# Cryptography

Prof. Dr. Werner Schindler

Federal civil servant at
Bundesamt für Sicherheit in der
Informationstechnik (BSI)
Bonn

Adjunct Professor (außerplanmäßiger Professor) at Darmstadt University of Technology

B-IT, winter 2006 / 2007

#### **Structure of the Course**

Chapter A: Introduction

Chapter B: Symmetric Ciphers

Chapter C: Public Key Cryptography

## A) Introduction

#### **A.1 Development of Cryptography**

- The history of cryptography dates back more than 2000 years ago.
- Already Julius Cesar encrypted important messages (Sueton, Roman historian).

#### A.2 Julius Cesar's Cipher (I)

JDOOLD HVW RPQLV GLYLVD ...

<u>plaintext alphabet:</u> ABCDEFGHIJKLMNOPQRSTUVWXYZ

<u>ciphertext alphabet:</u> DEFGHIJKLMNOPQRSTUVWXYZABC

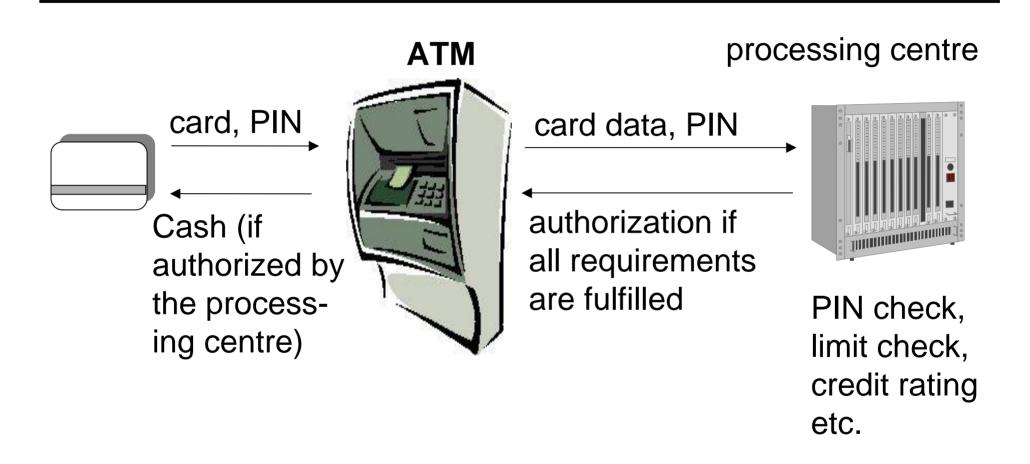
GALLIA EST OMNIS DIVISA ...

[Translation: Gallia (today's France) is divided into three parts ...]

#### A.2 Julius Cesar's Cipher (II)

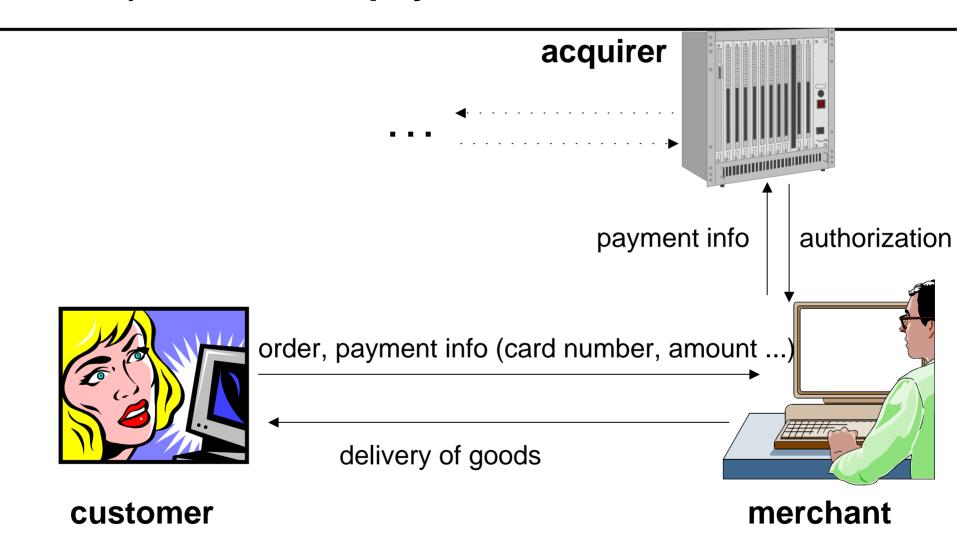
- Cesar's cipher defines an encryption scheme in a modern sense (though a very weak one).
- It applies an algorithm to transfer plaintext into ciphertext, using a key
- Algorithm:
  - w rotate the plaintext alphabet by k (= key) positions to the left (= ciphertext alphabet)
  - w substitute the plaintext letter by the corresponding ciphertext letter
- Cesar used the key k = 3

## A.1 (continued) Development of Cryptography (II)

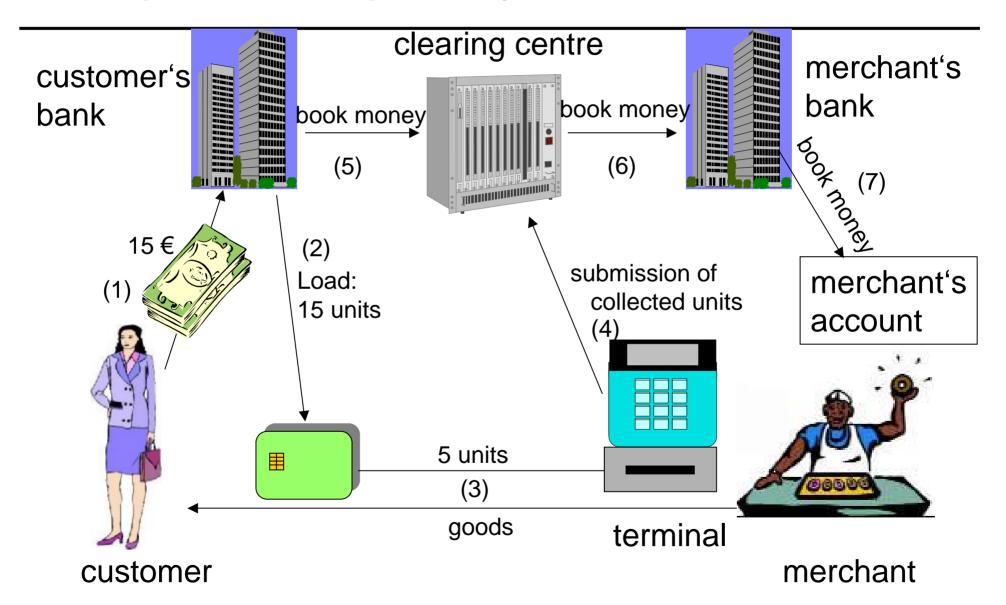

- It is very easy to break Cesar's cipher: An attacker just has to decrypt a given ciphertext with all 26 admissible keys. Only one key (the correct key) yields meaningful plaintext.
- Cryptographic algorithms have been attacked, broken and improved for the last 2000 years.
- Before the eighties cryptography was mainly applied by the military and intelligence services.

#### A.3 Cryptography in everyday's life

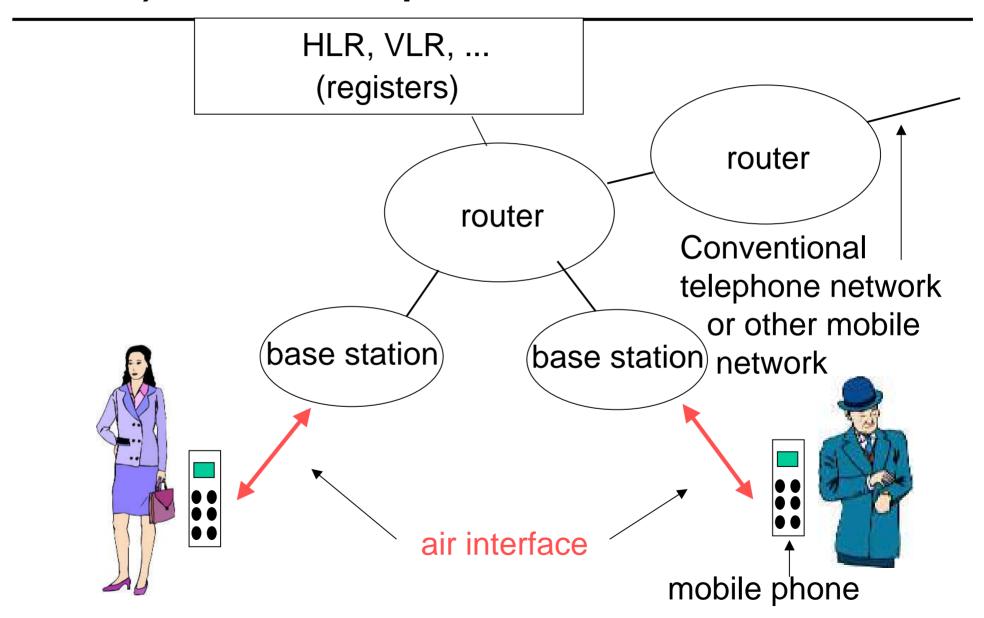
- By the spreading of smart cards and the internet cryptography has found its way into our daily life although we are often not aware of this fact.
- Examples:
  - w Bank cards and credit cards at automated teller machines
  - w Home banking, e-commerce
  - w Credit card transactions over the internet
  - w Mobile communication
  - w Electronic purses (smart cards)


W ...

## A.4 Example a) Automated teller machines (ATMs)




Remark: The ATM encrypts the entered PIN before transmission.


#### A.4 b) Credit card payment over the internet



## A.4 c) Electronic purse system



#### A.4 d) GSM mobile phone



## **A.5 Important Security Requirements**

| Requirement /<br>desired<br>property | Bank cards /<br>credit cards<br>at ATMs                   | Credit card payment over the internet                 | Electronic<br>purse<br>systems               | Home<br>banking             | Mobile communication                      |
|--------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------|-------------------------------------------|
| to be kept<br>secret                 | PIN                                                       | credit card<br>number                                 |                                              | PIN /<br>TAN                | PIN, transmitted data                     |
| data integrity                       | account<br>number,<br>amount                              | price, delivery address                               | records                                      | amount,<br>destina-<br>tion | yes                                       |
| authentication                       | card holder – processing centre, ATM – processing centre, | merchant –<br>card holder,<br>merchant –<br>acquirer, | purse –<br>terminal,<br>terminal -<br>purse, | account<br>holder -<br>bank | user – SIM<br>card, SIM card -<br>network |
| non-repudiation                      | yes                                                       | yes                                                   | no                                           | yes                         | yes                                       |
| long-term<br>storage of data         | transaction protocols                                     | transaction protocols                                 | system-<br>dependent                         | trans-<br>action<br>records | no                                        |

#### A.6 Remark

- Security requirements as secrecy, data integrity and authenticity, for instance, can be assured by cryptographic algorithms and protocols.
- This will be the focus of this course. As far as possible these mechanisms will be motivated and illustrated by applications.
- We point out that even strong cryptographic mechanisms may be overwhelmed if there are flaws in their implementation (Keywords: hardware attacks, side-channel attacks, fault attacks, cache-based attacks, bugs in the network protocol, vulnerability to viruses, worms and trojan horses, weaknesses of the operating system, ...).
- In this course we will not consider these topics.

#### A.7 Some Further Historical Notes

- Maria Stuart (1542-1587, Queen of Scotland) was sentenced to death because of weakly enciphered letters.
- In the Renaissance cryptography belonged to the esoteric arts.
- Cryptography in literature: In "The Gold Bug" (E.A. Poe), for instance, a solved cryptogram reveals the location of a treasure.
- During the second world war the allies broke the German Enigma, a mechanical enciphering machine. This was maybe the greatest cryptanalytic success in the 20<sup>th</sup> century.