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B.b) Block Ciphers
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B.24  Definition

• An encryption algorithm 
Enc: {0,1}n × K → {0,1}n

is called a block cipher. 
• The positive integer n denotes the block size 

(block length).
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B.25  Remark and Convention

• The encryption transformation and the 
decryption transformations are permutations 
over {0,1}n.

• Usually, block ciphers are symmetric. In this 
course we only treat symmetric block ciphers.

• To prevent elementary attacks (e.g., elementary 
frequency analysis; cf. the attack on the 
improved variant of Cesar’s cipher) the block 
size n should not be too small.

• Typical block sizes are n = 64 and n = 128.
• For many widespread block ciphers K = {0,1}m. 
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B.26  ECB mode (Electronic Code Book mode)

Goal: Encrypt a bit string b1,b2,… ,bM

• 1st Step: Padding
w If  M  is not a multiple of the block length n append 

some bits (padding bits) bM+1,… ,bnt to this bit string
w Partition b1,b2,… ,bnt into t non-overlapping blocks 

p1,p2,… ,pt 

(More precisely, p1=(b1,b2,… ,bn), p2=(bn+1,bn+2,… ,b2n), 
… ∈ {0,1}n.)
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B.26  ECB mode (continued)

Note:
(i) The receiver must be able to determine the 

padding bits unambiguously. 
(ii) Example (padding): bM+1= 1, bM+2 =… = bnt =0
(iii) In various padding schemes padding bits are 

always appended, even if M is a multiple of n.
(iv) Depending on the concrete application non-

random padding bits may allow the receiver to 
perform an integrity check after decryption. 
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B.26   ECB mode (continued)

• 2nd Step: Encrypt the plaintext blocks p1,… ,pt

p1 p2 pt

Enc k

c1

Enc k

ct

Enc k

c2 ...      

cj = Enc(pj,k)
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B.26  ECB mode (continued)

The receiver receives the encrypted message 
c1,… ,ct

Decryption:
1st Step: The receiver computes pj = Dec(cj,k)

for j = 1,2,… ,t
2nd Step (integrity check if the application 

permits; optional): The receiver checks 
whether the format of the decrypted message 
is syntactically o.k. 

3rd Step: The receiver removes the padding bits, 
obtaining the original plaintext message.
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B.27  ECB mode: Significant Properties

• In the ECB mode identical plaintext blocks are 
encrypted to identical ciphertext blocks. This 
property allows elementary attacks. Note that
w Reordering the ciphertext blocks yields reordered 

plaintext blocks after decryption.
w Doubling a particular ciphertext block gives a doubled  

plaintext block after decryption.
w If the plaintext blocks represent the colour of (one or 

several) pixels in a coarse graphics an adversary might 
be able to recognize its main contours without breaking 
the cipher.

Details: blackboard                   Example: Exercises
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B.27  (continued)

• Error propagation: Bit errors in a single ciphertext 
block only affect the decryption of this particular 
block.

• Note: For a strong block cipher even a single bit 
flip causes about  n / 2  bit errors in the decrypted 
block in average.
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B.28 ECB mode: Fields of Application

• Encryption of 1-block messages
• Occasionally: Encryption of short messages in 

smart card communication (Note: Smart card 
applications often determine the number of 
plaintext blocks and the syntax within these 
blocks, leaving little variability. This prevents 
attacks as mentioned in B.27). 

• Key derivation
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B.29  Chip-based Electronic Purse Systems

Simplified description

Involved parties
• Electronic purses (smart cards that store units 

that represent money) 
• merchant terminals (often supported by smart 

cards that perform the sensitive operations)
• background system 

Functionality: cashless payment (offline 
transactions)
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B.29  (continued)

Cashless Payment:
• The merchant terminal displays the price pr and transmits 

an accordant message to the electronic purse.
• The electronic purse 
w reduces its balance by pr units 
w transmits a payment record to the merchant terminal, confirming 

this action

• The merchant terminal 
w stores this payment record (offline system)
w submits the collected records periodically to the background system 

• The background system books money to the merchant’s 
account
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B.29  (continued)

Loading the electronic purse:
• The holder of the electronic purse pays cash or 

with book money x €
• The background system increases the balance of 

the electronic purse by x units (1 unit = 1 €).
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B.29  (continued)

Security requirements:
• The merchant terminal must only accept payment 

records from authentic electronic purses. 
(Otherwise an adversary could use duplicates of 
electronic purses for which he could increase the 
balance himself.)

• The merchant must not be able to generate new 
payment records or submit authentic payment 
records more than once.

• Only the background system shall be able to load  
electronic purses.
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B.30  Example

Scenario: A smart card terminal shares a key k with 
each smart card that supports a particular 
application, e.g. that belongs to a particular 
electronic payment system. 

Goal: The smart card shall convince the terminal 
that it is authentic. 

Straight-forward solution: The smart card transmits 
k as a password. The terminal believes a smart 
card to be authentic if it sends k.

Drawback of this solution: An adversary might 
monitor exchanged messages, learning k. 
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B.30 (continued)

Better solution: Dynamic Authentication

Smart Card Terminal
generates a random number R

checks whether C = Enc(R,k)
if yes: the terminal takes the  
smart card for authentic

R

CC:=Enc(R,k)



17
B.30  (continued)

• This is the most elementary challenge-response 
protocol.

• Monitoring messages from authentic smart cards 
does not help to pass the challenge response 
protocol since the challenge R changes from run to 
run.

• Monitoring old messages only provides (plaintext, 
ciphertext) pairs for known plaintext attacks on Enc.
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B.31  Example

For sensitive applications smart cards usually have 
individual keys so that a successful attack on one smart 
card does not compromise the all the others. 

Goal: Perform the challenge-response-protocol from B.30 
with card-individual keys.

Straight-forward solution: The terminal stores the individual 
keys of all smart cards. This solution is appropriate for 
w online systems with one key list on a central server
w offline systems with a small number of smart cards

Drawback of this solution: For widespread offline 
applications thousands or even millions of keys had to be 
stored. Moreover, the list had to be updated whenever a 
new smart card is issued.
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B.31  (continued)

More efficient solution: Each smart card has an individual 
card number C_Nr and an individual key kC . The 
terminals have a master key kM. 

Key derivation: kC = Enc(C-Nr,kM)

Note: (I) Alternatively, kC might be a given by a function 
value of the right-hand side.

(ii) There also exist key derivation mechanisms that apply 
one-way functions (cf. Chapter C).

The challenge response protocol from Example B.30 now 
reads as follows:
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B.31  (continued)

Smart Card Terminal
generates a random number R

kC:=Enc(C_Nr,kM)
checks whether C = Enc(R,kC)
if yes: the terminal takes the 
smart card for authentic

R

C || C_NrC:=Enc(R,kC)
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B.32   CBC mode (Cipher Block Chaining mode)

• 1nd Step: Padding (as in ECB mode)
• 2nd Step: Encrypt the plaintext blocks p1,… ,pt

p1 p2 pt

Enc k

IV

c1

cj = Enc(pj⊕cj-1,k)

Enc k

ct

. . .Enc k

c2 .  .  .    
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B.32  CBC mode (continued)

The receiver receives the encrypted message c1,… ,ct

Decryption:
1st Step: The receiver computes pj = Dec(cj,k) ⊕cj-1 for j = 

1,2,… ,t  with  c0 := IV
2nd Step (integrity check if the application permits; 

optional): The receiver checks whether the format of the 
decrypted message is syntactically correct. 

3rd Step: The receiver removes the padding bits, obtaining 
the original plaintext message.

Note: Step 2 and Step 3 are the same as for the ECB 
mode
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B.33  CBC mode: Significant Properties

• Different IVs cause different ciphertexts even for 
identical plaintexts and identical key. Varying the IV  
prevents replay attacks where an active adversary 
sends “old”authentic ciphertexts, which he has 
previously intercepted. 

• The ciphertext block cj depends on IV,p1,… ,pj. 
Unlike in the ECB mode rearranging or doubling 
ciphertext blocks will presumably not give 
meaningful plaintext.

• Decryption may be parallelized.
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B.33 (continued)

• Error propagation / error recovery: Since pj only 
depends on cj-1 and cj bit errors and even losses 
of blocks are compensated two blocks later.

• Often the IV does not need to be kept secret but 
its integrity must be ensured.

Note:
p1 = Dec(c1,k) ⊕IV       implies

p1* := p1 ⊕ (IV ⊕ IV*) = Dec(c1,k) ⊕IV* for any IV*
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B.34  Forging the IV (Attack)

Assumption: The adversary is able to read and to alter 
messages that are exchanged between the sender 
and the receiver. 

Attack:
(i)   The sender transmits (c1,… ,ct; IV )
(ii)  The adversary alters the message to 

(c1,… ,ct; IV*)
(iii) The receiver decrypts the altered ciphertext and 

obtains p1* := p1 ⊕ (IV ⊕ IV*),p2,… ,pt

Example: Exercises
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B.35  CBC mode: Fields of Application

• Encryption of long messages, e.g. applied in the 
SSL protocol

• MACs (Message Authentication Codes; cf. B.48)
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B.36   OFB mode (Output Feedback mode)

Encryption: Select an integer r ≤ n
• Partition the plaintext into non-overlapping 

blocks p1,… ,ps with length(pj)=r   for j<s   and 
length(ps) ≤ r

• Encrypt these plaintext blocks

Note: In OFB mode padding is not necessary. If 
length(ps) < r  then the (r - length(ps)) rightmost 
bits of Os (next slide) are neglected.
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B.36   OFB mode (continued)

Oj

r

kEnc

Ij

n

n

n
I0 = IV

cj = r leftmost bits (Oj ) ⊕ pj

pj cj⊕
r             r

Recursive application 
of the block cipher Enc

XOR-ing a „key stream“ to
the plaintext

Encryption
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B.36   OFB mode (continued)

Oj

r

kEnc

Ij

n

n

n
I0 = IV

pj cj⊕
r             r

Encryption

Oj

r

kEnc

Ij

n

n

n
I0 = IV

pj⊕
r             r

Decryption
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B.37  OFB mode: Significant Properties

• Encryption and decryption are identical operations.
• The OFB mode defines a stream cipher (→ Section 

B.c). The output blocks O1,O2,… can be 
precomputed since they only depend on IV and k but 
neither on the plaintext nor on the ciphertext.

• Encryption and decryption of a plaintext block, resp. 
of a ciphertext block, only depends on the position of 
the block but not on its predecessors or successors. 
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B.37  (continued)

Error propagation / error recovery: Bit errors in cj only 
affect the decryption of this particular block. A 
manipulation of the ciphertext should be easier than 
in CBC mode, for instance. Losses of blocks cannot 
be compensated.
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B.37 (continued)

• Note: Identical IVs (with identical key k) generate 
identical sequences O1, O2, …

• Consequence: The IV must not be used twice in 
combination with the same key. In fact, since 
cj ⊕ cj* = 

(r leftmost bits (Oj ) ⊕ pj ) ⊕ (r leftmost bits (Oj ) ⊕ pj* ) =
pj ⊕ pj* 
a ciphertext-only attack provides information on the 
plaintext (however, neither on IV nor on k)



33
B.38  OFB mode: Fields of Application

• real-time applications
• generation of pseudorandom numbers ( = r left-

most bits of O1,O2,… )
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B.39   CFB mode (Cipher Feedback mode)

Encryption: Select an integer r ≤ n
• Partition the plaintext into non-overlapping 

blocks p1,… ,ps with length(pj)=r   for j<s   and 
length(ps) ≤ r

• Encrypt these plaintext blocks

Note: As in OFB mode padding is not necessary.
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B.39   CFB mode (continued)

cj = r leftmost bits (Oj ) ⊕ pj

Oj
r

kEnc

Ij

r

n

n
I0 = IV

pj cj⊕
r             r

Encryption
r bit shift
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B.39   CFB mode (continued)

Oj
r

kEnc

Ij

r

n

n
I0 = IV

pj cj⊕
r             r

Encryption
r bit shift

Oj
r

kEnc

Ij

r

n

n
I0 = IV

pj⊕
r             r

Decryption
r bit shift
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B.40  CFB mode: Significant Properties

• Encryption and decryption are identical operations.
• Error propagation / error recovery: Bit errors in cj

only affect the decryption of those cipherblocks cm
(m > j) for which cj is part of Im. 
Losses of ciphertext blocks influence only the 
decryption of the next ciphertext blocks since (for 
fixed key) Oj only depends on Ij. That is, the 
decryption works correctly for cm if the lost 
ciphertext blocks are not part of Im on the sender’s 
side.

• The receiver may parallelize the computation of the 
key stream.
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B.41  CFB mode: Fields of Application

• OpenPGP
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B.42   CTR mode (Counter mode)

• 1nd Step: Select a counter value ctr (n bit value)
• 2nd Step: Encrypt the plaintext blocks p1,… ,pt

Note:
(i) As in OFB and CFB mode padding is not necessary 

(see B.36). 
(ii) The ctr value corresponds to the IV in the OFB mode 

mode. In particular, the same ctr value should not be 
used twice. To be more precisely: the counter values 
(cf. the next slide) should not even overlap for different 
encryptions with the same key k.
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B. 42  CTR mode (continued)

kEnc

ctr+j-1

n

pj cj⊕
n             n

Encryption Decryption

kEnc

ctr+j-1

n

pj⊕
n             n

cj = pj ⊕Enc(ctr+j-1,k)
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B.43  CTR mode: Significant Properties

• Encryption and decryption are identical operations.
• The CTR mode defines a stream cipher (→ Section 

B.c). The key stream can be precomputed.
• Encryption and decryption of a plaintext block, resp. 

of a ciphertext block, only depends on the position of 
that block but not on its predecessors or successors.

• Encryption and decryption can be parallelized. 
• Error propagation / error recovery: Bit errors in cj

only affect the decryption of this particular block. 
Losses of blocks cannot be compensated.
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B.44  CTR mode: Fields of Application

• disk encryption
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B.45  Remark

Note: Besides the ECB, CBC, OFB, CFB and the 
CTR mode several other modes of operation have 
intensively been discussed in the literature. In this 
course we will not treat further modes. 

The designer of a cryptosystem should decide for 
that mode of operation that is most appropriate for 
the intended application(s).
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B.46  Example (cf. Example B.31)

Challenge-response protocol with a smart card and 
a terminal. As in B.31 the terminal has a master 
key.

Goals:
• mutual authentication (i.e. both the smart card 

and the terminal prove that they are authentic)
• mutual agreement on a session key (i.e., a key 

that is valid only for one session) to prevent 
replay attacks

• An adversary that monitors the communication 
shall not be able to recover the session key.

Possible solution: next slide
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B.46  (continued; simplified protocol fragment)

Smart Card Terminal
stores kC stores kM

C_Nr

C1:=Enc(R1,kC)

generates R1

kC:=Enc(C_Nr,kM)

C2:=Enc(R2,kC)

kS:= R1 ⊕Dec(C2,kC)kS:= R2 ⊕Dec(C1,kC)

kS: session key         R1, R2: random numbers

generates R2

... ...
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B.46  (continued)

Note: Neither the smart card nor the terminal can 
enforce a previous session key. The derivation of 
ks requires the knowledge of kC.

Both parties prove their authenticity in the remaining 
steps of the protocol by the application of ks
(implicit authentication).
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B.47  Remark

• Usually encryption does not ensure data integrity.
• Data integrity is very important for many 

applications. 
• Many applications require data integrity. Secrecy 

(privacy) is not mandatory if the exchanged (or 
stored) messages are not confidential.
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B.48  MAC (Message Authentication Code) 

Basic idea: Apply a block cipher with key k (to be 
kept secret) to generate a “control block”
MAC(p1,p2,… ,pt,k) to the plaintext p1,p2,… ,pt with 
the following properties:

• Altering any plaintext bits changes the control 
block MAC(p1,p2,… ,pt,k) with overwhelming 
probability.

• The generation of the control block requires the 
knowledge of k. In particular, it shall not be 
feasible to construct valid MACs for new 
messages from known (plaintext, MAC) pairs.

• Checking the control block requires the knowledge 
of k.
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B.49  Remark

• If the “control block”MAC(p1,p2,… ,pt,k) does not 
“fit”to the plaintext p1,p2,… ,pt the receiver knows 
that the plaintext or the control block have been 
altered. The receiver will not accept this message.

Note: In Chapter C we will become acquainted with 
mechanisms that ensure data integrity where only 
the generation of the “control block”requires the 
knowledge of the secret key (digital signatures).  
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B.50   CBC - MAC

p1 p2 pt

Enc k Enc k

ct

. . .Enc k

MAC

1st Step: Padding if necessary
2nd Step:
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B.51  CBC - MAC: Security

• If Enc denotes a strong block cipher the CBC -
MAC is secure for fixed-length plaintext messages 
(typical for smart card communication).

• The CBC - MAC is not secure if the block length of 
the exchanged messages is variable.
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B.52  Attacking the CBC - MAC

Possible Attack: Assume that
w m1:= MAC(p1,p2,… ,pt,k) 
w m2:= MAC(p1*,p2*,… ,pr*,k) 

Then m2= MAC(p’1,p’2,… ,p’t+r,k) with
p’j = pj    for j=1,… ,t
p’t+1 = p1*⊕ m1

p’t+j = pj* for j=2,… ,r

Details: Blackboard
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B.53  strengthened CBC – MAC (Retail CBC - MAC)

p1 p2 pt

Enc k Enc k. . .Enc k

MAC

k*

k

Dec

Enc
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B.54  Retail CBC - MAC: Significant Properties

• The Retail CBC - MAC uses 2 keys. 
• The Retail CBC - MAC is also secure for variable 

length plaintext messages (provided, of course, 
that Enc is a strong block cipher!). 

• Note: Assume that |K| ≤ 2n. If the adversary knows 
about 2n/2 many (plaintext, MAC) pairs finding the 
keys k and k* is essentially only as difficult as 
finding the key k of an encryption with Enc.



55
B.55 CMAC

1st step: Padding if necessary: If the final block pt is 
not complete it is filled up with the string “10… 0”. 

p1 p2 pt

The value k1 is used if no padding has been necessary, 
otherwise k2 is added. Moreover, Tlen ≤ n

MAC

Enc k Enc k. . .Enc k

k1 / k2

MSBTlen
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B.56  Remark

• In 2005 the CMAC has been standardized by 
NIST.

• The CMAC is more efficient than the Retail-CBC-
MAC as it saves one encryption and one 
decryption with Enc. 

• The Retail CBC-MAC has been widespread in 
smart card applications for Enc = DES.
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B.57  Remark

• To obtain MAC values that are shorter than n bits 
one may simply discard some of the right-most bits 
of the final ciphertext block (cf. B.55). 

• In the literature a number of different MAC 
constructions have been studied. 

• In Chapter C we will treat the HMAC. For efficiency 
reasons it is very important especially for long 
messages.
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B.58  Example (cf. B.29)

• Electronic purse system: The smart card generates 
a payment record which is transmitted to the 
terminal. The merchant stores this record and 
submits it to the background system later.
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B.58  (continued)

Security requirements: The payment record should
w be linked to the purse 
w be linked to the terminal (making the theft of payment 

records useless)
w contain the transferred value (price)
w prevent the merchant from multiple submission of one 

payment record
w prevent replay attacks by dishonest customers
w only authentic purses shall be able to generate valid 

payment records
w the background system shall be able to detect any 

manipulations of payment records   
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B.58  (continued, simplified solution)

• Payment record (generated by the electronic purse)
C_nr || T_nr || value || trans_nr || R || MAC(T,kC(MAC))

T

where
• C_nr: purse number
• T_nr: terminal number
• value: transferred value (price)
• trans_nr: transaction number (→ terminal)
• R: random number (generated by the terminal)
• kC(MAC): card-individual key to compute MACs
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B.58  (continued)

Exercise: Explain why this type of payment record 
meets the security requirements formulated on the 
previous slide.
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B.59  Data integrity and secrecy

• MACs shall ensure data integrity.
• Encryption algorithms shall ensure secrecy.
• Both security mechanisms can be combined, e.g.:
(p1,p2,… ,pt) → Enc(p1,p2,… ,pt,MAC(p1,p2,… ,pt,k1),k2)

= c1,c2,… ,ct,ct+1

The receiver decrypts the message and
checks whether the MAC is valid. A valid MAC 
convinces him that the message stems from the 
authentic sender and that the data have not been 
altered. 
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B.59  (continued)

For security reasons the sender should use different 
(more precisely: uncorrelated) keys for the MAC and 
the encryption.
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B.60  Attack on Identical Keys

Assumptions:
• Encryption: CBC-MAC with IV=0 and key k1
• CBC-MAC with k2
• k1=k2=k

Observation:
• CBC-MAC(p1,p2,… ,pt,k) = Enc(ct-1⊕ pt,k) = ct ( = tth
ciphertext block) 
and
• Enc(p1,p2,… ,pt ,CBC-MAC(p1,p2,… ,pt,k),k) =   

(c1,c2,… ,ct ,Enc(0,k))
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B.60  (continued)

Identical keys for CBC-encryption (with IV = 0) and 
MAC computation reduce the overall computation time 
for both the sender and the receiver by about 50 %. In 
fact, since the CBC-MAC equals the ciphertext block ct 
it need not be computed explicitly. 

Unfortunately, an active adversary can mount an 
elementary attack (see next slide).
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B.60  (continued)

Attack:
• The adversary alters or even drops some blocks cj 
for j < t-1. Decryption yields the original CBC-MAC 
which equals the last but one block ct of the 
encrypted message. 
• The MAC clearly does not fit to the “new”plaintext. 
However, with the control strategy described on the 
last slide the receiver will not detect the attack.

Details: Blackboard
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B.60  (continued)

Exercise: Investigate whether this attack can be 
transferred into an attack against the Retail CBC-
MAC if its first key k coincides with the encryption 
key (k* is arbitrary). 


