C.c) DSA and Diffie-Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

C.73 DSA (Digital Signature Algorithm)

 standardized by NIST

A) Generation of a key pair

* Select a prime q with 215% < g < 2160

* Select a prime p with g | p-1 and 21023 < p < 21024
* Select a generator a of Z,* (i.e., <a>=Z.*)

* Setg:=a YA (in particular, |< g >| = q)

* Select a random number x1 {1,...,0-1}

* y:=g*(modp)

Secret key: X
Public Key: (y,p,d,9)

C.73 (continued)

B) Generation of a digital signature

* generate a random number k1 {1,...,9-1}
(ephemeral key)

* r:=(g“(mod p)) (mod q)

* s:= ki(H(m)+xr) (mod q)

H denotes a hash function. In the DSS (Digital
Signature Standard) H=SHA-1.

C.73 (continued)

C) Verification of a digital signature
* verifythatO<r,s<g

* u;:=stH(m) (modq)

°* u,=s'r (modQq) -

* V= (gU-1y"-2(mod p)) (mod g) =

Justification:
gu_l yU_2 O gSA(-l)H(m) gXSA(-l)I’ O gSA(-l)(H(m)+XI’) O gk (mod p)

C.74 DSA (Security)

The security of DSA essentially grounds on the discrete log
problem in the subgroup < g > | Z,* (recall thaty := g~

(mod p)).

Unlike RSA the DSA algorithm needs a fresh random
number k (ephemeral key) for each signature. In particular,
If Alice signs the same message m several times all
signatures will be different.

If an attacker knows Kk it Is easy to solve the linear equation
s:= k’i(H(m)+xr) (mod q) over the field GF(q) to determine
the secret key x.

Applying lattice-based attacks it is sufficient if an attacker
knows small parts of the ephemeral keys from a large
number of signatures.

C.75 DSA (Efficiency)

* Since kis only a 160 bit integer the signature
generation is much faster than for 1024-bit RSA,
for instance. Moreover, the value r may be
precomputed.

* The signature verification is significantly more
costly than for RSA signatures with small public
exponents.

Note: DSA can only be used for signing, not for
encryption (key exchange).

C.76 Diffie Hellman Key Agreement Protocol /

(Basic Variant)

* Goal: Alice and Bob want to agree upon a secret
key. An adversary shall not be able to recover this
key.

First Step: Alice and Bob agree upon a prime p, a
generator g | Z,* (or at least on an element with
large order) and a key derivation function f. These
parameters may be made public.

C.76 (continued)

* Alice selects randomly a1 {1,...,p-2} and keeps
this value secret.

* Bob selects randomly b1 {1,...,p-2} and keeps
this value secret.

* Alice sends A:=g2 (mod p)

* Bob sends B:=gP (mod p)

* Alice computes C:=B2° gab (mod p) and k=f(C)
* Bob computes C:=AP ° gab (mod p) and k=f(C)

Note: Alice and Bob have agreed upon the key k.

C.77 Remark

The basic version of Diffie-Hellman’s key
agreement protocol is vulnerable against active
adversaries. An active adversary could e.g. send
any value E:=g® (mod p) to Bob, pretending being
Alice.

Hence the basic protocol is embedded into more
advanced protocols.

The underlying idea can also be used to encrypt
messages (cf. e.g. the ElGamal encryption
scheme).

10
C.78 Elliptic Curve Cryptography

Key agreement protocols and signature applications that
are based on elliptic curves have become increasingly
Important. Compared to RSA shorter key lengths provide a
similar security level (® efficiency).

Elliptic curve-based cryptographic algorithms are more
difficult to understand than RSA. Elliptic curves are beyond
the scope of this course.

We just mention that elliptic curves over finite fields are
finite abelian groups. For suitably selected parameters the
discrete log problem on elliptic curves is intractable.

In particular, there exists a pendant to the DSA algorithm
(ECDSA).

11
C.79 Final Remark

In this course we merely scratched the field of
public key cryptography.

There exist several other mechanisms and
protocols that we have not even addressed, e.g.
blind signatures (discussed in the exercises) and
zero-knowledge proofs.

