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B.61  Remark

• There exist (2n)! permutations {0,1}n → {0,1}n . 
• Clearly, |K| ≤ (2n)! for any block cipher with block 

length n.
• In a true random block cipher the encryption 

transformation is selected according to the 
uniform distribution on the set of all permutations 
on {0,1}n. 

• For all widespread block ciphers the number of 
encryption transformations |K| is much smaller 
than (2n)!.

• However, roughly speaking, the encryption 
transformations should have similar statistical 
properties as randomly chosen permutations.
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B.62  Round Based Block Ciphers

• For any reasonable block size n it is infeasible 
to implement a large set of arbitrary 
permutations efficiently (→ memory, code, 
encryption time).

• Instead, block ciphers usually consist of several 
rounds. The round functions are easy to 
implement.
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B.62  (continued)

• key scheduling: Round keys k1,k2,… ,kr are 
calculated from the key k

p := v0

Round 1

Round 2

Round r 

...

vr = c

k1

k2

kr

v1

vr-1

v2
vj+1 = gj+1(vj,kj+1)
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B.63  Round Functions: Significant Properties

• Typically, all round functions (maybe apart from  
the last one) are identical.

• Single round functions are cryptographically 
weak. 

• Roughly speaking, the strength of a block cipher 
increases but its efficiency decreases with the 
number of rounds. 

• Designers of cryptosystems try to determine a 
parameter r 
w that is sufficiently large
w that is not significantly larger than necessary.



6
B.64  Feistel Cipher

A Feistel cipher is specific type of round-based block 
cipher. 

• More precisely, let vj :=(Lj, Rj) where
w Lj denotes the left half of vj (consisting of n/2 bits)
w Rj denotes the right half of vj (consisting of n/2 bits).

then  vj+1 = (Rj , fj+1(Rj,kj+1) ⊕ Lj) =: (Lj+1, Rj+1) 
for a suitable function fj+1 (usually f1 = … = fr). 

• After the final round the halves Lr and Rr are swapped 
(or, equivalently, there is no swap in the final round; 
see B.71)

Note: The function f need not be injective. 
Details: Blackboard
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B.65  Feistel Cipher: Significant Properties

From 
(Lj+1, Rj+1) = (Rj , fj+1(Rj,kj+1) ⊕ Lj)        [encryption]
we immediately obtain
(Lj+1, fj+1(Rj,kj+1) ⊕ Rj+1) = (Rj , Lj) .
The Feistel structure implies Rj = Lj+1 .
This leads to 
(Lj+1, fj+1(Lj+1,kj+1) ⊕ Rj+1) = (Rj , Lj).
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B.65  (continued)

Consequence: For Feistel ciphers encryption and 
decryption are the same apart from the order of the 
round keys (cf. B.78).

This property is relevant especially for smart cards as it 
saves code, memory and often also hardware. The 
benefit was even more important in the early years of 
smart cards.
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B.66  DES (Data Encryption Standard)

DES is a symmetric block cipher with 
• plaintext space P = ciphertext space C = {0,1}64 

• key space K = {0,1}56   (effective key space)

DES is a Feistel cipher with r = 16 rounds.
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B.67  DES: Effective Key Length

Note: DES keys consist of 64 bits, of which yet 8 bits 
are control bits (last bit of each byte). More 
precisely, each key byte has odd parity, and the 
control bits are not used for encryption. That is, the 
effective key length is 56 bit.

Example: F1 F4 32 10 75 80 08 01 (hexadecimal) is a 
valid DES key.
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B.68  Remark

• The DES algorithm and the Triple-DES algorithm (see B.88) 
have worldwide been used for almost 30 years. 

• DES was standardized by NIST from 1977 to 2005. In the 
last years the use of Triple-DES was recommended.

• Although the NIST standard already expired especially 
financial applications almost exclusively use the DES 
algorithm or the Triple-DES algorithm.

• The DES algorithm is maybe the mostly studied 
cryptographic algorithm worldwide.

• Although the DES algorithm has been publicly known since 
1977 its design criteria have not been made public.
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B.69  DES (coarse structure)

16 rounds   

IP 

p

(L0,R0)

(L16,R16)

IP-1

c

key-independent (fixed)
permutation

key-independent (fixed)
permutation

Feistel structure
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B.70  Initial permutation IP

• IP: {0,1}64 → {0,1}64 defines a key-independent 
permutation (initial permutation).

• After the final round its inverse IP-1 is applied.



14
B.71  DES: Feistel Structure

f

k15

⊕

L14 R14

...

f

k1

⊕

L0 R0

L1 R1

f

k16

⊕

L15 R15

L16 R16

1st round

15th round

16th round (exceptional; 
no switching )

2st – 14th round
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B.72  DES: Key Scheduling

• From the key k ∈ {0,1}56 sixteen round keys   
k1,k2,… ,k16 are deduced. Each of these round keys     
consists of 48 bits.

• Therefore, the 56 key bits are read in two 28 bit   
registers. Then 
for j=1 to 16 do {

• Depending on j both registers are rotated by 
1 or 2 positions
• From each register 24 bits are selected and 
permuted, forming a 48 bit round key kj
}
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B.73  DES: Round Function f

expansion

round permutation

f: {0,1}32 × {0,1}48 → {0,1}32

E 

P

⊕

S1 S2 S3 S4 S5 S6 S7 S8

Rj-1
32

48
kj

48

S-boxes

32

32

8 x 6 = 48 bits

8 x 4 = 32 bits
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B.73 (continued)

• E: {0,1}32 →{0,1}48 expands the 32 bit vector Rj-1 to 
48 bits. More precisely, 16 input bits are doubled.

• S1, S2, … , S8: {0,1}6 → {0,1}4 are (different) non-
GF(2)-linear mappings.

• P: {0,1}32 → {0,1}32 is a fixed permutation.

Note: As IP also E, S1,… ,S8 and P are key-
independent.
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B.74  Remark

• The so-called S-boxes S1, S2, … , S8 are non-
linear mappings. Their values are stored in 8 tables. 
Each table has 64 four-bit-entries.
• The choice of the S-boxes is crucial for the security 
of DES. Already reordering the S-boxes may 
increase its vulnerability against particular attacks.
• Precise definitions of IP, E, S1,… ,S8, P and the 
key scheduling are given (e.g.) in “Handbook of 
Applied Cryptography”.
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B.75  Further Properties

• A key k is called a weak key if 
DES(p,k) = DES-1(p,k). DES has four weak keys.

• DES(p,k) = DES(p,k) (inversion property) 
where the bar stands for bitwise inversion
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B.76  Cryptographic Strength of Single Rounds

• A single DES round and also the composition of a 
small number of DES rounds are cryptographically 
weak.
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B.77  Example: 1 - Round DES

1st Step: Apply IP and IP-1 to the plaintext p and the 
ciphertext c, resp., to obtain (L0,R0) and (L1,R1)

2nd Step: We have (L1,R1) = (L0 ⊕f(R0,k1), R0) [Note 
that the first round is at the same time the last round in 
1-round DES!] More precisely, we have
L0 ⊕ P(S(E(R0)⊕ k1)) = L1  with S := S1× … × S8
and hence

S(E(R0) ⊕ k1) = P-1(L1 ⊕ L0).

Note that apart from k1 all functions and all vectors are 
known.
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B.77  (continued)

This equation falls into eight independent equations, 
each containing a 6-bit subkey. That is, we have to 
solve nonlinear equations

Sj(ej ⊕ k1,j) = vj.            for j = 1,… ,8

with known 6-bit vector ej and a known 4 bit vector vj.
Each equation has 4 solutions, reducing the size of 
the search space for k1 from 248 to 216.

Consequence: Two known-plaintext pairs (p1,c1), 
(p2,c2) are sufficient to recover k1.



23
B.77  (continued)

Details: Blackboard

Exercise: Work out an attack on 2-Round-DES.
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B.78  Encryption and Decryption

f

k15

⊕

L14 R14

...

f

k1

⊕

L0 R0

L1 R1

f

k16

⊕

L15 R15

L16 R16

1st round

15th round

16th round (exceptional; 
no switching )

2st – 14th round

Encryption
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B.78  (continued)

f

k15

⊕

L14 R14

...

f

k1

⊕

L0 R0

L1 R1

f

k16

⊕

L15 R15

L16 R16

16th round (exceptional)

2nd round

1st round

3st – 15th round

Decryption
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B.79 Remark

Encryption and Decryption may be carried out using 
a common software- or hardware implementation. 
Only the order of the round keys has to be reversed. 
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B.80  Remark

• In many scenarios the initial and the final 
permutation have no cryptographic meaning (e.g., 
when the DES is used in EBC or CBC mode) since 
the adversary can simply “remove” IP and IP-1 (cf. 
Example B.77).
• It is easy to implement fixed permutations in 
hardware. Unlike in software implementations these 
permutations do not reduce the throughput.
• It has been conjectured that one reason to apply the 
initial and the final permutation was to prevent efficient 
software implementations (→ late seventies). The 
DES algorithm has always been royalty-free.
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B.81  Security: Exhaustive Key Search

• The DES key space K only contains 256 keys. An 
exhaustive key search requires one known 
(plaintext, ciphertext) pair (in rare cases two pairs) 
and 255 DES encryptions in average.

• When the DES was adopted standard in 1977 an 
exhaustive key search (if feasible at all) had 
demanded giantic efforts. Technical progress 
changed the case. Hence the DES algorithm has not 
been viewed secure against powerful adversaries for 
many years.
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B.81 (continued): Milestones

• Wiener (1993): describes an ASIC design at gate 
level but does not provide “real” hardware

• est. average search time per DES key: 3.5 hours
• estimated costs: 1 million $ 

• EFF (Electronic Frontier Foundation, 1998): real 
hardware

• average search time per DES key: 5 days
• costs: 250 000 $ 

• University of Bochum (chair of Prof. Paar, 2006): real 
hardware (FPGAs)

• average search time per DES key: 9 days
• costs: < 9000 €
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B.82  Consequences

• In sensitive applications the DES algorithm has 
been substituted by the Triple-DES algorithm (see 
B.88). The key space of Triple-DES equals {0,1}112

or {0,1}168.
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B.83  Merkle’s Time-Memory Trade-off

Assume that an adversary aims to find several keys 
of a block cipher Enc (and not just one). If he has 
sufficient storage he can accelerate the search for 
individual keys. 

Setup-Step (to be performed only once): The 
adversary initializes a table T that contains about 
|K|2/3 keys.

Search Step (to be performed in each key search):
The adversary uses the table T to find a particular 
key.
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B.83  (continued)

Efficiency:
• Setup costs

• memory: O(|K|2/3) keys
• time: O(|K|) operations

• Search Step 
• time: O(|K|2/3) operations

DES: |K| = 256
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B.84  Remark

• Apart from exhaustive key search also other types 
of cryptanalytic attacks on DES have been 
investigated, e.g. the linear attack (see B.85) and the 
differential attack (see B.86).
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B.85  Linear Attack

The linear attack was introduced by Matsui (1993).

Basic idea: Let X denote random plaintext block. The 
adversary searches a GF(2)-linear functional 

L: P × C × K → {0,1} ( = XOR sum of plaintext bits, 
ciphertext bits and key bits) such that

Prob(L(X,DES0(X,k),k) = 0) = 0.5 + ε with ε ≠ 0  (*)

for (at least a large subset) of the key space. Here 
DES0(.,.) denotes the DES cipher without IP and IP-1. 
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B.85  (continued)

Note: (i) An adversary can easily “remove”the effect 
of the initial and final permutation: From the 
(plaintext, ciphertext) pair (p, DES(p,k)) he simply 
computes (IP(p),IP(DES(p,k))). 
(ii) L(p,c,k) = L1(p) ⊕ L2(c) ⊕ L3(k)  for suitable linear 
functionals on P, C and K. 

The adversary substitutes known (plaintext, 
ciphertext) pairs (p1,c1: ), … , (pN,cN) (for DES0) into 
L(·,·,·). 
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B.85  (continued)

• Decision rule (for ε > 0):

Set L3(k):= 0 if
(L1(p1) ⊕ L2(c1)) + … + (L1(p1) ⊕ L2(c1)) < N / 2

and L3(k):= 1 else. 

Note: If this decision is correct it gives one bit of 
information on the key, halving the key space.
Applying this procedure to m linear independent linear 
functionals reduces the key space by the factor 2m .

Details: Blackboard
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B.85  (continued)

• Goal: Find linear functionals L with large |ε|
• This is difficult.
• The known functionals are compositions of several 
functionals over a small number of rounds. Their overall 
probability decreases exponentially with the number of 
rounds.
• Property (*) can usually only be shown for random 
subkeys (→ average of individual probabilities over all 
keys). However, this seems to imply (*).
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B.85  (continued)

• Matsui combined a linear functional L with nonlinear
terms (expressing the 1st and the 16th round, restricted 
to one particular S-box). 
• At cost of evaluating the decision rule 212 times 
(substitution of two 6-bit subkey candidates into the 
non-linear terms) this advanced attack provides 13 bits 
of information on the key space. 
• Matsui used two linear functionals (in combination  
with nonlinear terms), reducing the key space from 256

to 230.
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B.85 (continued)

• Efficiency: known plaintext attack, requires about 
243 (plaintext, ciphertext) pairs to obtain a success 
probability ≈ 85 %)
• This limits the practical applicability of the linear 
attack on the DES cipher.
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B.86  Differential Attack

The differential attack was introduced by Biham and 
Shamir (1991)
Basic idea: Let X denote random plaintext after the 
initial permutation and DES(15)(.,.) the intermediate 
result after 15 rounds. Find “differences” ∆, ∆’ ∈ {0,1}64

for which

Prob(DES(15)(X+∆,k) ⊕ DES(15)(X,k) = ∆’) = 2-64 + ε
with ε > 0 for (at least a large subset) of the key space.

The adversary uses this relation to estimate 6-bit 
subkeys.                                   Details: Blackboard
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B.86  (continued)

• Efficiency: requires about 247 chosen (plaintext, 
ciphertext) pairs

• This limits the practical applicability of the 
differential attack on the DES cipher.
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B.87  Remark

• The differential attack is a universal tool which was 
very efficient against other block ciphers. FEAL-8, for 
instance, could be broken with only 128 chosen 
(plaintext,ciphertext) pairs.
• In 1994 D. Coppersmith, one of the designers of 
DES, published a paper that states that the 
resistance against differential attacks was one of the 
(unpublished) design criteria of DES.
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B.88 Triple-DES

• Let k = (k1,k2,k3). The Triple-DES (TDES, 3DES) 
algorithm is defined as follows:

3DES(p,k):= DES(DES-1(DES(p,k1),k2),k3).

We distinguish two cases:
• two-key Triple DES: k1 = k3, K = {0,1}112

• three-key Triple DES: three independent DES 
keys, K = {0,1}168



44
B.89  Remark

• The Triple-DES algorithm counteracts the small key 
space of the DES algorithm. Both the three-key Triple-
DES and the two-key Triple-DES are viewed as 
secure against strong adversaries.
• The migration from DES to Triple-DES did not 
require new hardware.
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B.89  (continued)

• The definition of the Triple-DES algorithm is 
surprising at first sight as one would expect 
DES(DES(DES(p,k1),k2),k3) which seemed more 
“natural”. 
The Triple-DES definition from B.88, however, is 
compatible with the single DES  if k1 = k2 = k3. This 
was an important aspect for the migration of systems 
that consisted of many different components.
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B.89  (continued)

• The Triple-DES algorithm is widely used in many 
banking applications, e.g. for the PIN validation of 
German banking cards or to secure payments with 
electronic purses. Also the SSL cipher suite applies 
the Triple-DES algorithm.
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B.90  Retail CBC – MAC with Enc = DES

p1 p2 pt

DES k DES    k. . .DES k

MAC

k*

k

DES-1

DES 
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B.91  Remark

• The Retail CBC-MAC with Enc = DES was the 
answer on the fact that exhaustive key search 
against DES had become feasible. 
• Compared to a MAC construction (e.g., the CMAC) 
with Enc = Triple-DES it saves computation time.
• However, if the attacker knows about 232

(message, MAC) pairs he can mount an instructive 
attack (cf. B.93).
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B.92  The Birthday Paradox

• Suppose that an urn contains m balls that are 
labelled with numbers 1,… ,m. 
• Assume that a player draws one ball, reads its 
label and puts the ball back into the urn. The player 
repeats this process r times.
• Determine the probability p(r) that the player has 
drawn r different balls:

p(r) = (m/m)*((m-1)/m)*… *((m-r+1)/m)
= 1*(1-1/m)*… *(1-(r-1)/m)
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B.92  (continued)

Note: Given a group of at least 23 randomly chosen 
people the probability that at least two of them have 
the same birthday is more than 0.5.

For  r<<m  the Taylor expansion of the natural 
logarithm log around 1, i.e. log(1-x) = -x + O(x2) gives

log(p(r)) ≈ 0 -1/m-… -(r-1)/m
≈ -r(r-1)/(2m),

i.e. p(r) ≈ exp(-r(r-1) / (2m))  if r<<m.
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B.92  (continued)

Note: For large m this formula implies that it is very 
likely that the player draws at least one ball twice if r 
≈ m1/2.
This fact is important for several areas of 
cryptography.
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B.93  Attacking the Retail-CBC-MAC with Enc=DES

Assumption: The adversary knows two different 
messages m1 = (p1,… ,pt) and m2 = (p’1,… ,p’s) with 
identical Retail-CBC-MACs (for identical but 
unknown keys k,k*).

Note: Due to B.92 this assumption is reasonable 
when the adversary observes about 232 known 
(message,MAC) pairs to the same keys k,k*. 

Note: Since the final decryption and encryption are 
bijectiions the assumption implies CBC-MAC(m1,k) = 
CBC-MAC(m2,k).
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B.93  (continued)

Attack:

Step 1: The adversary computes CBC-MAC(m1,k’) 
and CBC-MAC(m2,k’) for different keys k’∈{0,1}56 

until he finds a key k’’ that gives two equal MAC 
values. The adversary assumes that k’’ = k.

Note: For the correct key k both CBC-MACs are 
indeed equal. The probability that a further key has 
this property is about 2-(56-64) = 2-8. 
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B.93  (continued)

Note: If k’’ = k then 

DES(DES-1(m1,k’’),k*) = CBC-MAC(m1,k’’)

Step 2: The adversary uses this equation to find k* 
by exhaustive key search.

Step 3: The adversary verifies the obtained key pair 
(k’’,k*’) at another known (message, Retail-CBC-
MAC). If this candidate pair turns out to be wrong he 
goes back to Step 2 or possibly to Step 1.
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B.93  (continued)

Efficiency (average case):

Step 1: (256 (t+s) / 2) DES encryptions (= 257 for t=s=2)
Step 2: (256 / 2)   DES encryptions

Note: Provided that the adversary has access to about 
232 (message, Retail-CBC-MAC) a key recovery attack 
is not significantly more difficult than a key recovery 
attack on DES.
For t = s = 2 this attack requires about 5 times the 
number of encryptions of an exhaustive key search on 
DES.
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B.94  Remark

Countermeasures:
• The designer takes care that any key pair (k,k*) is 
used for r << 232 Retail-CBC-MACs. E.g., he may 
use only

• session keys
• a counter

• The DES algorithm may be substituted by a block 
cipher that does not allow a key recovery attack.
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B.95  Why not double DES?

The key space of the two-key Triple-DES is {0,1}112. 
Hence it seems to be reasonable to apply Double-
DES instead:

2DES(p,k1,k2) := DES(DES(p,k1),k2).

Double-DES only has the same key space {0,1}112 

but saves one DES encryption. 

Is the Double-DES algorithm as secure as the two-
key Triple-DES? 
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B.95  (continued)

Answer: no

Fact: If the adversary has enough storage it requires 
essentially only 256 DES encryptions and 256 DES 
decryptions to recover a Double-DES key pair 
(k1,k2).

Attack: meet-in-the-middle attack
Details: Exercises

Hint: DES(DES(p,k1),k2) = c    is equivalent to 
DES(p,k1) = DES-1(c,k2)


