B.e) Stream Ciphers

1

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

B.125 Stream Ciphers

- Normally, stream ciphers are symmetric algorithms with encryption = decryption
- In this course we only consider symmetric stream ciphers.

B.126 Generic Design (Synchronous Stream Cipher)

- Both sender and receiver generate identical key stream sequences k₁,k₂,.. (random numbers). The random numbers depend on the seed.
- The key stream is independent from plaintext and ciphertext.
- Encryption: $c_j = p_j \bigoplus k_j$
- Decryption: $p_j = c_j \bigoplus k_j$

<u>Note:</u> The *ciphertext digit* c_j depends on the plaintext p_j AND its position (= j) but not from any other plaintext digits.

B.127 General Remarks

- The key stream generator is a deterministic random number generator (pseudorandom number generator).
- The key stream is determined by the seed (to be kept secret !). The seed of the key stream generator is the pendant to the key of a block cipher.
- <u>Assumption</u>: In the following we assume that the key stream generator generates r-bit strings (= random numbers, $r \ge 1$).
- Principally, a key stream generator may generate elements in any finite group. Then '⊕' has to be replaced by the respective group operation.

- Unlike the one-time pad cipher (cf. B.23) stream ciphers are not unconditionally secure against decryption attacks. (Why not?)
- Synchronous stream ciphers (cf. B.126) have some significant properties. In particular,
 - **w** No error propagation, i.e. an altered ciphertext digit c_j does not affect the decryption of the remaining ciphertext.
 - w The loss of a ciphertext digit c_i cannot be compensated.

These properties imply:

- **w** To guarantee data integrity further security mechanisms are needed (cf. also B.23)
- w If some ciphertext digits got lost all at least from this step all ciphertext digits have to be transmitted once more.
- w Alternatively, s*elf-synchronizing stream ciphers* could be applied (see B.141)
- In this section we restrict our attention to synchronous stream ciphers.

B.128 Decryption Attacks on Stream Ciphers

- In this section we restrict our attention to decryption attacks.
- Decryption Attacks on stream ciphers are typically known-plaintext attacks. Occasionally, even ciphertext-only attacks may be feasible.
- <u>Note:</u> From the knowledge of some (plaintext, ciphertext) pairs $(p_{j_1}, c_{j_1}), \dots, (p_{j_m}, c_{j_m})$ the adversary computes the corresponding random numbers $k_{j_i} = c_{j_i} \oplus p_{j_i}$.
- Since the key stream is independent from the plaintext a chosen-plaintext attack does not improve the adversary's chances of success compared to a known-plaintext attack.

B.129 The Key Stream Generator: Security Requirements

- It shall not be feasible to find the seed by exhaustive search. Hence the seed must be sufficiently long.
- The random numbers should assume all possible values with identical probability.
- The knowledge of some random numbers k_{j_1},...,k_{j_m} shall not allow an adversary to determine or to guess any further random numbers with non-negligibly higher probability than without the knowledge of k_{j_1},...,k_{j_m}. The preferred goal, of course, is the seed as it allows the easy computation of all random numbers.

Linear feedback shift register (LFSR) over GF(2)

Each cell stores a single bit. Content of the LFSR (= *internal state*) at time n from left to right: r_{n+t},...,r_{n+1}

B.130 (continued)

- 1. The feedback value is computed (= XOR sum of particular cells ('*taps*')).
- 2. The content of all cells is shifted by one position to the right.
 - w The feedback value is written into the left-most cell
 - w The value that has been shifted over the right "border" of the LFSR is output (random bit)

<u>Note:</u> If the cells $1 = s_1 < ... < s_m \le t$ (labelled from the right to the left, beginning with '1') are taps then

 $r_{n+t+1} = r_{n+s_m} \oplus ... \oplus r_{n+s_1}$ (recursion formula)

<u>Fact:</u> There is a correspondence between recursion formulae and polynomials over GF(2). More precisely,

$$\begin{split} r_{n+t+1} &= r_{n+s_m} \oplus \dots \oplus r_{n+s_1} \\ \text{corresponds to the feedback polynomial} \\ f(X) &= X^t + X^{t+1-s_2} + \dots + X^{t+1-s_m} + 1 \in \text{GF}(2)[X] \end{split}$$

Observation: The current internal state determines all following random numbers.

Consequence: At least from a certain step

- the internal state
- and hence the output sequence are periodic.

Fact:

- (i) The zero state (0,..,0) generates the constant output sequence 0,0,...
- (ii) The period length $2^t 1$ can be obtained (\rightarrow primitive feedback polynomials).

Details: Blackboard

B.130 (continued)

Example: (t = 10): The feedback polynomial $f(X) = X^{10} + X^3 + 1$ is primitive. Hence $r_{n+11} = r_{n+1} \oplus r_{n+8}$ provides a bit sequence with maximum period length $2^{10} - 1$ iff the initial state of the LFSR $\neq (0,...,0)$.

- Due to their outstanding practical relevance we only consider LFSRs over GF(2) in this course.
- We mention that LFSRs can be defined over any finite field and over finite rings (e.g. over Z_n).

B.132 To Example B.130: Security

- The seed r₁,r₂, ..., r_t determines the whole output sequence.
- Any random bit r_j can be written as a sum of the seed bits r₁,r₂, ..., r_t.
- Assume that the adversary knows m random bits bits $r_{i1}, r_{i2}, ..., r_{im}$. Let $\mathbf{s} := (r_1, r_2, ..., r_t)^T$ (seed!) and $\mathbf{z} := (r_{i1}, r_{i2}, ..., r_{im})^T$ then

$$As = z$$

where A is an (m \times t)-matrix A over GF(2).

• The seed **s** is a solution of the above equation. If rank(A) = t then **s** is the unique solution.

B.132 (continued)

<u>Consequence</u>: It is sufficient to know \approx t random bits to recover the seed **s**.

<u>Fact:</u> Even if the adversary does not know the taps the knowledge of \approx 2t random bits is sufficient to recover the seed **s** (\rightarrow Berlekamp-Massey algorithm).

The key stream generator from Example B.130 (LFSR) is completely insecure.

Details: Blackboard

Several LFSRs with a nonlinear combiner

Observation:

- If LFSR_j has length t_j, if all feedback polynomials are primitive and all LFSR seeds are non-zero (i.e., ≠ (0,...,0)) then (r_{1,1}, r_{2,1},..., r_{v,1}), (r_{1,2}, r_{2,2},..., r_{v,2}), ...has period p := lcm(2^t-1, 2^t-2-1, ..., 2^t-v-1)
- The period of k_1, k_2, \dots divides p (usually it equals p)

<u>Assumption:</u> The adversary knows a part of the key stream sequence.

Straight-forward attack (exhaustive seed search):

- The adversary computes the key stream sequences for all possible seeds (= 2^{t_1+t_2+...+t_v}) and compares it with the known random numbers.
- If the computed key stream sequence differs from the known random numbers the assumed seed candidate is definitely false.
- If the attacker knows sufficiently many random numbers only the correct seed should remain.

<u>Assessment:</u> Principally, the straight-forward attack works. If 2^t_1+t_2+...+t_v is sufficiently large it is yet not practically feasible.

<u>Remark:</u> Many research work has been devoted to find more efficient attacks. At the end of this section we describe Siegenthaler's attack (cf. B.142f.), maybe the most elementary non-trivial attack.

LFSR with a nonlinear filter

Block cipher in OFB mode (\rightarrow B.36)

<u>Security:</u> depends on the block cipher Enc

<u>Note:</u> Assume that an adversary knows the random numbers $r_i, ..., r_{i+j}$. Finding r_{i+j+1} or r_{i-1} is at least as difficult as a chosen-plaintext, resp. a chosenciphertext attack, on the block cipher Enc.

Proof: Exercise

B.136 Typical Applications

- Typically, stream ciphers are used by applications that meet at least some of the following assumptions:
 - w The device has restricted computational resources.
 - w Many random numbers have to computed in real-time.
 - w Single plaintext bits or short bit sequences have to be processed immediately.
 - **w** (At least to a certain extent) altered ciphertext digits are tolerable but these errors should not propagate.

B.136 (continued)

- Typical applications that use stream ciphers are mobile communication, wireless short range communication, WLANs etc.
- Well-known stream cipher algorithms: A5 (several variants) and f8 (mobile communication (GSM, resp. UMTS)), E0 (Bluetooth), RC4 (WLAN, WEP protocol), SEAL, ...
- The goal of the eSTREAM project (organized by the EU ECRYPT network) is "to identify new stream ciphers that might become suitable for widespread adoption".

- Principally, any pseudorandom number generator *that is suitable for cryptographic applications* may be used as a key stream generator.
- <u>Note:</u> Besides statistical properties (uniform distribution, ...) it must in particular practically infeasible to find predecessors and successors of known subsequences with non-negligible probability.

B.137 (continued)

- Key stream generators with high throughput are of particular interest if they need only little resources (computation time, memory).
- For this reason various constructions using LFSRs have intensively been investigated.
- We do not deepen this topic in this course.
- <u>Note</u>: Since the key stream is independent from plaintext and ciphertext it can be pre-computed in idle time.

B.138 Random Number Generators (RNGs) for Cryptographic Applications

- Apart from stream ciphers a large number of cryptographic primitives and protocols need random number generators (RNGs).
- RNGs are needed, for instance, for the generation of

w session keys

```
w challenges (cf. B.30)
```

- w signature parameters (\rightarrow Chap. C)
- w ephemeral keys (\rightarrow Chap. C)

W ...

- Roughly speaking, RNGs can be divided into *true* and *deterministic* (*pseudorandom*) RNGs.
- The class of true RNGs itself falls into two subclasses containing *physical* RNGs (using dedicated hardware) and *non-physical* RNGs (using non-deterministic system data and / or user's interaction).
- Combinations of the basic types are possible (hybrid RNGs).

B.139 (continued)

- The international ISO norm 18031 "Random Bit Generation" provides examples and design principles for deterministic and true RNGs.
- Examples for deterministic RNGs can also be found in the "Handbook of Applied Cryptography", for instance.
- In Germany the evaluation guidances AIS 20 and AIS 31 are mandatory if an internationally recognized IT security certificate (according to the so-called "Common Criteria") is applied for. These guidances describe requirements on the RNG and the applicant's and the evaluator's tasks.

B.140 Warning

- Random numbers are also needed for stochastic simulations and Monte-Carlo integrations which play an important role e.g. in several fields of applied mathematics, computer science and applied sciences.
- Unlike for cryptographic applications (cf. B.129 and B.138, for instance) it is fully sufficient if these random numbers behave statistically inconspicuously.

B.140 (continued)

- Pseudorandom generators that are appropriate for stochastic simulations or Monte Carlo integrations may be totally unsuitable for cryptographic applications!
- Not everyone is aware of this fact, which has caused a lot of confusion.

B.141 Self-Synchronizing Stream Ciphers

- For self-synchronizing stream ciphers the key stream depends on a key and on some previous ciphertext digits.
- Roughly speaking, the general design of selfsynchronizing stream ciphers is like the CFB mode for block ciphers (Example!).
- In particular, self-synchronizing stream ciphers can compensate the loss of ciphertext digits. (Depending on the application it may not be necessary to repeat the transmission.)
- On the negative side the key stream cannot be precomputed.

B.142 Siegenthaler's Attack

- We end this section with a well-known attack, which was introduced by Siegenthaler in 1984.
- <u>Scenario</u>: LFSRs with a nonlinear combiner (cf. B.133)
- Example: v=3, F(x,y,z):= xy ⊕ xz ⊕ yz; LFSR lengths: t₁ = 29, t₂ = 31, t₃ = 33; The attacker knows k_{j_1},...,k_{j_m} <u>Straight-forward attack (cf. B.133)</u>: requires the check of 2²⁹⁺³¹⁺³³ = 2⁹³ seed candidates for (LFSR₁,LFSR₂,LFSR₃), which is practically infeasible.

X	У	Z	F(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

F is balanced (four "0"s, four "1"s). But ...

B.142 (continued)

Observation: Assume that X,Y,Z are independent random variables that are uniformly distributed on {0,1}, i.e. Prob(X = 0) = ... = Prob(Z = 1) = 0.5

Then

w
$$Prob(X = F(X,Y,Z)) = 0.75$$

and, similarly,

w
$$Prob(Y = F(X,Y,Z)) = 0.75$$

- w Prob(Z = F(X,Y,Z)) = 0.75
- <u>Conclusion</u>: We may expect that for about 75 % of the sub-indices i ∈ {1,...,m} we have r_{1,i_i} = k_{i_i}.

B.142 (continued)

Siegenthaler's Attack:

- For each possible seed candidate s₁' for LFSR₁ do { w compute the output sequence of LFSR₁ until index j_m
 - **w** determine the fraction $n(s_1')$ of the bits $r_{1,j_1}, r_{1,j_2}, ..., r_{1,j_m}$ that are identical with the known part of the key stream sequences

Note:

(i) For the correct seed s₁ we may expect n(s₁) ≈ 0.75.
(ii) For any false seed s₁' we may expect n(s₁') ≈ 0.5.
(iii) Unless m is large the value n(s₁') of some false seed candidates may exceed 0.5 considerably.

Siegenthaler's Attack:

}

For each possible seed candidate s_1 ' for LFSR₁ do {

- w compute the output sequence of $LFSR_1$ until index j_m
- **w** determine the fraction $n(s_1)$ of the bits $r_{1,j_1}, r_{1,j_2}, \dots, r_{1,j_m}$ that are identical with the known part of the key stream sequences
- **w** add s_1 ' to a set S_1 of 'likely' seeds if $n(s_1') > th_1$ where $th_1 \in (0.5, 0.75)$ is a suitably selected threshold

- The attacker performs the same procedure for LFSR₂ and LFSR₃, too, obtaining three sets S₁,S₂,S₃ of 'likely' seeds of the particular LFSRs.
- The attacker checks all triples (s₁',s₂',s₃') ∈ S₁×S₂×S₃ (comparison of the generated output sequences at the positions j₁,...,j_m with the known bits k_{j_1},k_{j_2},...,k_{j_m}).

B.142 (continued)

Note:

The threshold th_1 (resp. th_2 , resp. th_3) should be selected that

- **w** S_i of contains the true seed s_i with high probability
- **w** | S_i | is not too large

The choice of th_i should consider the parameters t_i and m (apply the Central Limit Theorem as if the output of the LFSRs and the key stream bits were truly random).

Efficiency:

- Siegenthaler's attack is much more efficient than the straight-forward attack because the attacker determines the seeds of all LFSRs independently.
- The workloads for the individual LFSRs essentially add up whereas in the straight-forward attack these workloads multiply!
- In our example finding the seed of LFSR₃ dominates the workload (2³³ seed candidates vs. 2⁹³ in the straight-forward attack).
- <u>Note:</u> The number m of known random numbers must be larger than in the straight-forward attack.

- Siegenthaler pointed out that his attack even works as a ciphertext-only attack (due to the nonuniformity of the plaintext).
- <u>Source of Siegenthaler's attack:</u> The correlation of the function value F(x,y,z) with x (resp. with y, resp. with z).

Preventing Siegenthaler's attack:

Let F:GF(2)^v →GF(2) and let X₁,X₂,...,X_v denote independent random variables that are uniformly distributed on {0,1}.

Assume further that $F(X_1, X_2, ..., X_v)$ and $(X_{j_1}, X_{j_2}, ..., X_{j_d})$ are independent for any choice of indices $j_1, ..., j_d \in \{1, ..., v\}$. Then F is said to be *correlation-immune* of order d.

 <u>Consequence</u>: To perform Siegenthaler's attack then the seeds of at least (d+1) LFSRs have to be guessed simultaneously.

Details: Blackboard + Exercises