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C.73  DSA (Digital Signature Algorithm) 

• standardized by NIST
A) Generation of a key pair
• Select a prime q with 2159 < q < 2160

• Select a prime p with q | p-1 and 21023 < p < 21024

• Select a generator α of Zp* (i.e., < α> =Zp*) 
• Set g:= α (p-1)/q  (in particular, |< g >| = q)
• Select a random number x ∈ {1,… ,q-1}
• y := gx (mod p)

Secret key: x
Public Key: (y,p,q,g)
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C.73  (continued)

B) Generation of a digital signature
• generate a random number k ∈ {1,… ,q-1} 

(ephemeral key)
• r:= (gk (mod p)) (mod q)
• s:= k-1(H(m)+xr) (mod q)  

H denotes a hash function. In the DSS (Digital 
Signature Standard) H=SHA-1.



4

?

C.73  (continued)

C) Verification of a digital signature
• verify that 0< r,s < q
• u1:= s-1 H(m)  (mod q)
• u2:= s-1 r  (mod q)
• v:= (gu_1 yu_2 (mod p)) (mod q) = r

Justification:
gu_1 yu_2 ≡ gs^(-1)H(m) gxs^(-1)r ≡ gs^(-1)(H(m)+xr) ≡ gk (mod p)
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C.74  DSA (Security)

• The security of DSA essentially grounds on the discrete log 
problem in the subgroup < g > ⊆ Zp* (recall that y := gx

(mod p)).
• Unlike RSA the DSA algorithm needs a fresh random 

number k (ephemeral key) for each signature. In particular, 
if Alice signs the same message m several times all 
signatures will be different.

• If an attacker knows k it is easy to solve the linear equation 
s:= k-1(H(m)+xr) (mod q) over the field GF(q) to determine 
the secret key x.

• Applying lattice-based attacks it is sufficient if an attacker 
knows small parts of the ephemeral keys from a large 
number of signatures.
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C.75  DSA (Efficiency)

• Since k is only a 160 bit integer the signature 
generation is much faster than for 1024-bit RSA, 
for instance. Moreover, the value r may be 
precomputed.

• The signature verification is significantly more 
costly than for RSA signatures with small public 
exponents.

Note: DSA can only be used for signing, not for 
encryption (key exchange).
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(Basic Variant)

• Goal: Alice and Bob want to agree upon a secret 
key. An adversary shall not be able to recover this 
key.

First Step: Alice and Bob agree upon a prime p, a 
generator  g ∈ Zp* (or at least on an element with 
large order) and a key derivation function f. These 
parameters may be made public.
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C.76 (continued)

• Alice selects randomly a ∈ {1,… ,p-2} and keeps 
this value secret.

• Bob selects randomly b ∈ {1,… ,p-2} and keeps 
this value secret.

• Alice sends A:=ga (mod p) 
• Bob sends B:=gb (mod p) 
• Alice computes C:=Ba ≡ gab (mod p) and k=f(C) 
• Bob computes C:=Ab ≡ gab (mod p) and k=f(C) 

Note: Alice and Bob have agreed upon the key k.
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C.77 Remark

• The basic version of Diffie-Hellman’s key 
agreement protocol is vulnerable against active 
adversaries. An active adversary could e.g. send 
any value E:=ge (mod p) to Bob, pretending being 
Alice. 

• Hence the basic protocol is embedded into more 
advanced protocols.

• The underlying idea can also be used to encrypt 
messages (cf. e.g. the ElGamal encryption 
scheme).
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C.78  Elliptic Curve Cryptography 

• Key agreement protocols and signature applications that 
are based on elliptic curves have become increasingly  
important. Compared to RSA shorter key lengths provide a 
similar security level (→ efficiency).

• Elliptic curve-based cryptographic algorithms are more 
difficult to understand than RSA. Elliptic curves are beyond 
the scope of this course.

• We just mention that elliptic curves over finite fields are 
finite abelian groups. For suitably selected parameters the 
discrete log problem on elliptic curves is intractable.

• In particular, there exists a pendant to the DSA algorithm 
(ECDSA).
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C.79  Final Remark

• In this course we merely scratched the field of 
public key cryptography.

• There exist several other mechanisms and 
protocols that we have not even addressed, e.g.  
blind signatures (discussed in the exercises) and 
zero-knowledge proofs.


