
1

B.b) Block Ciphers

2
B.24 Definition

• An encryption algorithm
Enc: {0,1}n × K → {0,1}n

is called a block cipher.
• The positive integer n denotes the block size

(block length).

3
B.25 Remark and Convention

• The encryption transformation and the
decryption transformations are permutations
over {0,1}n.

• Usually, block ciphers are symmetric. In this
course we only treat symmetric block ciphers.

• To prevent elementary attacks (e.g., elementary
frequency analysis; cf. the attack on the
improved variant of Cesar’s cipher) the block
size n should not be too small.

• Typical block sizes are n = 64 and n = 128.
• For many widespread block ciphers K = {0,1}m.

4
B.26 ECB mode (Electronic Code Book mode)

Goal: Encrypt a bit string b1,b2,… ,bM

• 1st Step: Padding
w If M is not a multiple of the block length n append

some bits (padding bits) bM+1,… ,bnt to this bit string
w Partition b1,b2,… ,bnt into t non-overlapping blocks

p1,p2,… ,pt

(More precisely, p1=(b1,b2,… ,bn), p2=(bn+1,bn+2,… ,b2n),
… ∈ {0,1}n.)

5
B.26 ECB mode (continued)

Note:
(i) The receiver must be able to determine the

padding bits unambiguously.
(ii) Example (padding): bM+1= 1, bM+2 =… = bnt =0
(iii) In various padding schemes padding bits are

always appended, even if M is a multiple of n.
(iv) Depending on the concrete application non-

random padding bits may allow the receiver to
perform an integrity check after decryption.

6
B.26 ECB mode (continued)

• 2nd Step: Encrypt the plaintext blocks p1,… ,pt

p1 p2 pt

Enc k

c1

Enc k

ct

Enc k

c2 ...

cj = Enc(pj,k)

7
B.26 ECB mode (continued)

The receiver receives the encrypted message
c1,… ,ct

Decryption:
1st Step: The receiver computes pj = Dec(cj,k)

for j = 1,2,… ,t
2nd Step (integrity check if the application

permits; optional): The receiver checks
whether the format of the decrypted message
is syntactically o.k.

3rd Step: The receiver removes the padding bits,
obtaining the original plaintext message.

8
B.27 ECB mode: Significant Properties

• In the ECB mode identical plaintext blocks are
encrypted to identical ciphertext blocks. This
property allows elementary attacks. Note that
w Reordering the ciphertext blocks yields reordered

plaintext blocks after decryption.
w Doubling a particular ciphertext block gives a doubled

plaintext block after decryption.
w If the plaintext blocks represent the colour of (one or

several) pixels in a coarse graphics an adversary might
be able to recognize its main contours without breaking
the cipher.

Details: blackboard Example: Exercises

9
B.27 (continued)

• Error propagation: Bit errors in a single ciphertext
block only affect the decryption of this particular
block.

• Note: For a strong block cipher even a single bit
flip causes about n / 2 bit errors in the decrypted
block in average.

10
B.28 ECB mode: Fields of Application

• Encryption of 1-block messages
• Occasionally: Encryption of short messages in

smart card communication (Note: Smart card
applications often determine the number of
plaintext blocks and the syntax within these
blocks, leaving little variability. This prevents
attacks as mentioned in B.27).

• Key derivation

11
B.29 Chip-based Electronic Purse Systems

Simplified description

Involved parties
• Electronic purses (smart cards that store units

that represent money)
• merchant terminals (often supported by smart

cards that perform the sensitive operations)
• background system

Functionality: cashless payment (offline
transactions)

12
B.29 (continued)

Cashless Payment:
• The merchant terminal displays the price pr and transmits

an accordant message to the electronic purse.
• The electronic purse
w reduces its balance by pr units
w transmits a payment record to the merchant terminal, confirming

this action

• The merchant terminal
w stores this payment record (offline system)
w submits the collected records periodically to the background system

• The background system books money to the merchant’s
account

13
B.29 (continued)

Loading the electronic purse:
• The holder of the electronic purse pays cash or

with book money x €
• The background system increases the balance of

the electronic purse by x units (1 unit = 1 €).

14
B.29 (continued)

Security requirements:
• The merchant terminal must only accept payment

records from authentic electronic purses.
(Otherwise an adversary could use duplicates of
electronic purses for which he could increase the
balance himself.)

• The merchant must not be able to generate new
payment records or submit authentic payment
records more than once.

• Only the background system shall be able to load
electronic purses.

15
B.30 Example

Scenario: A smart card terminal shares a key k with
each smart card that supports a particular
application, e.g. that belongs to a particular
electronic payment system.

Goal: The smart card shall convince the terminal
that it is authentic.

Straight-forward solution: The smart card transmits
k as a password. The terminal believes a smart
card to be authentic if it sends k.

Drawback of this solution: An adversary might
monitor exchanged messages, learning k.

16
B.30 (continued)

Better solution: Dynamic Authentication

Smart Card Terminal
generates a random number R

checks whether C = Enc(R,k)
if yes: the terminal takes the
smart card for authentic

R

CC:=Enc(R,k)

17
B.30 (continued)

• This is the most elementary challenge-response
protocol.

• Monitoring messages from authentic smart cards
does not help to pass the challenge response
protocol since the challenge R changes from run to
run.

• Monitoring old messages only provides (plaintext,
ciphertext) pairs for known plaintext attacks on Enc.

18
B.31 Example

For sensitive applications smart cards usually have
individual keys so that a successful attack on one smart
card does not compromise the all the others.

Goal: Perform the challenge-response-protocol from B.30
with card-individual keys.

Straight-forward solution: The terminal stores the individual
keys of all smart cards. This solution is appropriate for
w online systems with one key list on a central server
w offline systems with a small number of smart cards

Drawback of this solution: For widespread offline
applications thousands or even millions of keys had to be
stored. Moreover, the list had to be updated whenever a
new smart card is issued.

19
B.31 (continued)

More efficient solution: Each smart card has an individual
card number C_Nr and an individual key kC . The
terminals have a master key kM.

Key derivation: kC = Enc(C-Nr,kM)

Note: (I) Alternatively, kC might be a given by a function
value of the right-hand side.

(ii) There also exist key derivation mechanisms that apply
one-way functions (cf. Chapter C).

The challenge response protocol from Example B.30 now
reads as follows:

20
B.31 (continued)

Smart Card Terminal
generates a random number R

kC:=Enc(C_Nr,kM)
checks whether C = Enc(R,kC)
if yes: the terminal takes the
smart card for authentic

R

C || C_NrC:=Enc(R,kC)

21
B.32 CBC mode (Cipher Block Chaining mode)

• 1nd Step: Padding (as in ECB mode)
• 2nd Step: Encrypt the plaintext blocks p1,… ,pt

p1 p2 pt

Enc k

IV

c1

cj = Enc(pj⊕cj-1,k)

Enc k

ct

. . .Enc k

c2 . . .

22
B.32 CBC mode (continued)

The receiver receives the encrypted message c1,… ,ct

Decryption:
1st Step: The receiver computes pj = Dec(cj,k) ⊕cj-1 for j =

1,2,… ,t with c0 := IV
2nd Step (integrity check if the application permits;

optional): The receiver checks whether the format of the
decrypted message is syntactically correct.

3rd Step: The receiver removes the padding bits, obtaining
the original plaintext message.

Note: Step 2 and Step 3 are the same as for the ECB
mode

23
B.33 CBC mode: Significant Properties

• Different IVs cause different ciphertexts even for
identical plaintexts and identical key. Varying the IV
prevents replay attacks where an active adversary
sends “old”authentic ciphertexts, which he has
previously intercepted.

• The ciphertext block cj depends on IV,p1,… ,pj.
Unlike in the ECB mode rearranging or doubling
ciphertext blocks will presumably not give
meaningful plaintext.

• Decryption may be parallelized.

24
B.33 (continued)

• Error propagation / error recovery: Since pj only
depends on cj-1 and cj bit errors and even losses
of blocks are compensated two blocks later.

• Often the IV does not need to be kept secret but
its integrity must be ensured.

Note:
p1 = Dec(c1,k) ⊕IV implies

p1* := p1 ⊕ (IV ⊕ IV*) = Dec(c1,k) ⊕IV* for any IV*

25
B.34 Forging the IV (Attack)

Assumption: The adversary is able to read and to alter
messages that are exchanged between the sender
and the receiver.

Attack:
(i) The sender transmits (c1,… ,ct; IV)
(ii) The adversary alters the message to

(c1,… ,ct; IV*)
(iii) The receiver decrypts the altered ciphertext and

obtains p1* := p1 ⊕ (IV ⊕ IV*),p2,… ,pt

Example: Exercises

26
B.35 CBC mode: Fields of Application

• Encryption of long messages, e.g. applied in the
SSL protocol

• MACs (Message Authentication Codes; cf. B.48)

27
B.36 OFB mode (Output Feedback mode)

Encryption: Select an integer r ≤ n
• Partition the plaintext into non-overlapping

blocks p1,… ,ps with length(pj)=r for j<s and
length(ps) ≤ r

• Encrypt these plaintext blocks

Note: In OFB mode padding is not necessary. If
length(ps) < r then the (r - length(ps)) rightmost
bits of Os (next slide) are neglected.

28
B.36 OFB mode (continued)

Oj

r

kEnc

Ij

n

n

n
I0 = IV

cj = r leftmost bits (Oj) ⊕ pj

pj cj⊕
r r

Recursive application
of the block cipher Enc

XOR-ing a „key stream“ to
the plaintext

Encryption

29
B.36 OFB mode (continued)

Oj

r

kEnc

Ij

n

n

n
I0 = IV

pj cj⊕
r r

Encryption

Oj

r

kEnc

Ij

n

n

n
I0 = IV

pj⊕
r r

Decryption

30
B.37 OFB mode: Significant Properties

• Encryption and decryption are identical operations.
• The OFB mode defines a stream cipher (→ Section

B.c). The output blocks O1,O2,… can be
precomputed since they only depend on IV and k but
neither on the plaintext nor on the ciphertext.

• Encryption and decryption of a plaintext block, resp.
of a ciphertext block, only depends on the position of
the block but not on its predecessors or successors.

31
B.37 (continued)

Error propagation / error recovery: Bit errors in cj only
affect the decryption of this particular block. A
manipulation of the ciphertext should be easier than
in CBC mode, for instance. Losses of blocks cannot
be compensated.

32
B.37 (continued)

• Note: Identical IVs (with identical key k) generate
identical sequences O1, O2, …

• Consequence: The IV must not be used twice in
combination with the same key. In fact, since
cj ⊕ cj* =

(r leftmost bits (Oj) ⊕ pj) ⊕ (r leftmost bits (Oj) ⊕ pj*) =
pj ⊕ pj*
a ciphertext-only attack provides information on the
plaintext (however, neither on IV nor on k)

33
B.38 OFB mode: Fields of Application

• real-time applications
• generation of pseudorandom numbers (= r left-

most bits of O1,O2,…)

34
B.39 CFB mode (Cipher Feedback mode)

Encryption: Select an integer r ≤ n
• Partition the plaintext into non-overlapping

blocks p1,… ,ps with length(pj)=r for j<s and
length(ps) ≤ r

• Encrypt these plaintext blocks

Note: As in OFB mode padding is not necessary.

35
B.39 CFB mode (continued)

cj = r leftmost bits (Oj) ⊕ pj

Oj
r

kEnc

Ij

r

n

n
I0 = IV

pj cj⊕
r r

Encryption
r bit shift

36
B.39 CFB mode (continued)

Oj
r

kEnc

Ij

r

n

n
I0 = IV

pj cj⊕
r r

Encryption
r bit shift

Oj
r

kEnc

Ij

r

n

n
I0 = IV

pj⊕
r r

Decryption
r bit shift

37
B.40 CFB mode: Significant Properties

• Encryption and decryption are identical operations.
• Error propagation / error recovery: Bit errors in cj

only affect the decryption of those cipherblocks cm
(m > j) for which cj is part of Im.
Losses of ciphertext blocks influence only the
decryption of the next ciphertext blocks since (for
fixed key) Oj only depends on Ij. That is, the
decryption works correctly for cm if the lost
ciphertext blocks are not part of Im on the sender’s
side.

• The receiver may parallelize the computation of the
key stream.

38
B.41 CFB mode: Fields of Application

• OpenPGP

39
B.42 CTR mode (Counter mode)

• 1nd Step: Select a counter value ctr (n bit value)
• 2nd Step: Encrypt the plaintext blocks p1,… ,pt

Note:
(i) As in OFB and CFB mode padding is not necessary

(see B.36).
(ii) The ctr value corresponds to the IV in the OFB mode

mode. In particular, the same ctr value should not be
used twice. To be more precisely: the counter values
(cf. the next slide) should not even overlap for different
encryptions with the same key k.

40
B. 42 CTR mode (continued)

kEnc

ctr+j-1

n

pj cj⊕
n n

Encryption Decryption

kEnc

ctr+j-1

n

pj⊕
n n

cj = pj ⊕Enc(ctr+j-1,k)

41
B.43 CTR mode: Significant Properties

• Encryption and decryption are identical operations.
• The CTR mode defines a stream cipher (→ Section

B.c). The key stream can be precomputed.
• Encryption and decryption of a plaintext block, resp.

of a ciphertext block, only depends on the position of
that block but not on its predecessors or successors.

• Encryption and decryption can be parallelized.
• Error propagation / error recovery: Bit errors in cj

only affect the decryption of this particular block.
Losses of blocks cannot be compensated.

42
B.44 CTR mode: Fields of Application

• disk encryption

43
B.45 Remark

Note: Besides the ECB, CBC, OFB, CFB and the
CTR mode several other modes of operation have
intensively been discussed in the literature. In this
course we will not treat further modes.

The designer of a cryptosystem should decide for
that mode of operation that is most appropriate for
the intended application(s).

44
B.46 Example (cf. Example B.31)

Challenge-response protocol with a smart card and
a terminal. As in B.31 the terminal has a master
key.

Goals:
• mutual authentication (i.e. both the smart card

and the terminal prove that they are authentic)
• mutual agreement on a session key (i.e., a key

that is valid only for one session) to prevent
replay attacks

• An adversary that monitors the communication
shall not be able to recover the session key.

Possible solution: next slide

45
B.46 (continued; simplified protocol fragment)

Smart Card Terminal
stores kC stores kM

C_Nr

C1:=Enc(R1,kC)

generates R1

kC:=Enc(C_Nr,kM)

C2:=Enc(R2,kC)

kS:= R1 ⊕Dec(C2,kC)kS:= R2 ⊕Dec(C1,kC)

kS: session key R1, R2: random numbers

generates R2

... ...

46
B.46 (continued)

Note: Neither the smart card nor the terminal can
enforce a previous session key. The derivation of
ks requires the knowledge of kC.

Both parties prove their authenticity in the remaining
steps of the protocol by the application of ks
(implicit authentication).

47
B.47 Remark

• Usually encryption does not ensure data integrity.
• Data integrity is very important for many

applications.
• Many applications require data integrity. Secrecy

(privacy) is not mandatory if the exchanged (or
stored) messages are not confidential.

48
B.48 MAC (Message Authentication Code)

Basic idea: Apply a block cipher with key k (to be
kept secret) to generate a “control block”
MAC(p1,p2,… ,pt,k) to the plaintext p1,p2,… ,pt with
the following properties:

• Altering any plaintext bits changes the control
block MAC(p1,p2,… ,pt,k) with overwhelming
probability.

• The generation of the control block requires the
knowledge of k. In particular, it shall not be
feasible to construct valid MACs for new
messages from known (plaintext, MAC) pairs.

• Checking the control block requires the knowledge
of k.

49
B.49 Remark

• If the “control block”MAC(p1,p2,… ,pt,k) does not
“fit”to the plaintext p1,p2,… ,pt the receiver knows
that the plaintext or the control block have been
altered. The receiver will not accept this message.

Note: In Chapter C we will become acquainted with
mechanisms that ensure data integrity where only
the generation of the “control block”requires the
knowledge of the secret key (digital signatures).

50
B.50 CBC - MAC

p1 p2 pt

Enc k Enc k

ct

. . .Enc k

MAC

1st Step: Padding if necessary
2nd Step:

51
B.51 CBC - MAC: Security

• If Enc denotes a strong block cipher the CBC -
MAC is secure for fixed-length plaintext messages
(typical for smart card communication).

• The CBC - MAC is not secure if the block length of
the exchanged messages is variable.

52
B.52 Attacking the CBC - MAC

Possible Attack: Assume that
w m1:= MAC(p1,p2,… ,pt,k)
w m2:= MAC(p1*,p2*,… ,pr*,k)

Then m2= MAC(p’1,p’2,… ,p’t+r,k) with
p’j = pj for j=1,… ,t
p’t+1 = p1*⊕ m1

p’t+j = pj* for j=2,… ,r

Details: Blackboard

53
B.53 strengthened CBC – MAC (Retail CBC - MAC)

p1 p2 pt

Enc k Enc k. . .Enc k

MAC

k*

k

Dec

Enc

54
B.54 Retail CBC - MAC: Significant Properties

• The Retail CBC - MAC uses 2 keys.
• The Retail CBC - MAC is also secure for variable

length plaintext messages (provided, of course,
that Enc is a strong block cipher!).

• Note: Assume that |K| ≤ 2n. If the adversary knows
about 2n/2 many (plaintext, MAC) pairs finding the
keys k and k* is essentially only as difficult as
finding the key k of an encryption with Enc.

55
B.55 CMAC

1st step: Padding if necessary: If the final block pt is
not complete it is filled up with the string “10… 0”.

p1 p2 pt

The value k1 is used if no padding has been necessary,
otherwise k2 is added. Moreover, Tlen ≤ n

MAC

Enc k Enc k. . .Enc k

k1 / k2

MSBTlen

56
B.56 Remark

• In 2005 the CMAC has been standardized by
NIST.

• The CMAC is more efficient than the Retail-CBC-
MAC as it saves one encryption and one
decryption with Enc.

• The Retail CBC-MAC has been widespread in
smart card applications for Enc = DES.

57

B.57 Remark

• To obtain MAC values that are shorter than n bits
one may simply discard some of the right-most bits
of the final ciphertext block (cf. B.55).

• In the literature a number of different MAC
constructions have been studied.

• In Chapter C we will treat the HMAC. For efficiency
reasons it is very important especially for long
messages.

58

B.58 Example (cf. B.29)

• Electronic purse system: The smart card generates
a payment record which is transmitted to the
terminal. The merchant stores this record and
submits it to the background system later.

59

B.58 (continued)

Security requirements: The payment record should
w be linked to the purse
w be linked to the terminal (making the theft of payment

records useless)
w contain the transferred value (price)
w prevent the merchant from multiple submission of one

payment record
w prevent replay attacks by dishonest customers
w only authentic purses shall be able to generate valid

payment records
w the background system shall be able to detect any

manipulations of payment records

60

B.58 (continued, simplified solution)

• Payment record (generated by the electronic purse)
C_nr || T_nr || value || trans_nr || R || MAC(T,kC(MAC))

T

where
• C_nr: purse number
• T_nr: terminal number
• value: transferred value (price)
• trans_nr: transaction number (→ terminal)
• R: random number (generated by the terminal)
• kC(MAC): card-individual key to compute MACs

61

B.58 (continued)

Exercise: Explain why this type of payment record
meets the security requirements formulated on the
previous slide.

62

B.59 Data integrity and secrecy

• MACs shall ensure data integrity.
• Encryption algorithms shall ensure secrecy.
• Both security mechanisms can be combined, e.g.:
(p1,p2,… ,pt) → Enc(p1,p2,… ,pt,MAC(p1,p2,… ,pt,k1),k2)

= c1,c2,… ,ct,ct+1

The receiver decrypts the message and
checks whether the MAC is valid. A valid MAC
convinces him that the message stems from the
authentic sender and that the data have not been
altered.

63

B.59 (continued)

For security reasons the sender should use different
(more precisely: uncorrelated) keys for the MAC and
the encryption.

64

B.60 Attack on Identical Keys

Assumptions:
• Encryption: CBC-MAC with IV=0 and key k1
• CBC-MAC with k2
• k1=k2=k

Observation:
• CBC-MAC(p1,p2,… ,pt,k) = Enc(ct-1⊕ pt,k) = ct (= tth
ciphertext block)
and
• Enc(p1,p2,… ,pt ,CBC-MAC(p1,p2,… ,pt,k),k) =

(c1,c2,… ,ct ,Enc(0,k))

65

B.60 (continued)

Identical keys for CBC-encryption (with IV = 0) and
MAC computation reduce the overall computation time
for both the sender and the receiver by about 50 %. In
fact, since the CBC-MAC equals the ciphertext block ct
it need not be computed explicitly.

Unfortunately, an active adversary can mount an
elementary attack (see next slide).

66

B.60 (continued)

Attack:
• The adversary alters or even drops some blocks cj
for j < t-1. Decryption yields the original CBC-MAC
which equals the last but one block ct of the
encrypted message.
• The MAC clearly does not fit to the “new”plaintext.
However, with the control strategy described on the
last slide the receiver will not detect the attack.

Details: Blackboard

67

B.60 (continued)

Exercise: Investigate whether this attack can be
transferred into an attack against the Retail CBC-
MAC if its first key k coincides with the encryption
key (k* is arbitrary).

