C) Public Key Cryptography
C.a) Fundamentals
C.b) RSA with Applications
C.c) DSA and Diffie Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

C.a) Fundamentals

C.1 Introducing Remark

- Public key cryptosystems are widely spread. They are used for various purposes, in particular to ensure secrecy and to provide authenticity and data integrity.
- In any case there exist two keys, a secret (private) key to which only its legitimate owner should have access to and a public key which is publicly known (as its name indicates).
- It shall be practically infeasible to determine the secret key from the public key although this is principally possible (with unlimited computational power).

- In *public key encryption schemes* the legitimate receiver of a message uses his secret key to decrypt the ciphertext that has been encrypted with his public key.
- In *public key signature schemes* the public key is used to verify signatures that have been generated with the secret key.
- The security of a public key cryptosystem usually depends on a number theoretic problem that is assumed to be *practically* infeasible (e.g., the factorization of large numbers → RSA, Section C.b).

- Many proposals for public key cryptosystems have turned out to be insecure (e.g. knapsack cryptosystems).
- Before we consider concrete examples of public key cryptosystems we provide fundamental facts that will be needed in the later sections.

C.3 Definition

The Euler phi function (Euler totient function) is defined by

$$\phi: N \rightarrow N, \phi(n):= |\{ k \leq n : gcd(k,n)=1 \}|,$$

i.e. it assigns n the number of coprime positive integers that are \leq n.

Example:
$$\varphi(1) = 1$$
, $\varphi(6) = 2$, $\varphi(101) = 100$

C.4 Some Useful Facts

- (i) $\varphi(p) = p-1$ for p prime
- (ii) $\phi(p^s) = (p-1) p^{s-1}$ for p prime and $s \ge 1$
- (iii) $\varphi(ab) = \varphi(a)\varphi(b)$ for any coprime a,b
- (iv) Assume that $n = p_1^{s_1} p_2^{s_2} \dots p_m^{s_m}$ where p_1, \dots, p_m are different primes and $s_1, \dots, s_m \ge 1$. By (ii) and (iii) we have $\phi(n) = \phi(p_1^{s_1}) \dots \phi(p_m^{s_m})$

$$= (p_1-1) p_1^{s_1-1} \dots (p_m-1) p_m^{s_m-1}$$

Details: Blackboard + Exercises

C.5 Remark

 If the factorization of n is known the computation of φ(n) is easy even for large n.

<u>Note:</u> If the factorization of n is unknown the computation of $\varphi(n)$ may become practically infeasible for large n.

C.6 Square & Multiply Exponentiation Algorithm

- A typical task in public key cryptography is the computation of y^d (mod n) for large integers y, d, n.
- The 'natural' attempt, namely to compute y^d first and then to compute its remainder modulo n is not practically feasible because the intermediate value y^d is gigantic. For typical RSA parameters that are used today y^d had up to about 10³¹⁰ decimal digits.
- Instead, a modular exponentiation algorithm has to be applied that processes the exponent in small portions.

C.6 (continued)

computes $y \rightarrow y^d \pmod{n}$ with $d = (d_{w-1}, \dots, d_0)_2$

temp := y

```
for i=w-2 down to 0 do {
```

```
temp := temp<sup>2</sup> (mod n)
```

```
if (d<sub>i</sub> = 1) then temp := temp * y (mod n)
}
return temp (= y<sup>d</sup> (mod n))
```

C.7 Remark

- The square & multiply exponentiation algorithm (s&m) is the most elementary modular exponentiation algorithm.
- To compute y^d (mod n) the s&m algorithm requires
 ≈ log₂(d) modular squarings and about 0.5*log₂(d)
 modular multiplications with the basis y. If d denotes
 a secret RSA key then d is usually in the same
 order of magnitude as the modulus n.
- At cost of additional memory the number of multiplications can be reduced by applying a tablebased modular exponentiation algorithm (cf. "Handbook of Applied Cryptography", for instance).

C.8 Fermat's Little Theorem

Theorem:

Let p denote a prime. Then

 $a^{p-1} \equiv 1 \pmod{p}$ if gcd(a,p)=1.

• Fermat's formula usually fails for composite moduli.

Counterexample:

- $14^{14} \equiv 1 \pmod{15}$ but $2^{14} \equiv 4 \pmod{15}$
- Euler's Theorem (next slide) generalizes Fermat's Little Theorem.

C.10 Euler's Theorem

Theorem:

For any positive integer n

 $a^{\phi(n)} \equiv 1 \pmod{n}$ if gcd(a,n)=1.

C.11 Primality Testing

Task: Verify whether an integer is prime

<u>Straight-forward approach (trial division)</u>: Divide n by all primes $\leq \sqrt{n}$.

- The straight-forward approach is appropriate for small n *but practically infeasible for large n*. (It costs too much time.)
- In practice, *probabilistic* primality tests are applied.
- Fermat's little Theorem suggests the following primality test (next slide).

C.12 Fermat's Primality Test

<u>Goal:</u> verify whether n is prime <u>Input:</u> n (odd integer), t (security parameter)

```
flag:=0; i=1;
while ((i \leq t) && (flag=0)) do {
choose a random integer a \in \{2,...,n-2\};
if a^{n-1} \neq 1 \pmod{n} then flag:=1;
}
if (flag=1) return 'n is composite'
else return 'n is (probably) prime'.
```

C.12 (continued)

- If gcd(a,n)=1 and aⁿ⁻¹ ≠ 1 (mod n) then n cannot be a prime, I.e. it is composite.
- Even if $a^{n-1} \equiv 1 \pmod{n}$ for all t trials *n need not necessarily be a prime*! (Recall that $14^{14} \equiv 1 \pmod{15}$, for instance, although 15 is not prime.)
- Therefore Fermat's and other primality tests are called 'probabilistic'.
- Alternatively, before exponentiation it may be checked whether gcd(a,n)>1, which proved compositeness without exponentiation. This has little practical meaning since it is very unlikely to find such integers by chance.

C.13 Definition

- For a ∈ {1,...,n-1} let aⁿ⁻¹ ≠ 1 (mod n). Then a is called a *witness* (to compositeness) for n.
- If n is composite and a ∈ {1,...,n-1} fulfils aⁿ⁻¹ ≡ 1 (mod n) then a is called a *Fermat liar* for n, and n is called a *pseudoprime* to the base a.

Example (cf. C.9):

- (i) 2 is a witness for 15.
- (ii) 14 is a Fermat liar for 15, and 15 is a pseudoprime to the base 14.

• Assume that n is composite

<u>Fact:</u> If there exists one integer $a \in Z_n^*$ with $a^{n-1} \neq 1$ (mod n) then there are at least (n / 2) many integers in {1,...,n-1} with this property.

<u>Consequence:</u> In this case the probability that n is erroneously assumed to be prime (since n passes all t trials of Fermat's primality test) is ≤ 0.5 ^t. For t=40, for instance, the right-hand-side $\approx 10^{-12}$. <u>Attention</u>: There exist composite integers n with $a^{n-1} \equiv 1 \pmod{n}$ for all coprime a (i.e. for all a $\in Z_n^*$).

Such integers are called Carmichael numbers.

- <u>Consequence:</u> For Carmichael numbers Fermat's primality test only outputs 'n is composite' if gcd(a,n)>1. It is yet very unlikely to find such a base a by chance.
- <u>Note:</u> Although there exist infinitely many Carmichael numbers they are relatively rare.

Details: Blackboard + Exercises

C.14 (continued)

<u>Note:</u> There exist other probabilistic primality tests that are more efficient than Fermat's primality test. In practice, usually the Miller-Rabin primality test $(\rightarrow \text{Exercises})$ is applied. Goal: Factorize a composite integer n

<u>Straight-forward approach (trial division):</u> Divide n successively by the primes $\leq \sqrt{n}$.)

- The straight-forward approach is appropriate for small n *but practically infeasible for large n*.
- For large n more efficient factorization algorithms are needed.
- Fermat's little Theorem suggests the following factorization algorithm.

Input:

n (odd integer with unknown factorization p₁p₂...p_m where p₁,...,p_m denote distinct primes; RSA: m=2)
 B (integer, 'smoothness bound')

<u>Goal</u>: Find the prime factors p_1, \dots, p_m

- First step: Find any non-trivial factor d of n (i.e., 1<d<n).
- If the non-trivial factors are still composite apply the factorization algorithm the these integers.

C.16 (continued)

 $r \coloneqq \left[\begin{array}{c} q^w \end{array} \right]$ where q is prime and w the largest exponent with $q^w \le n$ $q \leq B$ Choose a random integer $a \in \{2, ..., n-1\}$ If d:=gcd(a,n)>1 return d Compute a^r (mod n) $d := gcd(a^r - 1 \pmod{n}, n)$ if (d=1) or (d=n) return 'failure' else return d

Note:

If 1 < d < n then d and (n/d) are non-trivial factors of n.</p>
There exist different variants to construct r. In any case it is a product of many small primes.

- If gcd(a, p_j)>1 a nontrivial factor of n is found. For large n this is very unlikely.
- Assume that p_j is a prime factor of n such that *all* prime factors of (p_j-1) are $\leq B$. Then r is a multiple of p_j-1 . If $gcd(a,p_j)=1$ Fermat's Little Theorem then implies $a^r -1 \equiv 0 \pmod{p_j}$, i.e. $a^r -1$ is a multiple of p_j and hence $d:=gcd(a^r -1 \pmod{p_j})$.
- If d=1 the algorithm may be run again with a larger smoothness bound B.
- Note that if p_i –1 divides r for each prime p_i then d=n. If d=n the algorithm should be run again with a smaller smoothness bound B.

C.18 Efficiency

- Pollard's p-1 algorithm is much more efficient than trial divisions since one run of the algorithm checks all primes p simultaneously for which all prime factors of p-1 are ≤ B.
- It is yet very likely that p-1 itself has at least one prime factor which is non-negligibly large (compared to the size of p). Unless n is relatively small (or p-1 falls into unusually small primes) Pollard's p-1 algorithm requires a gigantic smoothness bound B.
- Consequently, for large integers n more efficient factorization algorithms are needed.

C.18 (continued)

- For 'medium sized' integers n elliptic curve factorization methods are appropriate.
- For 'large' integers n (e.g., RSA moduli) usually the quadratic sieve or the number field sieve are applied. These algorithms are continuously improved.
- Presently, the number field sieve is the most efficient factorization algorithm.

Note: In 2005 a 667 bit integer (RSA challenge) was factored with the number field sieve.

Basic idea of sieving algorithms:

- Find integers x and y with $x^2 \equiv y^2 \pmod{n}$.
- Justification: This equation is equivalent to $0 \equiv x^2 y^2 \equiv (x+y)(x-y) \pmod{n}$.
- If x ≠ ± y (mod n) then gcd(x+y,n) gives a nontrivial divisor of n.

C.19 Discrete Logarithm

- We already know that the computation of y^d (mod n) is easy even for large integers
- Now consider the inverse problem: Given the triple (y,b,n) find an integer (often, the smallest non-negative integer) with

 $y^x \equiv b \pmod{n}$

(if there is such a number x!).

C.19 (continued)

<u>Definition</u>: Let G denote a finite group and $g \in G$. The order of g, denoted by ord(g), equals the smallest exponent r for which $g^r = 1$ in G.

<u>Note:</u> The equation $y^x \equiv b \pmod{n}$ has a solution for each $b \in Z_n^*$ if and only if $y \in Z_n^*$ generates Z_n^* , i.e., if $\langle y \rangle := \{y, y^2 \pmod{n}, \dots, y^{\text{ord}(y)} \pmod{n} = 1\} = Z_n^*$. In analogy to the real numbers the value x is called the *discrete logarithm* of b (to base y). The problem of finding the integer x in the equation

 $y^{x} \equiv b \pmod{n}$ is called a *discrete log problem*.

- The discrete log problem can be formulated in any finite group G. Some authors called it the *generalized discrete log problem*.
- Several public key cryptosystems rely on discrete log problems that are assumed to be practically intractable.
- The hardness of the discrete log problem depends on the group G.

C.22 Example

 Let G denote the additive group Z_n. In Z_n the discrete log problem is very easy. In fact, if gcd(y,n)=1 solving the equation

y+...+y = y \cdot x \equiv b (mod n) (additive group!) merely demands the computation of the multiplicative inverse y ⁻¹(mod n).

 Let <y> = Z_p* for a large prime p (let's say 1024 bit). The discrete log problem

 $y^x \equiv b \pmod{p}$

in Z_p^* is practically intractable.

- Over the reals the logarithm function is easy to compute since $x_1 < x_2$ implies $log(x_1) < log(x_2)$.
- This is not true in Z_p^* , for instance.

Example:

For p=5 and y=2 we have $2^2 \equiv 4 > 2^3 \equiv 3 \pmod{5}$.

<u>Note:</u> Simplified speaking, this is the reason for the hardness of the discrete log problem in Z_p^* .

C.24 Solving the Discrete Log Problem

- For small n one may simply compute y, y² (mod n), y³ (mod n), ... until the first term equals b.
- For large n more efficient algorithms are needed.
- We discuss the baby step giant step algorithm, an elementary algorithm which is applicable in any group G since it does exploit any peculiarities of G.

C.25 Baby-Step Giant-Step Algorithm

<u>Goal:</u> Given a finite group G, a generator y of G and an element $b \in G$, solve the equation

 $y^x = b$ (e.g., $y^x \equiv b \pmod{p}$ for $G = Z_p^*$)

• Let m denote the smallest integer that is

 $\geq \sqrt{ord(y)} = \sqrt{|G|}$

• Then x = vm+w with unknown integers $0 \le v, w < m$.

<u>Observation</u>: The above equation can simply be transformed into $(y^m)^v = b(y^w)^{-1}$

C.25 (continued)

- For w = 0,1,...,m-1 compute and store the pairs (w,b(y^w)⁻¹) in a Table T (*baby steps*).
- Order the entries of T with respect to their second components.
- Compute r:=y^m
- For i=0 to m-1 do {

compute rⁱ (*giant step*) and check whether rⁱ is contained in T

if yes: return x:=im+(first component of that T-entry)

}

- The baby-step giant-step algorithm needs at most 2*|G|^{0.5} group operations (compared to 0.5*|G| group operations (average value) for exhaustive search). Additionally, the storage and the ordering of |G|^{0.5} data pairs are necessary.
- <u>Example:</u> For $G = Z_p^*$, p = 999983, the baby-step giant-step algorithm needs the computation of at most 2*1000 modular multiplications modulo p, and the storage and ordering of 1000 data pairs. The exhaustive search needs 500000 modular multiplications in average.

C.26 Efficiency

- However, large groups G demand gigantic tables. (Example: A 200 bit prime requires 2¹⁰⁰ table entries.)
- There exist more efficient algorithms to solve the discrete log problem.
- This is yet beyond the scope of this course. We just mention that the *index calculus method* and a new algorithm that uses the number field sieve are most efficient.
- In 2006 the discrete log problem in Z_p* for a 448 bit prime p was solved.

C.27 The Chinese Remainder Theorem (CRT)

<u>Theorem:</u> Let $n_1, ..., n_t$ denote pairwise relatively prime integers (i.e. $gcd(n_i, n_j) = 1$ for $i \neq j$) and $n:=n_1...n_t$. (i) To any set of congruences $y_1 \equiv a_1 \pmod{n_1}$

 $y_t \equiv a_t \pmod{n_t}$

. . .

there exists an integer y with $y \equiv a_j \pmod{n_j}$ for all $j \le t$. (ii) In Z_n this solution is unique, and any two solutions $y_{[1]}$ and $y_{[2]}$ in Z differ by a multiple of n. (iii) There exist integers N_1, \ldots, N_t with the following property:

- $N_i \equiv 1 \pmod{n_i}$ but $N_i \equiv 0 \pmod{n_i}$ for all $j \neq i$.
- (iv) $y \equiv a_1 N_1 + ... + a_t N_t \pmod{n}$

Proof: see literature

More Details: Blackboard

• Hash functions map bit strings of arbitrary length to bit strings of fixed length m.

Examples:

- MD5 (m=128)
- SHA-1, RIPEMD160 (m=160)
- SHA-2 family (m \ge 224)
- Whirlpool (m=512)
- •

C.28 (continued)

A hash function H should meet several conditions. In particular:

 (one-way property) Given h∈ {0,1}^m it shall not be practically feasible to find a pre-image x with H(x)=h with non-negligible probability.

<u>Note:</u> Of course, for each $h \in \{0,1\}^m$ infinitely many pre-images should exist. The difficulty is to find them.

C.28 (continued)

- (second pre-image resistance) Given H(x)=h *it shall* not be practically feasible to find a second preimage x'≠x with H(x')=h with non-negligible probability.
- (collision resistance) *It shall not be practically feasible* to find two values x ≠ y with H(x)=H(y) with non-negligible probability.

C.29 Security

- (i) Usually the collision resistance is the condition that is hardest to achieve. (Note that the so-called *birthday paradox* limits the necessary number of operations to 2^{m/2}.)
- (ii) Nearly all known successful attacks on hash functions violate the collision resistance.
- (iii)MD5 is no longer collision-resistant. Collisions can be generated within about a minute. The needed number of operations is by far smaller than 2^{128/2}=2⁶⁴.
- (iv)Today no SHA-1 collisions are known. However, the SHA-1 algorithm is doubtlessly not as strong as it was believed some years ago.

C.30 Fields of Application and Efficiency

- Hash functions are used in different areas of cryptography, e.g. for
 w digital signatures (→ C.b)
 w MACs (→ B.c, C.b (HMAC))
 w random number generators (→ B.e)
- The widespread dedicated hash functions are tailored to 32 bit architectures. Hence they run very fast on computers but are usually slow on smart cards.