
1

B.c) DES

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

2
B.61 Remark

• There exist (2n)! permutations {0,1}n → {0,1}n .
• Clearly, |K| ≤ (2n)! for any block cipher with block

length n.
• In a true random block cipher the encryption

transformation is selected according to the
uniform distribution on the set of all permutations
on {0,1}n.

• For all widespread block ciphers the number of
encryption transformations |K| is much smaller
than (2n)!.

• However, roughly speaking, the encryption
transformations should have similar statistical
properties as randomly chosen permutations.

3
B.62 Round Based Block Ciphers

• For any reasonable block size n it is infeasible
to implement a large set of arbitrary
permutations efficiently (→ memory, code,
encryption time).

• Instead, block ciphers usually consist of several
rounds. The round functions are easy to
implement.

4
B.62 (continued)

• key scheduling: Round keys k1,k2,… ,kr are
calculated from the key k

p := v0

Round 1

Round 2

Round r

...

vr = c

k1

k2

kr

v1

vr-1

v2
vj+1 = gj+1(vj,kj+1)

5
B.63 Round Functions: Significant Properties

• Typically, all round functions (maybe apart from
the last one) are identical.

• Single round functions are cryptographically
weak.

• Roughly speaking, the strength of a block cipher
increases but its efficiency decreases with the
number of rounds.

• Designers of cryptosystems try to determine a
parameter r
w that is sufficiently large
w that is not significantly larger than necessary.

6
B.64 Feistel Cipher

A Feistel cipher is specific type of round-based block
cipher.

• More precisely, let vj :=(Lj, Rj) where
w Lj denotes the left half of vj (consisting of n/2 bits)
w Rj denotes the right half of vj (consisting of n/2 bits).

then vj+1 = (Rj , fj+1(Rj,kj+1) ⊕ Lj) =: (Lj+1, Rj+1)
for a suitable function fj+1 (usually f1 = … = fr).

• After the final round the halves Lr and Rr are swapped
(or, equivalently, there is no swap in the final round;
see B.71)

Note: The function f need not be injective.
Details: Blackboard

7
B.65 Feistel Cipher: Significant Properties

From
(Lj+1, Rj+1) = (Rj , fj+1(Rj,kj+1) ⊕ Lj) [encryption]
we immediately obtain
(Lj+1, fj+1(Rj,kj+1) ⊕ Rj+1) = (Rj , Lj) .
The Feistel structure implies Rj = Lj+1 .
This leads to
(Lj+1, fj+1(Lj+1,kj+1) ⊕ Rj+1) = (Rj , Lj).

8
B.65 (continued)

Consequence: For Feistel ciphers encryption and
decryption are the same apart from the order of the
round keys (cf. B.78).

This property is relevant especially for smart cards as it
saves code, memory and often also hardware. The
benefit was even more important in the early years of
smart cards.

9
B.66 DES (Data Encryption Standard)

DES is a symmetric block cipher with
• plaintext space P = ciphertext space C = {0,1}64

• key space K = {0,1}56 (effective key space)

DES is a Feistel cipher with r = 16 rounds.

10
B.67 DES: Effective Key Length

Note: DES keys consist of 64 bits, of which yet 8 bits
are control bits (last bit of each byte). More
precisely, each key byte has odd parity, and the
control bits are not used for encryption. That is, the
effective key length is 56 bit.

Example: F1 F4 32 10 75 80 08 01 (hexadecimal) is a
valid DES key.

11
B.68 Remark

• The DES algorithm and the Triple-DES algorithm (see B.88)
have worldwide been used for almost 30 years.

• DES was standardized by NIST from 1977 to 2005. In the
last years the use of Triple-DES was recommended.

• Although the NIST standard already expired especially
financial applications almost exclusively use the DES
algorithm or the Triple-DES algorithm.

• The DES algorithm is maybe the mostly studied
cryptographic algorithm worldwide.

• Although the DES algorithm has been publicly known since
1977 its design criteria have not been made public.

12
B.69 DES (coarse structure)

16 rounds

IP

p

(L0,R0)

(L16,R16)

IP-1

c

key-independent (fixed)
permutation

key-independent (fixed)
permutation

Feistel structure

13
B.70 Initial permutation IP

• IP: {0,1}64 → {0,1}64 defines a key-independent
permutation (initial permutation).

• After the final round its inverse IP-1 is applied.

14
B.71 DES: Feistel Structure

f

k15

⊕

L14 R14

...

f

k1

⊕

L0 R0

L1 R1

f

k16

⊕

L15 R15

L16 R16

1st round

15th round

16th round (exceptional;
no switching)

2st – 14th round

15
B.72 DES: Key Scheduling

• From the key k ∈ {0,1}56 sixteen round keys
k1,k2,… ,k16 are deduced. Each of these round keys
consists of 48 bits.

• Therefore, the 56 key bits are read in two 28 bit
registers. Then
for j=1 to 16 do {

• Depending on j both registers are rotated by
1 or 2 positions
• From each register 24 bits are selected and
permuted, forming a 48 bit round key kj
}

16
B.73 DES: Round Function f

expansion

round permutation

f: {0,1}32 × {0,1}48 → {0,1}32

E

P

⊕

S1 S2 S3 S4 S5 S6 S7 S8

Rj-1
32

48
kj

48

S-boxes

32

32

8 x 6 = 48 bits

8 x 4 = 32 bits

17
B.73 (continued)

• E: {0,1}32 →{0,1}48 expands the 32 bit vector Rj-1 to
48 bits. More precisely, 16 input bits are doubled.

• S1, S2, … , S8: {0,1}6 → {0,1}4 are (different) non-
GF(2)-linear mappings.

• P: {0,1}32 → {0,1}32 is a fixed permutation.

Note: As IP also E, S1,… ,S8 and P are key-
independent.

18
B.74 Remark

• The so-called S-boxes S1, S2, … , S8 are non-
linear mappings. Their values are stored in 8 tables.
Each table has 64 four-bit-entries.
• The choice of the S-boxes is crucial for the security
of DES. Already reordering the S-boxes may
increase its vulnerability against particular attacks.
• Precise definitions of IP, E, S1,… ,S8, P and the
key scheduling are given (e.g.) in “Handbook of
Applied Cryptography”.

19
B.75 Further Properties

• A key k is called a weak key if
DES(p,k) = DES-1(p,k). DES has four weak keys.

• DES(p,k) = DES(p,k) (inversion property)
where the bar stands for bitwise inversion

20
B.76 Cryptographic Strength of Single Rounds

• A single DES round and also the composition of a
small number of DES rounds are cryptographically
weak.

21
B.77 Example: 1 - Round DES

1st Step: Apply IP and IP-1 to the plaintext p and the
ciphertext c, resp., to obtain (L0,R0) and (L1,R1)

2nd Step: We have (L1,R1) = (L0 ⊕f(R0,k1), R0) [Note
that the first round is at the same time the last round in
1-round DES!] More precisely, we have
L0 ⊕ P(S(E(R0)⊕ k1)) = L1 with S := S1× … × S8
and hence

S(E(R0) ⊕ k1) = P-1(L1 ⊕ L0).

Note that apart from k1 all functions and all vectors are
known.

22
B.77 (continued)

This equation falls into eight independent equations,
each containing a 6-bit subkey. That is, we have to
solve nonlinear equations

Sj(ej ⊕ k1,j) = vj. for j = 1,… ,8

with known 6-bit vector ej and a known 4 bit vector vj.
Each equation has 4 solutions, reducing the size of
the search space for k1 from 248 to 216.

Consequence: Two known-plaintext pairs (p1,c1),
(p2,c2) are sufficient to recover k1.

23
B.77 (continued)

Details: Blackboard

Exercise: Work out an attack on 2-Round-DES.

24
B.78 Encryption and Decryption

f

k15

⊕

L14 R14

...

f

k1

⊕

L0 R0

L1 R1

f

k16

⊕

L15 R15

L16 R16

1st round

15th round

16th round (exceptional;
no switching)

2st – 14th round

Encryption

25
B.78 (continued)

f

k15

⊕

L14 R14

...

f

k1

⊕

L0 R0

L1 R1

f

k16

⊕

L15 R15

L16 R16

16th round (exceptional)

2nd round

1st round

3st – 15th round

Decryption

26
B.79 Remark

Encryption and Decryption may be carried out using
a common software- or hardware implementation.
Only the order of the round keys has to be reversed.

27
B.80 Remark

• In many scenarios the initial and the final
permutation have no cryptographic meaning (e.g.,
when the DES is used in EBC or CBC mode) since
the adversary can simply “remove” IP and IP-1 (cf.
Example B.77).
• It is easy to implement fixed permutations in
hardware. Unlike in software implementations these
permutations do not reduce the throughput.
• It has been conjectured that one reason to apply the
initial and the final permutation was to prevent efficient
software implementations (→ late seventies). The
DES algorithm has always been royalty-free.

28
B.81 Security: Exhaustive Key Search

• The DES key space K only contains 256 keys. An
exhaustive key search requires one known
(plaintext, ciphertext) pair (in rare cases two pairs)
and 255 DES encryptions in average.

• When the DES was adopted standard in 1977 an
exhaustive key search (if feasible at all) had
demanded giantic efforts. Technical progress
changed the case. Hence the DES algorithm has not
been viewed secure against powerful adversaries for
many years.

29
B.81 (continued): Milestones

• Wiener (1993): describes an ASIC design at gate
level but does not provide “real” hardware

• est. average search time per DES key: 3.5 hours
• estimated costs: 1 million $

• EFF (Electronic Frontier Foundation, 1998): real
hardware

• average search time per DES key: 5 days
• costs: 250 000 $

• University of Bochum (chair of Prof. Paar, 2006): real
hardware (FPGAs)

• average search time per DES key: 9 days
• costs: < 9000 €

30
B.82 Consequences

• In sensitive applications the DES algorithm has
been substituted by the Triple-DES algorithm (see
B.88). The key space of Triple-DES equals {0,1}112

or {0,1}168.

31
B.83 Merkle’s Time-Memory Trade-off

Assume that an adversary aims to find several keys
of a block cipher Enc (and not just one). If he has
sufficient storage he can accelerate the search for
individual keys.

Setup-Step (to be performed only once): The
adversary initializes a table T that contains about
|K|2/3 keys.

Search Step (to be performed in each key search):
The adversary uses the table T to find a particular
key.

32
B.83 (continued)

Efficiency:
• Setup costs

• memory: O(|K|2/3) keys
• time: O(|K|) operations

• Search Step
• time: O(|K|2/3) operations

DES: |K| = 256

33
B.84 Remark

• Apart from exhaustive key search also other types
of cryptanalytic attacks on DES have been
investigated, e.g. the linear attack (see B.85) and the
differential attack (see B.86).

34
B.85 Linear Attack

The linear attack was introduced by Matsui (1993).

Basic idea: Let X denote random plaintext block. The
adversary searches a GF(2)-linear functional

L: P × C × K → {0,1} (= XOR sum of plaintext bits,
ciphertext bits and key bits) such that

Prob(L(X,DES0(X,k),k) = 0) = 0.5 + ε with ε ≠ 0 (*)

for (at least a large subset) of the key space. Here
DES0(.,.) denotes the DES cipher without IP and IP-1.

35
B.85 (continued)

Note: (i) An adversary can easily “remove”the effect
of the initial and final permutation: From the
(plaintext, ciphertext) pair (p, DES(p,k)) he simply
computes (IP(p),IP(DES(p,k))).
(ii) L(p,c,k) = L1(p) ⊕ L2(c) ⊕ L3(k) for suitable linear
functionals on P, C and K.

The adversary substitutes known (plaintext,
ciphertext) pairs (p1,c1:), … , (pN,cN) (for DES0) into
L(·,·,·).

36
B.85 (continued)

• Decision rule (for ε > 0):

Set L3(k):= 0 if
(L1(p1) ⊕ L2(c1)) + … + (L1(p1) ⊕ L2(c1)) < N / 2

and L3(k):= 1 else.

Note: If this decision is correct it gives one bit of
information on the key, halving the key space.
Applying this procedure to m linear independent linear
functionals reduces the key space by the factor 2m .

Details: Blackboard

37
B.85 (continued)

• Goal: Find linear functionals L with large |ε|
• This is difficult.
• The known functionals are compositions of several
functionals over a small number of rounds. Their overall
probability decreases exponentially with the number of
rounds.
• Property (*) can usually only be shown for random
subkeys (→ average of individual probabilities over all
keys). However, this seems to imply (*).

38
B.85 (continued)

• Matsui combined a linear functional L with nonlinear
terms (expressing the 1st and the 16th round, restricted
to one particular S-box).
• At cost of evaluating the decision rule 212 times
(substitution of two 6-bit subkey candidates into the
non-linear terms) this advanced attack provides 13 bits
of information on the key space.
• Matsui used two linear functionals (in combination
with nonlinear terms), reducing the key space from 256

to 230.

39
B.85 (continued)

• Efficiency: known plaintext attack, requires about
243 (plaintext, ciphertext) pairs to obtain a success
probability ≈ 85 %)
• This limits the practical applicability of the linear
attack on the DES cipher.

40
B.86 Differential Attack

The differential attack was introduced by Biham and
Shamir (1991)
Basic idea: Let X denote random plaintext after the
initial permutation and DES(15)(.,.) the intermediate
result after 15 rounds. Find “differences” ∆, ∆’ ∈ {0,1}64

for which

Prob(DES(15)(X+∆,k) ⊕ DES(15)(X,k) = ∆’) = 2-64 + ε
with ε > 0 for (at least a large subset) of the key space.

The adversary uses this relation to estimate 6-bit
subkeys. Details: Blackboard

41
B.86 (continued)

• Efficiency: requires about 247 chosen (plaintext,
ciphertext) pairs

• This limits the practical applicability of the
differential attack on the DES cipher.

42
B.87 Remark

• The differential attack is a universal tool which was
very efficient against other block ciphers. FEAL-8, for
instance, could be broken with only 128 chosen
(plaintext,ciphertext) pairs.
• In 1994 D. Coppersmith, one of the designers of
DES, published a paper that states that the
resistance against differential attacks was one of the
(unpublished) design criteria of DES.

43
B.88 Triple-DES

• Let k = (k1,k2,k3). The Triple-DES (TDES, 3DES)
algorithm is defined as follows:

3DES(p,k):= DES(DES-1(DES(p,k1),k2),k3).

We distinguish two cases:
• two-key Triple DES: k1 = k3, K = {0,1}112

• three-key Triple DES: three independent DES
keys, K = {0,1}168

44
B.89 Remark

• The Triple-DES algorithm counteracts the small key
space of the DES algorithm. Both the three-key Triple-
DES and the two-key Triple-DES are viewed as
secure against strong adversaries.
• The migration from DES to Triple-DES did not
require new hardware.

45
B.89 (continued)

• The definition of the Triple-DES algorithm is
surprising at first sight as one would expect
DES(DES(DES(p,k1),k2),k3) which seemed more
“natural”.
The Triple-DES definition from B.88, however, is
compatible with the single DES if k1 = k2 = k3. This
was an important aspect for the migration of systems
that consisted of many different components.

46
B.89 (continued)

• The Triple-DES algorithm is widely used in many
banking applications, e.g. for the PIN validation of
German banking cards or to secure payments with
electronic purses. Also the SSL cipher suite applies
the Triple-DES algorithm.

47
B.90 Retail CBC – MAC with Enc = DES

p1 p2 pt

DES k DES k. . .DES k

MAC

k*

k

DES-1

DES

48
B.91 Remark

• The Retail CBC-MAC with Enc = DES was the
answer on the fact that exhaustive key search
against DES had become feasible.
• Compared to a MAC construction (e.g., the CMAC)
with Enc = Triple-DES it saves computation time.
• However, if the attacker knows about 232

(message, MAC) pairs he can mount an instructive
attack (cf. B.93).

49
B.92 The Birthday Paradox

• Suppose that an urn contains m balls that are
labelled with numbers 1,… ,m.
• Assume that a player draws one ball, reads its
label and puts the ball back into the urn. The player
repeats this process r times.
• Determine the probability p(r) that the player has
drawn r different balls:

p(r) = (m/m)*((m-1)/m)*… *((m-r+1)/m)
= 1*(1-1/m)*… *(1-(r-1)/m)

50
B.92 (continued)

Note: Given a group of at least 23 randomly chosen
people the probability that at least two of them have
the same birthday is more than 0.5.

For r<<m the Taylor expansion of the natural
logarithm log around 1, i.e. log(1-x) = -x + O(x2) gives

log(p(r)) ≈ 0 -1/m-… -(r-1)/m
≈ -r(r-1)/(2m),

i.e. p(r) ≈ exp(-r(r-1) / (2m)) if r<<m.

51
B.92 (continued)

Note: For large m this formula implies that it is very
likely that the player draws at least one ball twice if r
≈ m1/2.
This fact is important for several areas of
cryptography.

52
B.93 Attacking the Retail-CBC-MAC with Enc=DES

Assumption: The adversary knows two different
messages m1 = (p1,… ,pt) and m2 = (p’1,… ,p’s) with
identical Retail-CBC-MACs (for identical but
unknown keys k,k*).

Note: Due to B.92 this assumption is reasonable
when the adversary observes about 232 known
(message,MAC) pairs to the same keys k,k*.

Note: Since the final decryption and encryption are
bijectiions the assumption implies CBC-MAC(m1,k) =
CBC-MAC(m2,k).

53
B.93 (continued)

Attack:

Step 1: The adversary computes CBC-MAC(m1,k’)
and CBC-MAC(m2,k’) for different keys k’∈{0,1}56

until he finds a key k’’ that gives two equal MAC
values. The adversary assumes that k’’ = k.

Note: For the correct key k both CBC-MACs are
indeed equal. The probability that a further key has
this property is about 2-(56-64) = 2-8.

54
B.93 (continued)

Note: If k’’ = k then

DES(DES-1(m1,k’’),k*) = CBC-MAC(m1,k’’)

Step 2: The adversary uses this equation to find k*
by exhaustive key search.

Step 3: The adversary verifies the obtained key pair
(k’’,k*’) at another known (message, Retail-CBC-
MAC). If this candidate pair turns out to be wrong he
goes back to Step 2 or possibly to Step 1.

55
B.93 (continued)

Efficiency (average case):

Step 1: (256 (t+s) / 2) DES encryptions (= 257 for t=s=2)
Step 2: (256 / 2) DES encryptions

Note: Provided that the adversary has access to about
232 (message, Retail-CBC-MAC) a key recovery attack
is not significantly more difficult than a key recovery
attack on DES.
For t = s = 2 this attack requires about 5 times the
number of encryptions of an exhaustive key search on
DES.

56
B.94 Remark

Countermeasures:
• The designer takes care that any key pair (k,k*) is
used for r << 232 Retail-CBC-MACs. E.g., he may
use only

• session keys
• a counter

• The DES algorithm may be substituted by a block
cipher that does not allow a key recovery attack.

57
B.95 Why not double DES?

The key space of the two-key Triple-DES is {0,1}112.
Hence it seems to be reasonable to apply Double-
DES instead:

2DES(p,k1,k2) := DES(DES(p,k1),k2).

Double-DES only has the same key space {0,1}112

but saves one DES encryption.

Is the Double-DES algorithm as secure as the two-
key Triple-DES?

58
B.95 (continued)

Answer: no

Fact: If the adversary has enough storage it requires
essentially only 256 DES encryptions and 256 DES
decryptions to recover a Double-DES key pair
(k1,k2).

Attack: meet-in-the-middle attack
Details: Exercises

Hint: DES(DES(p,k1),k2) = c is equivalent to
DES(p,k1) = DES-1(c,k2)

