
1

B.e) Stream Ciphers

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

2
B.125 Stream Ciphers

• Normally, stream ciphers are symmetric algorithms
with encryption = decryption

• In this course we only consider symmetric stream
ciphers.

3B.126 Generic Design
(Synchronous Stream Cipher)

seed

sender receiver

Key stream
generator

r

⊕pj

Key stream
generator

r

⊕cj pj

cj = pj ⊕ kj

kj kj

4
B.126 (continued)

• Both sender and receiver generate identical key
stream sequences k1,k2,.. (random numbers). The
random numbers depend on the seed.

• The key stream is independent from plaintext and
ciphertext.

• Encryption: cj = pj ⊕ kj

• Decryption: pj = cj ⊕ kj

Note: The ciphertext digit cj depends on the plaintext
pj AND its position (= j) but not from any other
plaintext digits.

5
B.127 General Remarks

• The key stream generator is a deterministic random
number generator (pseudorandom number
generator).

• The key stream is determined by the seed (to be
kept secret !). The seed of the key stream generator
is the pendant to the key of a block cipher.

Assumption: In the following we assume that the key
stream generator generates r-bit strings (= random
numbers, r ≥ 1).

• Principally, a key stream generator may generate
elements in any finite group. Then ‘⊕‘ has to be
replaced by the respective group operation.

6
B.127 (continued)

• Unlike the one-time pad cipher (cf. B.23) stream
ciphers are not unconditionally secure against
decryption attacks. (Why not?)

• Synchronous stream ciphers (cf. B.126) have some
significant properties. In particular,
w No error propagation, i.e. an altered ciphertext digit cj does

not affect the decryption of the remaining ciphertext.
w The loss of a ciphertext digit cj cannot be compensated.

7
B.127 (continued)

These properties imply:
w To guarantee data integrity further security mechanisms

are needed (cf. also B.23)
w If some ciphertext digits got lost all at least from this step

all ciphertext digits have to be transmitted once more.
w Alternatively, self-synchronizing stream ciphers could be

applied (see B.141)
• In this section we restrict our attention to

synchronous stream ciphers.

8
B.128 Decryption Attacks on Stream Ciphers

• In this section we restrict our attention to
decryption attacks.

• Decryption Attacks on stream ciphers are typically
known-plaintext attacks. Occasionally, even
ciphertext-only attacks may be feasible.

Note: From the knowledge of some (plaintext,
ciphertext) pairs (pj_1,cj_1),… , (pj_m,cj_m) the
adversary computes the corresponding random
numbers kj_i = cj_i ⊕ pj_i .

• Since the key stream is independent from the
plaintext a chosen-plaintext attack does not
improve the adversary’s chances of success
compared to a known-plaintext attack.

9B.129 The Key Stream Generator:
Security Requirements

• It shall not be feasible to find the seed by
exhaustive search. Hence the seed must be
sufficiently long.

• The random numbers should assume all possible
values with identical probability.

• The knowledge of some random numbers
kj_1,… ,kj_m shall not allow an adversary to
determine or to guess any further random numbers
with non-negligibly higher probability than without
the knowledge of kj_1,… ,kj_m . The preferred goal,
of course, is the seed as it allows the easy
computation of all random numbers.

10
B.130 Example (Key Stream Generator)

Linear feedback shift register (LFSR) over GF(2)

Each cell stores a single bit. Content of the LFSR (=
internal state) at time n from left to right: rn+t,… ,rn+1

random number (bit)
... ...

t cells

... ...

rn (= kn)

...

11
B.130 (continued)

1. The feedback value is computed (= XOR sum of
particular cells (‘taps’)).

2. The content of all cells is shifted by one position
to the right.
w The feedback value is written into the left-most cell
w The value that has been shifted over the right “border”

of the LFSR is output (random bit)

12
B.130 (continued)

Note: If the cells 1 = s_1 < … < s_m ≤ t (labelled
from the right to the left, beginning with ‘1’) are
taps then
rn+t+1 = rn+s_m ⊕ … ⊕ rn+s_1 (recursion formula)

Fact: There is a correspondence between recursion
formulae and polynomials over GF(2). More
precisely,
rn+t+1 = rn+s_m ⊕ … ⊕ rn+s_1

corresponds to the feedback polynomial
f(X) = Xt + Xt+1-s_2 + … + Xt+1-s_m + 1 ∈ GF(2)[X]

13
B.130 (continued)

Observation: The current internal state determines all
following random numbers.

Consequence: At least from a certain step
• the internal state
• and hence the output sequence
are periodic.

Fact:
(i) The zero state (0,..,0) generates the constant output

sequence 0,0,…
(ii) The period length 2t – 1 can be obtained (→ primitive

feedback polynomials).
Details: Blackboard

14
B.130 (continued)

Example: (t = 10) : The feedback polynomial
f(X) = X10 + X3 +1 is primitive.
Hence rn+11 = rn+1 ⊕ rn+8

provides a bit sequence with maximum period length
210 - 1 iff the initial state of the LFSR ≠ (0,… ,0).

15
B.131 Remark

• Due to their outstanding practical relevance we
only consider LFSRs over GF(2) in this course.

• We mention that LFSRs can be defined over any
finite field and over finite rings (e.g. over Zn).

16
B.132 To Example B.130: Security

• The seed r1,r2, … , rt determines the whole output
sequence.

• Any random bit rj can be written as a sum of the
seed bits r1,r2, … , rt .

• Assume that the adversary knows m random bits
bits ri1,ri2, … , rim. Let s := (r1,r2, … , rt)T (seed!) and
z:= (ri1,ri2, … , rim)T then

As = z
where A is an (m×t)-matrix A over GF(2).

• The seed s is a solution of the above equation. If
rank(A) = t then s is the unique solution.

17
B.132 (continued)

Consequence: It is sufficient to know ≈ t random bits
to recover the seed s.

Fact: Even if the adversary does not know the taps
the knowledge of ≈ 2t random bits is sufficient to
recover the seed s (→ Berlekamp-Massey
algorithm).

The key stream generator from Example B.130
(LFSR) is completely insecure.

Details: Blackboard

18
B.133 Example (Key Stream Generator)

Several LFSRs with a nonlinear combiner

LFSR2
r2,n

LFSR1
r1,n

LFSRv
rv,n

...

F
kn (key bit)

F: GF(2)v → GF(2)
(nonlinear function)

nonlinear combiner

19
B.133 (continued)

Observation:
• If LFSRj has length tj, if all feedback polynomials

are primitive and all LFSR seeds are non-zero
(i.e., ≠ (0,… ,0)) then (r1,1 ,r2,1,… , rv,1), (r1,2 ,r2,2,… , rv,2),
… has period p := lcm(2t_1-1, 2t_2-1,… , 2t_v-1)

• The period of k1,k2,… divides p (usually it equals p)

20
B.133 (continued)

Assumption: The adversary knows a part of the key
stream sequence.

Straight-forward attack (exhaustive seed search):
• The adversary computes the key stream

sequences for all possible seeds (= 2t_1+t_2+… +t_v)
and compares it with the known random numbers.

• If the computed key stream sequence differs from
the known random numbers the assumed seed
candidate is definitely false.

• If the attacker knows sufficiently many random
numbers only the correct seed should remain.

21
B.133 (continued)

Assessment: Principally, the straight-forward attack
works. If 2t_1+t_2+… +t_v is sufficiently large it is yet
not practically feasible.

Remark: Many research work has been devoted to
find more efficient attacks. At the end of this
section we describe Siegenthaler’s attack (cf.
B.142f.), maybe the most elementary non-trivial
attack.

22
B.134 Example (Key Stream Generator)

LFSR with a nonlinear filter

G

kn
G: GF(2)m → GF(2)
(nonlinear function;
input = m internal state bits)

m

nonlinear filter

t cells... ...

...

23
B.135 Example (Key Stream Generator)

Block cipher in OFB mode (→ B.36)

Security: depends on the block cipher Enc

Note: Assume that an adversary knows the random
numbers ri,… ,ri+j. Finding ri+j+1 or ri-1 is at least as
difficult as a chosen-plaintext, resp. a chosen-
ciphertext attack, on the block cipher Enc.

Proof: Exercise

24
B.136 Typical Applications

• Typically, stream ciphers are used by applications
that meet at least some of the following
assumptions:
w The device has restricted computational resources.
w Many random numbers have to computed in real-time.
w Single plaintext bits or short bit sequences have to be

processed immediately.
w (At least to a certain extent) altered ciphertext digits are

tolerable but these errors should not propagate.

25
B.136 (continued)

• Typical applications that use stream ciphers are
mobile communication, wireless short range
communication, WLANs etc.

• Well-known stream cipher algorithms: A5 (several
variants) and f8 (mobile communication (GSM,
resp. UMTS)), E0 (Bluetooth), RC4 (WLAN, WEP
protocol), SEAL, …

• The goal of the eSTREAM project (organized by
the EU ECRYPT network) is “to identify new
stream ciphers that might become suitable for
widespread adoption”.

26
B.137 Remark

• Principally, any pseudorandom number generator
that is suitable for cryptographic applications may
be used as a key stream generator.

• Note: Besides statistical properties (uniform
distribution, …) it must in particular practically
infeasible to find predecessors and successors of
known subsequences with non-negligible
probability.

27
B.137 (continued)

• Key stream generators with high throughput are of
particular interest if they need only little resources
(computation time, memory).

• For this reason various constructions using LFSRs
have intensively been investigated.

• We do not deepen this topic in this course.
• Note: Since the key stream is independent from

plaintext and ciphertext it can be pre-computed in
idle time.

28B.138 Random Number Generators (RNGs)
for Cryptographic Applications

• Apart from stream ciphers a large number of
cryptographic primitives and protocols need
random number generators (RNGs).

• RNGs are needed, for instance, for the generation
of
w session keys
w challenges (cf. B.30)
w signature parameters (→ Chap. C)
w ephemeral keys (→ Chap. C)
w …

29
B.139 Remark

• Roughly speaking, RNGs can be divided into true
and deterministic (pseudorandom) RNGs.

• The class of true RNGs itself falls into two
subclasses containing physical RNGs (using
dedicated hardware) and non-physical RNGs
(using non-deterministic system data and / or
user’s interaction).

• Combinations of the basic types are possible
(hybrid RNGs).

Details: Blackboard

30
B.139 (continued)

• The international ISO norm 18031 “Random Bit
Generation”provides examples and design
principles for deterministic and true RNGs.

• Examples for deterministic RNGs can also be
found in the “Handbook of Applied Cryptography”,
for instance.

• In Germany the evaluation guidances AIS 20 and
AIS 31 are mandatory if an internationally
recognized IT security certificate (according to the
so-called “Common Criteria”) is applied for. These
guidances describe requirements on the RNG and
the applicant’s and the evaluator’s tasks.

31
B.140 Warning

• Random numbers are also needed for stochastic
simulations and Monte-Carlo integrations which
play an important role e.g. in several fields of
applied mathematics, computer science and
applied sciences.

• Unlike for cryptographic applications (cf. B.129 and
B.138, for instance) it is fully sufficient if these
random numbers behave statistically
inconspicuously.

32
B.140 (continued)

• Pseudorandom generators that are appropriate for
stochastic simulations or Monte Carlo integrations
may be totally unsuitable for cryptographic
applications!

• Not everyone is aware of this fact, which has
caused a lot of confusion.

33
B.141 Self-Synchronizing Stream Ciphers

• For self-synchronizing stream ciphers the key stream
depends on a key and on some previous ciphertext
digits.

• Roughly speaking, the general design of self-
synchronizing stream ciphers is like the CFB mode
for block ciphers (Example!).

• In particular, self-synchronizing stream ciphers can
compensate the loss of ciphertext digits. (Depending
on the application it may not be necessary to repeat
the transmission.)

• On the negative side the key stream cannot be
precomputed.

34
B.142 Siegenthaler’s Attack

• We end this section with a well-known attack,
which was introduced by Siegenthaler in 1984.

• Scenario: LFSRs with a nonlinear combiner (cf.
B.133)

• Example: v=3, F(x,y,z):= xy ⊕ xz ⊕ yz;
LFSR lengths: t1 = 29, t2 = 31, t3 = 33;
The attacker knows kj_1,… ,kj_m

Straight-forward attack (cf. B.133): requires the
check of 229+31+33 = 293 seed candidates for
(LFSR1,LFSR2,LFSR3), which is practically
infeasible.

35
B.142 (continued)

x y z F(x,y,z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F is balanced (four „0“s, four „1“s). But ...

36
B.142 (continued)

x y z F(x,y,z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

37
B.142 (continued)

• Observation: Assume that X,Y,Z are independent
random variables that are uniformly distributed on
{0,1}, i.e. Prob(X = 0) = … = Prob(Z = 1) = 0.5
Then
w Prob(X = F(X,Y,Z)) = 0.75

and, similarly,
w Prob(Y = F(X,Y,Z)) = 0.75
w Prob(Z = F(X,Y,Z)) = 0.75

• Conclusion: We may expect that for about 75 % of
the sub-indices i ∈ {1,… ,m} we have r1,j_i = kj_I .

38
B.142 (continued)

Siegenthaler’s Attack:
For each possible seed candidate s1’for LFSR1 do {
w compute the output sequence of LFSR1 until index jm
w determine the fraction n(s1’) of the bits r1,,j_1, r1,,j_2,… ,r1,,j_m

that are identical with the known part of the key stream
sequences

Note:
(i) For the correct seed s1 we may expect n(s1) ≈ 0.75.
(ii) For any false seed s1’we may expect n(s1’) ≈ 0.5.
(iii) Unless m is large the value n(s1’) of some false

seed candidates may exceed 0.5 considerably.

39
B.142 (continued)

Siegenthaler’s Attack:
For each possible seed candidate s1’for LFSR1 do {
w compute the output sequence of LFSR1 until index jm
w determine the fraction n(s1’) of the bits r1,,j_1, r1,,j_2,… ,r1,,j_m

that are identical with the known part of the key stream
sequences
w add s1’to a set S1 of ‘likely’seeds if n(s1’) > th1 where th1 ∈

(0.5,0.75) is a suitably selected threshold
}

40
B.142 (continued)

• The attacker performs the same procedure for
LFSR2 and LFSR3, too, obtaining three sets
S1,S2,S3 of ‘likely’seeds of the particular LFSRs.

• The attacker checks all triples (s1’,s2’,s3’) ∈
S1×S2×S3 (comparison of the generated output
sequences at the positions j1,… ,jm with the known
bits kj_1,kj_2,...,kj_m).

41
B.142 (continued)

Note:
The threshold th1 (resp. th2, resp. th3) should be

selected that
w Si of contains the true seed si with high probability
w | Si | is not too large

The choice of thi should consider the parameters ti
and m (apply the Central Limit Theorem as if the
output of the LFSRs and the key stream bits were
truly random).

42
B.142 (continued)

Efficiency:
• Siegenthaler’s attack is much more efficient than

the straight-forward attack because the attacker
determines the seeds of all LFSRs independently.

• The workloads for the individual LFSRs essentially
add up whereas in the straight-forward attack
these workloads multiply!

• In our example finding the seed of LFSR3
dominates the workload (233 seed candidates vs.
293 in the straight-forward attack).

Note: The number m of known random numbers
must be larger than in the straight-forward attack.

43
B.143 Remark

• Siegenthaler pointed out that his attack even
works as a ciphertext-only attack (due to the non-
uniformity of the plaintext).

• Source of Siegenthaler’s attack:
The correlation of the function value F(x,y,z) with x
(resp. with y, resp. with z).

44
B.143 (continued)

Preventing Siegenthaler’s attack:
• Let F:GF(2)v →GF(2) and let X1,X2,… ,Xv denote

independent random variables that are uniformly
distributed on {0,1}.
Assume further that F(X1,X2,… ,Xv) and
(Xj_1,Xj_2,… ,Xj_d) are independent for any choice of
indices j1,… ,jd ∈ {1,… ,v}. Then F is said to be
correlation-immune of order d.

• Consequence: To perform Siegenthaler’s attack then
the seeds of at least (d+1) LFSRs have to be
guessed simultaneously.

Details: Blackboard + Exercises

