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B.a) Fundamentals
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B.1  Definition

• A mapping 
Enc: P × K → C for which 
ϕk := Enc(⋅,k): P → C  is bijective for each k∈K
is called an encryption algorithm. The sets P, K
and C are called
w P : plaintext space
w K : key space
w C : ciphertext space



4
B.1 (continued)

• The mapping Enc(⋅,⋅) induces a set {ϕk : P → C | k∈K } of 
|K| bijections. Its elements are called encryption 
transformations. 

• Consequently, there exists a further set of |K| bijections {ψh
: C → P | h∈K } with the property that for each k∈K there 
exists a unique h∈K so that the composition ψh °ϕk equals 
the identity mapping on P. That is, ψh (ϕk (p)) = p for each 
p∈P. These bijections are called decryption 
transformations. 

• For any fixed k ∈ K and any c ∈ C there exists a unique p
∈ P with Enc(p,k) = c. We define Dec(c,k):= p and call
Dec(⋅,⋅) the decryption algorithm. Alternatively, Dec may be 
denoted by Enc-1 .
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B.1 (continued)

• The 5-tuple 
(P,K,C,{ϕk : P → C | k∈K }, {ψh : C → P | h∈K })
is called an encryption scheme (resp., a cipher).
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B.3  Remark

• In Definition B.1 more generality can be 
obtained if ϕk := Enc(⋅,k): P → C  is merely 
assumed to be injective for each k∈K, i.e. 
bijective onto its image ϕk (P). 

• An encryption algorithm Enc(⋅,⋅) can alternatively 
be represented by the set of encryption 
transformations. 

• Some authors denote the sets ( {ϕk : P → C | 
k∈K }, {ψh : C → P | h∈K }) an encryption 
scheme (resp., a cipher).
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B.4  Definition

• An encryption algorithm is called symmetric if 
decryption is computationally easy provided that 
the encryption key is known. In the notion of 
encryption and decryption transformations this is 
equivalent to saying that it is computationally 
easy to compute h = h(k) from k. 

• Note: Otherwise we speak of asymmetric 
algorithms or public key cryptography (→
Chapter C).
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B.5  Example

• Cesar’s cipher:
w P = C = {A,B,… ,Z}
w K = {0,1,… ,25}
w shift the plaintext alphabet P cyclically by k positions 

to the left, substitute the plaintext letter by the 
ciphertext letter at the corresponding position.

• Note: Cesar’s cipher is symmetric. Decrypting 
merely demands the rotation of the ciphertext
alphabet by k positions to the right.
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B.6  Definition

• An adversary (attacker, enemy, eavesdropper) 
tries to defeat an information security service; 
e.g. he may try to find a key to decrypt a secret 
message.

• A passive adversary is an adversary who is 
capable only of reading information from an 
unsecured channel.

• An active adversary may also transmit, alter or 
delete information on an unsecured channel.
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B.7  Typical Goals of a Potential Adversary

• Find the decryption key k
• To given ciphertexts c1,c2,… ,cN find the 

corresponding plaintexts p1,p2,… ,pN.
• To given plaintexts p1,p2,… ,pN find the 

corresponding ciphertexts c1,c2,… ,cN.

Note: For symmetric ciphers the first goal implies the 
second and the third. Depending on the concrete 
situation the second goal may be easier to 
achieve than the first. 
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B.8  Attacking Cesar’s cipher

• The adversary decrypts given ciphertext 
c1,c2,… ,cN with all 26 admissible keys. 

• One key yields meaningful plaintext. This is the 
searched key. (The other keys give meaningless 
plaintexts.) 

Note: a) Because of its small key space it is very 
easy to break Cesar’s cipher.
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B.9 An Improved Variant of Cesar’s Cipher

• P = C = {A,B,… ,Z}
• K = {π | π : P → C is bijective} 
• Enc(p, π):= π(p)

Note:
a) | K | = 26! ≈ 288

b) It is not practically feasible to check key by key.

Question: Does this mean that the improved variant 
of Cesar’s cipher is secure? 
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Cipher

• Unless it is very short the most frequent letter in a ‘typical’ 
English text is “E”.

• → Substitute the letter that occurs most frequently in the 
encrypted message by plaintext “E”. This reduces the size 
of the remaining key space by factor 26 from 26! to 25!

• Continue the attack. Try to substitute further (frequently 
occurring) letters of the encrypted message by probable 
plaintext letters …

• If these substitutions were correct the attacker knows a 
fragment of the plaintext message. It should be possible to 
guess its complement, which is still unknown. 

Details: Blackboard
Exercise: Perform this attack practically
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B.11  Generic Design Criteria

The attacks from B.8 and B.10 suggest the following 
requirements:

a) The key space K should be so large that an exhaustive 
key search (i.e. checking all keys) is not practically feasible 
(← B.8, attacking Cesar’s cipher)

b) The encryption algorithm shall not allow attacks that are 
essentially faster than exhaustive key search (← B.10, 
attacking an improved variant of Cesar’s cipher)

Note:
It is easy to guarantee Requirement a) but usually it is much 

more difficult to decide whether b) is fulfilled.
The assessment whether b) is fulfilled may vary in the course 

of the time (← new attacks)
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B.12  Affine Encryption (I)

• Identify {A,B,… ,Z} with the set Z26:={0,1,… ,25}. 
More precisely, identify the letter A with 0, the letter 
B with 1, … , and Z with 25.

• Equip  Z26 with the addition and multiplication 
modulo 26. Then Z26 is a ring. 

• Select an integer m ≥ 1. 
• Definition: GL(m,26) denotes the group of all 

(m×m)-matrices over Z26

• Remark: M∈ GL(m,26) iff (det(M) (mod 26)) ∈ Z26*
iff gcd(det(M),26) = 1
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B.12  Affine Encryption (II)

• Substitute each letter of the plaintext by the 
respective element in Z26 and group the plaintext 
into non-overlapping blocks of m consecutive 
numbers.

• Encryption of a block p:
Enc(p,(A(k1),k2)) :=  A(k1)p + k2 (mod 26), i.e.
w P = C = Z26

m

w K = GL(m,26) × Z26
m

• Decryption: 
Dec(c, (A(k1),k2)) = A(k1)-1 (c - k2) (mod 26)

• Question: Is the affine cipher secure? 
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B.13  Attacking the Affine Cipher

• Assumption: The attacker knows (plaintext, 
ciphertext) pairs (p1,c1),… , (pm+1,cm+1)

• Goal: Find the key (A(k1),k2)
• Fact: If the column vectors p1-pm+1,… ,pm-pm+1 ∈

Z26
m form a matrix in GL(m,26) the key is 

uniquely determined. (Otherwise the attacker 
needs further (plaintext, ciphertext) pairs.)

• The attack requires the inversion of one matrix 
and one matrix multiplication in GL(m,26). 

• Details: Blackboard



18B.14  Types of Attacks (characterization with 
regard to the attacker’s knowledge / abilities)

General assumption: The attacker knows the 
encryption algorithm.

a)  ciphertext-only attack: The attacker only knows 
some ciphertext.

Example: B.8 (attacking Cesar’s cipher), B.10 
(attacking the improved variant of Cesar’s 
cipher)

b)  known plaintext attack: The attacker knows 
some corresponding (plaintext, ciphertext) 
pairs (p1,c1),… , (pN,cN).

Example: B.13 (attacking the affine cipher)



19

B.14 (continued)

c) chosen plaintext attack: similar to a known 
plaintext attack but the attacker is able to 
select plaintexts p1,p2,… , pN.
A chosen-plaintext attack is called adaptive if 
the choice of pk+1 depends on (p1,c1),… , (pk,ck) 
for k = 1,2,… , N-1. 

d) chosen ciphertext attack: pendant to a chosen 
plaintext attack where the attacker is able to 
select the ciphertext 
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B.15  Remark

a)  Ciphertext-only attacks are usually only 
successful against very weak ciphers, due to  
inappropriate conditions of use, security flaws 
in protocols etc.

b)  To perform a chosen plaintext attack (resp. a 
chosen ciphertext attack) the adversary must 
have access to the encryption device (e.g., a 
smart card or a server) at least for a period of 
time and the ability / permission to use it.
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B.16  Unconditional Security

An encryption algorithm Enc: P × K→ C is said to be 
unconditionally secure (resp., perfectly secure) if 
the knowledge of the ciphertext gives an 
adversary with unlimited computational power no 
additional information on the plaintext.

Note: This means 
Prob(plaintext=p | ciphertext=c) = Prob(plaintext=p)
for all (p,c) ∈ P × C 
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B.17  Remark

Unconditional security is an very strong 
requirement. All the widespread algorithms are 
not unconditionally secure (cf. B.23)
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B.18  Computational Security

An encryption algorithm Enc: P × K→ C is said to 
be computationally secure (resp., practically 
secure) if an attacker is not even able to  
perform the best currently known attack with 
non-negligible success probability since the 
perceived level of computation required to 
defeat it exceeds, by a comfortable security 
margin, the computational resources of the 
hypothesized adversary.

Note: The statement may be restricted (e.g.: “…  is 
computationally secure against known plaintext 
attacks”).
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B.19  Further Notions of Security

• complexity-based security
• provable security

(cf. the “Handbook of Applied Cryptography”, 
for instance)
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B.20  Remark

a) The characterization of computational security 
is not precise in a mathematical sense. 

b)  Problem / Difficulty: Designers and evaluators 
of encryption algorithms may overlook effective 
attacks. 

c)  The assessment whether an encryption 
algorithm is viewed to be computationally 
secure usually changes in the course of the 
time. 
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B.20  (continued)

d) Ideally, new algorithms should be evaluated by 
a large number of experts. At least all known 
types of attacks should be considered. 

e)  Sometimes the resistance of an encryption 
algorithm against specific types of attacks can 
be proven in a strict sense.
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B.21  Composition of Ciphers

• Assume that Enc1: P × K→ C and Enc2: C × K*→ C* 
are encryption algorithms.

• The composition Enc2 ° Enc1: P × (K × K*)→ C* is 
also an encryption algorithm.

Notation: Enc2 ° Enc1 (p,(k,k*)) := Enc2 (Enc1 (p,k)),k*)
Remark: In general, the composition Enc2 ° Enc1 is 

stronger than Enc1 and Enc2, respectively.
Exercise: Show that the strength of the composition of 

two Cesar’s ciphers, resp. of two improved Cesar’s 
ciphers, does not exceed the strength of one cipher 
of the respective type.
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B.22  Remark

When composing encryption algorithms one 
usually performs three instead of two 
consecutive encryptions. The reason will be 
explained in Section B.b.
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B.23  One-time pad

plaintext  p1,p2,… ,pN ∈ P = {0,1} 
key bits  k1,k2,… ,kN  ∈ {0,1},  i.e. K = {0,1}N

Assumption / Mathematical model: The key bits 
k1,k2 ,… are viewed as values that are taken on 
by independent random variables that are 
uniformly distributed on {0,1}. (The key bits 
might be generated by tossing a fair coin, for 
instance.)
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B.23  (continued)

Encryption: cj = pj ⊕kj (= pj + kj (mod 2)) for j=1,2,… ,N
Decryption: pj = cj ⊕kj    for j=1,2,… ,N

Security: The knowledge of the ciphertext (c1,c2,… ,cN) 
∈ {0,1}N does not give any additional information 
on the corresponding plaintext: In fact, all keys are 
equally likely and to each plaintext p’1,p’2,… ,p’N
there exists exactly one key k’∈ {0,1}N with 
Dec(c1,c2,… ,cN , k’) = p’1 , p’2,… ,p’N. The one-time 
pad cipher is unconditionally secure against 
decryption attacks.
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B.23  (continued)

Disadvantages / Problems:
• The key is as long as the plaintext.
• The key must not be used twice (→ Exercises).
• Consistency “demands” unconditional secure key 

exchange (e.g. by a trustworthy courier). At least 
for open networks this is very inconvenient.
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B.23  (continued)

Note:
• The one-time pad does not ensure data integrity 

against active adversaries. Altering particular 
ciphertext bits results in wrong plaintext bits at 
these positions after decryption. 

• If the attacker knows the structure of the plaintext 
(e.g., a bank transfer) he may alter particular bits 
hoping that these changes give a meaningful 
plaintext (e.g. another valid target account 
number).

Example: Exercise


