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B.125  Stream Ciphers

• Normally, stream ciphers are symmetric algorithms 
with encryption = decryption

• In this course we only consider symmetric stream 
ciphers.



3B.126  Generic Design 
(Synchronous Stream Cipher)
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B.126  (continued)

• Both sender and receiver generate identical key 
stream sequences k1,k2,.. (random numbers). The 
random numbers depend on the seed. 

• The key stream is independent from plaintext and 
ciphertext. 

• Encryption:  cj = pj ⊕ kj

• Decryption:  pj = cj ⊕ kj

Note: The ciphertext digit cj depends on the plaintext 
pj AND its position (= j) but not from any other 
plaintext digits.
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B.127  General Remarks

• The key stream generator is a deterministic random 
number generator (pseudorandom number 
generator).

• The key stream is determined by the seed (to be 
kept secret !). The seed of the key stream generator 
is the pendant to the key of a block cipher.

Assumption: In the following we assume that the key 
stream generator generates r-bit strings ( = random 
numbers, r ≥ 1). 

• Principally, a key stream generator may generate 
elements in any finite group. Then ‘⊕‘ has to be 
replaced by the respective group operation.
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B.127 (continued)

• Unlike the one-time pad cipher (cf. B.23) stream 
ciphers are not unconditionally secure against 
decryption attacks. (Why not?) 

• Synchronous stream ciphers (cf. B.126) have some 
significant  properties. In particular,
w No error propagation, i.e. an altered ciphertext digit cj does 

not affect the decryption of the remaining ciphertext.
w The loss of a ciphertext digit cj cannot be compensated.
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B.127 (continued)

These properties imply:
w To guarantee data integrity further security mechanisms 

are needed (cf. also B.23)
w If some ciphertext digits got lost all at least from this step 

all ciphertext digits have to be transmitted once more.
w Alternatively, self-synchronizing stream ciphers could be 

applied (see B.141)
• In this section we restrict our attention to 

synchronous stream ciphers.
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B.128  Decryption Attacks on Stream Ciphers

• In this section we restrict our attention to 
decryption attacks.

• Decryption Attacks on stream ciphers are typically 
known-plaintext attacks. Occasionally, even 
ciphertext-only attacks may be feasible. 

Note: From the knowledge of some (plaintext, 
ciphertext) pairs (pj_1,cj_1),… , (pj_m,cj_m) the 
adversary computes the corresponding random 
numbers kj_i = cj_i ⊕ pj_i .

• Since the key stream is independent from the 
plaintext a chosen-plaintext attack does not 
improve the adversary’s chances of success 
compared to a known-plaintext attack.



9B.129  The Key Stream Generator:
Security Requirements

• It shall not be feasible to find the seed by 
exhaustive search. Hence the seed must be 
sufficiently long.

• The random numbers should assume all possible 
values with identical probability. 

• The knowledge of some random numbers 
kj_1,… ,kj_m shall not allow an adversary to 
determine or to guess any further random numbers 
with non-negligibly higher probability than without 
the knowledge of kj_1,… ,kj_m . The preferred goal, 
of course, is the seed as it allows the easy 
computation of all random numbers.
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B.130  Example (Key Stream Generator)

Linear feedback shift register (LFSR) over GF(2)

Each cell stores a single bit. Content of the LFSR (= 
internal state) at time n from left to right: rn+t,… ,rn+1

random number (bit)
... ...

t cells

... ...

rn   (= kn)

...
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B.130  (continued)

1. The feedback value is computed ( = XOR sum of 
particular cells (‘taps’)).

2. The content of all cells is shifted by one position 
to the right. 
w The feedback value is written into the left-most cell 
w The value that has been shifted over the right “border”

of the LFSR is output (random bit)
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B.130  (continued)

Note: If the cells 1 = s_1 < … < s_m ≤ t (labelled 
from the right to the left, beginning with ‘1’) are 
taps then 
rn+t+1 = rn+s_m ⊕ … ⊕ rn+s_1 (recursion formula)

Fact: There is a correspondence between recursion 
formulae and polynomials over GF(2). More 
precisely,
rn+t+1 = rn+s_m ⊕ … ⊕ rn+s_1

corresponds to the feedback polynomial
f(X) = Xt + Xt+1-s_2 + … + Xt+1-s_m + 1 ∈ GF(2)[X]
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B.130  (continued)

Observation: The current internal state determines all 
following random numbers.

Consequence: At least from a certain step 
• the internal state 
• and hence the output sequence 
are periodic.

Fact:
(i) The zero state (0,..,0) generates the constant output 

sequence 0,0,…
(ii) The period length 2t – 1 can be obtained (→ primitive 

feedback polynomials). 
Details: Blackboard
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B.130  (continued)

Example: (t = 10) : The feedback polynomial 
f(X) = X10 + X3 +1 is primitive.
Hence rn+11 = rn+1 ⊕ rn+8

provides a bit sequence with maximum period length 
210 - 1 iff the initial state of the LFSR ≠ (0,… ,0).
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B.131  Remark

• Due to their outstanding practical relevance we 
only consider LFSRs over GF(2) in this course. 

• We mention that LFSRs can be defined over any 
finite field and over finite rings (e.g. over Zn).
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B.132  To Example B.130: Security

• The seed r1,r2, … , rt determines the whole output 
sequence.

• Any random bit rj can be written as a sum of the 
seed bits r1,r2, … , rt . 

• Assume that the adversary knows m random bits 
bits ri1,ri2, … , rim. Let s := (r1,r2, … , rt)T (seed!) and  
z:= (ri1,ri2, … , rim)T then 

As = z
where A is an (m×t)-matrix A over GF(2). 

• The seed s is a solution of the above equation. If 
rank(A) = t  then s is the unique solution.
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B.132  (continued)

Consequence: It is sufficient to know ≈ t random bits 
to recover the seed s.

Fact: Even if the adversary does not know the taps 
the knowledge of ≈ 2t random bits is sufficient to 
recover the seed s (→ Berlekamp-Massey 
algorithm).

The key stream generator from Example B.130 
(LFSR) is completely insecure. 

Details: Blackboard
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B.133  Example (Key Stream Generator)

Several LFSRs with a nonlinear combiner

LFSR2
r2,n

LFSR1
r1,n

LFSRv
rv,n

...

F
kn  (key bit)

F: GF(2)v → GF(2)
(nonlinear function)

nonlinear combiner
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B.133  (continued)

Observation:
• If LFSRj has length tj, if all feedback polynomials 

are primitive and all LFSR seeds are non-zero 
(i.e., ≠ (0,… ,0)) then (r1,1 ,r2,1,… , rv,1), (r1,2 ,r2,2,… , rv,2), 
… has period  p := lcm(2t_1-1, 2t_2-1,… , 2t_v-1) 

• The period of k1,k2,… divides p (usually it equals p)
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B.133  (continued)

Assumption: The adversary knows a part of the key 
stream sequence.

Straight-forward attack (exhaustive seed search):
• The adversary computes the key stream 

sequences for all possible seeds (= 2t_1+t_2+… +t_v) 
and compares it with the known random numbers.

• If the computed key stream sequence differs from 
the known random numbers the assumed seed 
candidate is definitely false.

• If the attacker knows sufficiently many random 
numbers only the correct seed should remain.



21
B.133  (continued)

Assessment: Principally, the straight-forward attack 
works. If 2t_1+t_2+… +t_v is sufficiently large it is yet 
not practically feasible.

Remark: Many research work has been devoted to 
find more efficient attacks. At the end of this 
section we describe Siegenthaler’s attack (cf. 
B.142f.), maybe the most elementary non-trivial 
attack. 
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B.134  Example (Key Stream Generator)

LFSR with a nonlinear filter

G

kn
G: GF(2)m → GF(2)
(nonlinear function;
input = m internal state bits)

m

nonlinear filter

t cells... ...

... ......
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B.135  Example (Key Stream Generator)

Block cipher in OFB mode (→ B.36)

Security: depends on the block cipher Enc

Note: Assume that an adversary knows the random 
numbers ri,… ,ri+j. Finding ri+j+1 or ri-1 is at least as 
difficult as a chosen-plaintext, resp. a chosen-
ciphertext attack, on the block cipher Enc.

Proof: Exercise
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B.136  Typical Applications

• Typically, stream ciphers are used by applications 
that meet at least some of the following 
assumptions:
w The device has restricted computational resources. 
w Many random numbers have to computed in real-time. 
w Single plaintext bits or short bit sequences have to be 

processed immediately.
w (At least to a certain extent) altered ciphertext digits are 

tolerable but these errors should not propagate. 
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B.136  (continued)

• Typical applications that use stream ciphers are 
mobile communication, wireless short range 
communication, WLANs etc.

• Well-known stream cipher algorithms: A5 (several 
variants) and f8 (mobile communication (GSM, 
resp. UMTS)), E0 (Bluetooth), RC4 (WLAN, WEP 
protocol), SEAL, …

• The goal of the eSTREAM project (organized by 
the EU ECRYPT network) is “to identify new 
stream ciphers that might become suitable for 
widespread adoption”.
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B.137  Remark

• Principally, any pseudorandom number generator 
that is suitable for cryptographic applications may 
be used as a key stream generator.

• Note: Besides statistical properties (uniform 
distribution, … ) it must in particular practically 
infeasible to find predecessors and successors of 
known subsequences with non-negligible 
probability.
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B.137  (continued)

• Key stream generators with high throughput are of 
particular interest if they need only little resources 
(computation time, memory). 

• For this reason various constructions using LFSRs
have intensively been investigated. 

• We do not deepen this topic in this course.
• Note: Since the key stream is independent from 

plaintext and ciphertext it can be pre-computed in 
idle time.



28B.138  Random Number Generators (RNGs) 
for Cryptographic Applications

• Apart from stream ciphers a large number of 
cryptographic primitives and protocols need 
random number generators (RNGs). 

• RNGs are needed, for instance, for the generation 
of
w session keys
w challenges (cf. B.30)
w signature parameters (→ Chap. C)
w ephemeral keys (→ Chap. C)
w …
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B.139  Remark

• Roughly speaking, RNGs can be divided into true 
and deterministic (pseudorandom) RNGs.

• The class of true RNGs itself falls into two 
subclasses containing physical RNGs (using 
dedicated hardware) and non-physical RNGs
(using non-deterministic system data and / or 
user’s interaction).

• Combinations of the basic types are possible 
(hybrid RNGs).

Details: Blackboard
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B.139  (continued)

• The international ISO norm 18031 “Random Bit 
Generation”provides examples and design 
principles for deterministic and true RNGs.

• Examples for deterministic RNGs can also be 
found in the “Handbook of Applied Cryptography”, 
for instance.

• In Germany the evaluation guidances AIS 20 and 
AIS 31 are mandatory if an internationally 
recognized IT security certificate (according to the 
so-called “Common Criteria”) is applied for. These 
guidances describe requirements on the RNG and 
the applicant’s and the evaluator’s tasks.
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B.140  Warning

• Random numbers are also needed for stochastic 
simulations and Monte-Carlo integrations which 
play an important role e.g. in several fields of 
applied mathematics, computer science and 
applied sciences. 

• Unlike for cryptographic applications (cf. B.129 and 
B.138, for instance) it is fully sufficient if these 
random numbers behave statistically 
inconspicuously.
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B.140 (continued)

• Pseudorandom generators that are appropriate for 
stochastic simulations or Monte Carlo integrations 
may be totally unsuitable for cryptographic 
applications!

• Not everyone is aware of this fact, which has  
caused a lot of confusion.
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B.141  Self-Synchronizing Stream Ciphers

• For self-synchronizing stream ciphers the key stream 
depends on a key and on some previous ciphertext
digits.

• Roughly speaking, the general design of self-
synchronizing stream ciphers is like the CFB mode 
for block ciphers (Example!).

• In particular, self-synchronizing stream ciphers can 
compensate the loss of ciphertext digits. (Depending 
on the application it may not be necessary to repeat 
the transmission.)

• On the negative side the key stream cannot be 
precomputed.
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B.142  Siegenthaler’s Attack

• We end this section with a well-known attack, 
which was introduced by Siegenthaler in 1984.

• Scenario: LFSRs with a nonlinear combiner (cf. 
B.133)

• Example: v=3, F(x,y,z):= xy ⊕ xz ⊕ yz; 
LFSR lengths: t1 = 29, t2 = 31, t3 = 33;
The attacker knows kj_1,… ,kj_m

Straight-forward attack (cf. B.133): requires the 
check of 229+31+33 = 293 seed candidates for 
(LFSR1,LFSR2,LFSR3), which is practically 
infeasible.    
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B.142  (continued)

x y z F(x,y,z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F is balanced (four „0“s, four „1“s). But ...
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B.142  (continued)

x y z F(x,y,z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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B.142  (continued)

• Observation: Assume that X,Y,Z are independent 
random variables that are uniformly distributed on 
{0,1}, i.e. Prob(X = 0) = … = Prob(Z = 1) = 0.5 
Then
w Prob(X = F(X,Y,Z)) = 0.75

and, similarly, 
w Prob(Y = F(X,Y,Z)) = 0.75
w Prob(Z = F(X,Y,Z)) = 0.75

• Conclusion: We may expect that for about 75 % of 
the sub-indices i ∈ {1,… ,m} we have r1,j_i = kj_I .
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B.142  (continued)

Siegenthaler’s Attack:
For each possible seed candidate s1’for LFSR1 do { 
w compute the output sequence of LFSR1 until index jm
w determine the fraction n(s1’) of the bits r1,,j_1, r1,,j_2,… ,r1,,j_m

that are identical with the known part of the key stream 
sequences

Note:
(i) For the correct seed s1 we may expect n(s1) ≈ 0.75.
(ii) For any false seed s1’we may expect n(s1’) ≈ 0.5.
(iii) Unless m is large the value n(s1’) of some false 

seed candidates may exceed 0.5 considerably.
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B.142  (continued)

Siegenthaler’s Attack:
For each possible seed candidate s1’for LFSR1 do { 
w compute the output sequence of LFSR1 until index jm
w determine the fraction n(s1’) of the bits r1,,j_1, r1,,j_2,… ,r1,,j_m

that are identical with the known part of the key stream 
sequences
w add s1’to a set S1 of ‘likely’seeds if n(s1’) > th1 where th1 ∈

(0.5,0.75) is a suitably selected threshold
}
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B.142  (continued)

• The attacker performs the same procedure for 
LFSR2 and LFSR3, too, obtaining three sets 
S1,S2,S3 of ‘likely’seeds of the particular LFSRs.

• The attacker checks all triples (s1’,s2’,s3’) ∈
S1×S2×S3 (comparison of the generated output 
sequences at the positions j1,… ,jm with the known 
bits kj_1,kj_2,...,kj_m ).
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B.142  (continued)

Note:
The threshold th1 (resp. th2, resp. th3) should be 

selected that
w Si of contains the true seed si with high probability
w | Si | is not too large

The choice of thi should consider the parameters ti
and m (apply the Central Limit Theorem as if the 
output of the LFSRs and the key stream bits were 
truly random).



42
B.142  (continued)

Efficiency:
• Siegenthaler’s attack is much more efficient than 

the straight-forward attack because the attacker 
determines the seeds of all LFSRs independently.

• The workloads for the individual LFSRs essentially 
add up whereas in the straight-forward attack 
these workloads multiply!

• In our example finding the seed of LFSR3
dominates the workload (233 seed candidates vs. 
293 in the straight-forward attack).

Note: The number m of known random numbers 
must be larger than in the straight-forward attack.
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B.143  Remark

• Siegenthaler pointed out that his attack even 
works as a ciphertext-only attack (due to the non-
uniformity of the plaintext). 

• Source of Siegenthaler’s attack:
The correlation of the function value F(x,y,z) with x 
(resp. with y, resp. with z). 
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B.143  (continued)

Preventing Siegenthaler’s attack:
• Let F:GF(2)v →GF(2) and let X1,X2,… ,Xv denote 

independent random variables that are uniformly 
distributed on {0,1}.
Assume further that F(X1,X2,… ,Xv) and 
(Xj_1,Xj_2,… ,Xj_d) are independent for any choice of 
indices j1,… ,jd ∈ {1,… ,v}. Then F is said to be 
correlation-immune of order d.

• Consequence: To perform Siegenthaler’s attack then 
the seeds of at least (d+1) LFSRs have to be 
guessed simultaneously.

Details: Blackboard + Exercises


