s}^{-1} \mathrm{r}(\operatorname{modq})$
- $\mathrm{v}:=\left(g^{\mathrm{u}} \wedge^{1} \mathrm{y}^{\mathrm{u} _2}(\bmod p)\right)(\bmod q)=r$

Justification:

C. 74 DSA (Security)

- The security of DSA essentially grounds on the discrete log problem in the subgroup $<\mathrm{g}>\subseteq \mathrm{Z}_{\mathrm{p}}{ }^{*}$ (recall that $\mathrm{y}:=\mathrm{g}^{\mathrm{x}}$ $(\bmod p))$.
- Unlike RSA the DSA algorithm needs a fresh random number k (ephemeral key) for each signature. In particular, if Alice signs the same message m several times all signatures will be different.
- If an attacker knows k it is easy to solve the linear equation $\mathrm{s}:=\mathrm{k}^{-1}(\mathrm{H}(\mathrm{m})+\mathrm{xr})(\bmod \mathrm{q})$ over the field $G F(\mathrm{q})$ to determine the secret key x.
- Applying lattice-based attacks it is sufficient if an attacker knows small parts of the ephemeral keys from a large number of signatures.

C. 75 DSA (Efficiency)

- Since k is only a 160 bit integer the signature generation is much faster than for 1024-bit RSA, for instance. Moreover, the value r may be precomputed.
- The signature verification is significantly more costly than for RSA signatures with small public exponents.

Note: DSA can only be used for signing, not for encryption (key exchange).

C. 76 Diffie Hellman Key Agreement Protocol (Basic Variant)

- Goal: Alice and Bob want to agree upon a secret key. An adversary shall not be able to recover this key.

First Step: Alice and Bob agree upon a prime p, a generator $g \in Z_{p}{ }^{*}$ (or at least on an element with large order) and a key derivation function f. These parameters may be made public.

C. 76 (continued)

- Alice selects randomly $a \in\{1, \ldots, p-2\}$ and keeps this value secret.
- Bob selects randomly $b \in\{1, \ldots, p-2\}$ and keeps this value secret.
- Alice sends $A:=g^{a}(\bmod p)$
- Bob sends $B:=g^{b}(\bmod p)$
- Alice computes $\mathrm{C}:=\mathrm{B}^{\mathrm{a}} \equiv \mathrm{g}^{\mathrm{ab}}(\bmod \mathrm{p})$ and $\mathrm{k}=\mathrm{f}(\mathrm{C})$
- Bob computes $\mathrm{C}:=\mathrm{A}^{\mathrm{b}} \equiv \mathrm{g}^{\mathrm{ab}}(\bmod \mathrm{p})$ and $\mathrm{k}=\mathrm{f}(\mathrm{C})$

Note: Alice and Bob have agreed upon the key k.

C. 77 Remark

- The basic version of Diffie-Hellman's key agreement protocol is vulnerable against active adversaries. An active adversary could e.g. send any value $\mathrm{E}:=g^{\mathrm{e}}(\bmod \mathrm{p})$ to Bob, pretending being Alice.
- Hence the basic protocol is embedded into more advanced protocols.
- The underlying idea can also be used to encrypt messages (cf. e.g. the ElGamal encryption scheme).

C. 78 Elliptic Curve Cryptography

- Key agreement protocols and signature applications that are based on elliptic curves have become increasingly important. Compared to RSA shorter key lengths provide a similar security level (\rightarrow efficiency).
- Elliptic curve-based cryptographic algorithms are more difficult to understand than RSA. Elliptic curves are beyond the scope of this course.
- We just mention that elliptic curves over finite fields are finite abelian groups. For suitably selected parameters the discrete log problem on elliptic curves is intractable.
- In particular, there exists a pendant to the DSA algorithm (ECDSA).

C. 79 Final Remark

- In this course we merely scratched the field of public key cryptography.
- There exist several other mechanisms and protocols that we have not even addressed, e.g. blind signatures (discussed in the exercises) and zero-knowledge proofs.

