C) Public Key Cryptography
 C.a) Fundamentals
 C.b) RSA with Applications
 C.c) DSA and Diffie Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

C.a) Fundamentals

C. 1 Introducing Remark

- Public key cryptosystems are widely spread. They are used for various purposes, in particular to ensure secrecy and to provide authenticity and data integrity.
- In any case there exist two keys, a secret (private) key to which only its legitimate owner should have access to and a public key which is publicly known (as its name indicates).
- It shall be practically infeasible to determine the secret key from the public key although this is principally possible (with unlimited computational power).

C. 1 (continuation)

- In public key encryption schemes the legitimate receiver of a message uses his secret key to decrypt the ciphertext that has been encrypted with his public key.
- In public key signature schemes the public key is used to verify signatures that have been generated with the secret key.
- The security of a public key cryptosystem usually depends on a number theoretic problem that is assumed to be practically infeasible (e.g., the factorization of large numbers \rightarrow RSA, Section C.b).

C. 2 Remark

- Many proposals for public key cryptosystems have turned out to be insecure (e.g. knapsack cryptosystems).
- Before we consider concrete examples of public key cryptosystems we provide fundamental facts that will be needed in the later sections.

C. 3 Definition

The Euler phi function (Euler totient function) is defined by

$$
\varphi: N \rightarrow N, \quad \varphi(\mathrm{n}):=|\{\mathrm{k} \leq \mathrm{n}: \operatorname{gcd}(\mathrm{k}, \mathrm{n})=1\}|,
$$

i.e. it assigns n the number of coprime positive integers that are $\leq n$.

Example: $\varphi(1)=1, \varphi(6)=2, \varphi(101)=100$

C. 4 Some Useful Facts

(i) $\varphi(\mathrm{p})=\mathrm{p}-1 \quad$ for p prime
(ii) $\varphi\left(\mathrm{p}^{\mathrm{s}}\right)=(\mathrm{p}-1) \mathrm{p}^{\mathrm{s}-1}$ for p prime and $\mathrm{s} \geq 1$
(iii) $\varphi(\mathrm{ab})=\varphi(\mathrm{a}) \varphi(\mathrm{b}) \quad$ for any coprime a, b
(iv) Assume that $n=p_{1}{ }^{s}{ }^{1} p_{2}{ }^{s} _2 \ldots p_{m}{ }^{s}-m$ where p_{1}, \ldots, p_{m} are different primes and $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}} \geq 1$. By (ii) and (iii) we have

$$
\begin{aligned}
\varphi(n) & =\varphi\left(p_{1} s_{-}-1\right) \ldots \varphi\left(p_{m}^{s}-m\right) \\
& =\left(p_{1}-1\right) p_{1}{ }^{s}-1-1 \ldots\left(p_{m}-1\right) p_{m}^{s}{ }^{s} m-1
\end{aligned}
$$

Details: Blackboard + Exercises

C. 5 Remark

- If the factorization of n is known the computation of $\varphi(\mathrm{n})$ is easy even for large n .

Note: If the factorization of n is unknown the computation of $\varphi(\mathrm{n})$ may become practically infeasible for large n .

C. 6 Square \& Multiply Exponentiation Algorithm

- A typical task in public key cryptography is the computation of $\mathrm{y}^{\mathrm{d}}(\bmod \mathrm{n})$ for large integers $\mathrm{y}, \mathrm{d}, \mathrm{n}$.
- The 'natural' attempt, namely to compute y^{d} first and then to compute its remainder modulo n is not practically feasible because the intermediate value y^{d} is gigantic. For typical RSA parameters that are used today y^{d} had up to about 10^{310} decimal digits.
- Instead, a modular exponentiation algorithm has to be applied that processes the exponent in small portions.

C. 6 (continued)

computes $\mathrm{y} \rightarrow \mathrm{y}^{\mathrm{d}}(\bmod \mathrm{n})$ with $\mathrm{d}=\left(\mathrm{d}_{\mathrm{w}-1}, \ldots, \mathrm{~d}_{0}\right)_{2}$
temp := y
for $\mathrm{i}=\mathrm{w}-2$ down to 0 do $\{$

$$
\begin{aligned}
& \text { temp }:=\text { temp }^{2}(\bmod n) \\
& \text { if }\left(d_{i}=1\right) \text { then temp }:=\text { temp }^{*} y(\bmod n) \\
& \}
\end{aligned}
$$

return temp $\left(=y^{d}(\bmod n)\right)$

C. 7 Remark

- The square \& multiply exponentiation algorithm (s\&m) is the most elementary modular exponentiation algorithm.
- To compute $y^{d}(\bmod n)$ the $s \& m$ algorithm requires $\approx \log _{2}(\mathrm{~d})$ modular squarings and about $0.5^{\star} \log _{2}(\mathrm{~d})$ modular multiplications with the basis y. If d denotes a secret RSA key then d is usually in the same order of magnitude as the modulus n.
- At cost of additional memory the number of multiplications can be reduced by applying a tablebased modular exponentiation algorithm (cf. "Handbook of Applied Cryptography", for instance).

C. 8 Fermat's Little Theorem

Theorem:
Let p denote a prime. Then
$a^{p-1} \equiv 1(\bmod p) \quad$ if $\operatorname{gcd}(a, p)=1$.

C. 9 Remark

- Fermat's formula usually fails for composite moduli.

Counterexample:
$14^{14} \equiv 1(\bmod 15)$ but $2^{14} \equiv 4(\bmod 15)$

- Euler's Theorem (next slide) generalizes Fermat's Little Theorem.

C. 10 Euler's Theorem

Theorem:
For any positive integer n

$$
a^{\varphi(n)} \equiv 1(\bmod n) \quad \text { if } \operatorname{gcd}(a, n)=1
$$

C. 11 Primality Testing

Task: Verify whether an integer is prime

Straight-forward approach (trial division):
Divide n by all primes $\leq \sqrt{n}$.

- The straight-forward approach is appropriate for small n but practically infeasible for large n. (It costs too much time.)
- In practice, probabilistic primality tests are applied.
- Fermat's little Theorem suggests the following primality test (next slide).

C. 12 Fermat's Primality Test

Goal: verify whether n is prime
Input: n (odd integer), t (security parameter)
flag: $=0 ; i=1$;
while ((i $\leq \mathrm{t}) \& \&(\mathrm{flag}=0))$ do \{
choose a random integer $a \in\{2, \ldots, n-2\}$;
if $a^{n-1} \equiv 1(\bmod n)$ then flag:=1;
\}
if (flag=1) return ' n is composite'
else return ' n is (probably) prime'.

C. 12 (continued)

- If $\operatorname{gcd}(a, n)=1$ and $\mathrm{a}^{\mathrm{n}-1} \equiv 1(\bmod \mathrm{n})$ then n cannot be a prime, l.e. it is composite.
- Even if $a^{n-1} \equiv 1(\bmod n)$ for all trials n need not necessarily be a prime! (Recall that $14^{14} \equiv 1$ (mod 15), for instance, although 15 is not prime.)
- Therefore Fermat's and other primality tests are called 'probabilistic'.
- Alternatively, before exponentiation it may be checked whether $\operatorname{gcd}(\mathrm{a}, \mathrm{n})>1$, which proved compositeness without exponentiation. This has little practical meaning since it is very unlikely to find such integers by chance.

C. 13 Definition

- For $a \in\{1, \ldots, n-1\}$ let $a^{n-1} \equiv 1(\bmod n)$. Then a is called a witness (to compositeness) for n.
- If n is composite and $a \in\{1, \ldots, n-1\}$ fulfils $\mathrm{a}^{\mathrm{n}-1} \equiv 1(\bmod \mathrm{n})$ then a is called a Fermat liar for n , and n is called a pseudoprime to the base a.

Example (cf. C.9):
(i) 2 is a witness for 15 .
(ii) 14 is a Fermat liar for 15 , and 15 is a pseudoprime to the base 14 .

C. 14 Efficiency

- Assume that n is composite

Fact: If there exists one integer $a \in Z_{n}{ }^{*}$ with $a^{n-1} \equiv 1$ $(\bmod n)$ then there are at least ($\mathrm{n} / 2$) many integers in $\{1, \ldots, n-1\}$ with this property.

Consequence: In this case the probability that n is erroneously assumed to be prime (since n passes all t trials of Fermat's primality test) is ≤ 0.5.
For $\mathrm{t}=40$, for instance, the right-hand-side $\approx 10^{-12}$.

C. 14 (continued)

Attention: There exist composite integers n with $\mathrm{a}^{\mathrm{n-1}} \equiv 1(\bmod \mathrm{n})$ for all coprime a (i.e. for all a $\left.\in Z_{n}{ }^{*}\right)$.
Such integers are called Carmichael numbers.
Consequence: For Carmichael numbers Fermat's primality test only outputs ' n is composite' if $\operatorname{gcd}(\mathrm{a}, \mathrm{n})>1$. It is yet very unlikely to find such a base a by chance.
Note: Although there exist infinitely many Carmichael numbers they are relatively rare.

Details: Blackboard + Exercises

C. 14 (continued)

Note: There exist other probabilistic primality tests that are more efficient than Fermat's primality test. In practice, usually the Miller-Rabin primality test (\rightarrow Exercises) is applied.

C. 15 Factoring Large Integers

Goal: Factorize a composite integer n

Straight-forward approach (trial division):
Divide n successively by the primes $\leq \sqrt{n}$.)

- The straight-forward approach is appropriate for small n but practically infeasible for large n.
- For large n more efficient factorization algorithms are needed.
- Fermat's little Theorem suggests the following factorization algorithm.

C. 16 Pollard's p-1 method

Input:

n (odd integer with unknown factorization $\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{m}}$ where p_{1}, \ldots, p_{m} denote distinct primes; RSA: $m=2$)
B (integer, 'smoothness bound')

Goal: Find the prime factors p_{1}, \ldots, p_{m}

- First step: Find any non-trivial factor d of n (i.e., $1<\mathrm{d}<\mathrm{n}$).
- If the non-trivial factors are still composite apply the factorization algorithm the these integers.

C. 16 (continued)

$$
r:=\prod_{q \leq B} q^{w} \quad \begin{gathered}
\text { where } \mathrm{q} \text { is prime and } \mathrm{w} \text { the largest } \\
\text { exponent with } \mathrm{q}^{\mathrm{w}} \leq \mathrm{n}
\end{gathered}
$$

Choose a random integer $\mathrm{a} \in\{2, \ldots, \mathrm{n}-1\}$
If $d:=\operatorname{gcd}(a, n)>1$ return d
Compute $a^{r}(\bmod n)$
$\mathrm{d}:=\operatorname{gcd}\left(\mathrm{a}^{r}-1(\bmod \mathrm{n}), \mathrm{n}\right)$
if ($\mathrm{d}=1$) or ($\mathrm{d}=\mathrm{n}$) return 'failure'
else return d

C. 16 (continued)

Note:

If $1<d<n$ then d and (n / d) are non-trivial factors of n.
There exist different variants to construct r. In any case it is a product of many small primes.

C. 17 Justification

- If $\operatorname{gcd}\left(a, p_{j}\right)>1$ a nontrivial factor of n is found. For large n this is very unlikely.
- Assume that p_{j} is a prime factor of n such that all prime factors of $\left(p_{j}-1\right)$ are $\leq B$. Then r is a multiple of $p_{j}-1$. If $\operatorname{gcd}\left(a, p_{j}\right)=1$ Fermat's Little Theorem then implies $a^{r}-1 \equiv 0\left(\bmod p_{j}\right)$, i.e. $a^{r}-1$ is a multiple of p_{j} and hence $d:=\operatorname{gcd}\left(a^{r}-1(\bmod n), n\right) \geq p_{j}$.
- If $d=1$ the algorithm may be run again with a larger smoothness bound B.
- Note that if $p_{i}-1$ divides r for each prime p_{i} then $d=n$. If $d=n$ the algorithm should be run again with a smaller smoothness bound B.

C. 18 Efficiency

- Pollard's p-1 algorithm is much more efficient than trial divisions since one run of the algorithm checks all primes p simultaneously for which all prime factors of $p-1$ are $\leq B$.
- It is yet very likely that $p-1$ itself has at least one prime factor which is non-negligibly large (compared to the size of p). Unless n is relatively small (or $p-1$ falls into unusually small primes) Pollard's p-1 algorithm requires a gigantic smoothness bound B.
- Consequently, for large integers n more efficient factorization algorithms are needed.

C. 18 (continued)

- For 'medium sized’ integers n elliptic curve factorization methods are appropriate.
- For 'large' integers n (e.g., RSA moduli) usually the quadratic sieve or the number field sieve are applied. These algorithms are continuously improved.
- Presently, the number field sieve is the most efficient factorization algorithm.

Note: In 2005 a 667 bit integer (RSA challenge) was factored with the number field sieve.

C. 18 (continued)

Basic idea of sieving algorithms:

- Find integers x and y with $x^{2} \equiv y^{2}(\bmod n)$.
- Justification: This equation is equivalent to
$0 \equiv x^{2}-y^{2} \equiv(x+y)(x-y)(\bmod n)$.
- If $x \neq \pm y(\bmod n)$ then $\operatorname{gcd}(x+y, n)$ gives a nontrivial divisor of n.

C. 19 Discrete Logarithm

- We already know that the computation of $y^{d}(\bmod n)$ is easy even for large integers
- Now consider the inverse problem:

Given the triple ($\mathrm{y}, \mathrm{b}, \mathrm{n}$) find an integer (often, the smallest non-negative integer) with
$\mathrm{y}^{\mathrm{x}} \equiv \mathrm{b}(\bmod \mathrm{n})$
(if there is such a number x !).

C. 19 (continued)

Definition: Let G denote a finite group and $g \in G$. The order of g , denoted by ord (g), equals the smallest exponent r for which $\mathrm{g}^{r}=1$ in G .

Note: The equation $\mathrm{y}^{\mathrm{x}} \equiv \mathrm{b}(\bmod \mathrm{n})$ has a solution for each $b \in Z_{n}{ }^{*}$ if and only if $y \in Z_{n}{ }^{*}$ generates $Z_{n}{ }^{*}$, i.e., if $<\mathrm{y}>:=\left\{\mathrm{y}, \mathrm{y}^{2}(\bmod \mathrm{n}), \ldots, \mathrm{yord}(\mathrm{y})(\bmod \mathrm{n})=1\right\}=\mathrm{Z}_{\mathrm{n}}{ }^{*}$.

C. 20 Definition

In analogy to the real numbers the value x is called the discrete logarithm of b (to base y).
The problem of finding the integer x in the equation $\mathrm{y}^{\mathrm{x}} \equiv \mathrm{b}(\bmod \mathrm{n})$ is called a discrete log problem.

C. 21 Remark

- The discrete log problem can be formulated in any finite group G. Some authors called it the generalized discrete log problem.
- Several public key cryptosystems rely on discrete log problems that are assumed to be practically intractable.
- The hardness of the discrete log problem depends on the group G.

C. 22 Example

- Let G denote the additive group Z_{n}. $\ln Z_{n}$ the discrete \log problem is very easy. In fact, if $\operatorname{gcd}(\mathrm{y}, \mathrm{n})=1$ solving the equation
$\mathrm{y}+\ldots+\mathrm{y}=\mathrm{y} \cdot \mathrm{x} \equiv \mathrm{b}(\bmod \mathrm{n}) \quad$ (additive group!) merely demands the computation of the multiplicative inverse $\mathrm{y}^{-1}(\bmod \mathrm{n})$.
- Let $<\mathrm{y}>=\mathrm{Z}_{\mathrm{p}}{ }^{*}$ for a large prime p (let's say 1024 bit). The discrete log problem
$\mathrm{y}^{\mathrm{x}} \equiv \mathrm{b}(\bmod \mathrm{p})$
in $Z_{p}{ }^{*}$ is practically intractable.

C. 23 Remark

- Over the reals the logarithm function is easy to compute since $\mathrm{x}_{1}<\mathrm{x}_{2}$ implies $\log \left(\mathrm{x}_{1}\right)<\log \left(\mathrm{x}_{2}\right)$.
- This is not true in $Z_{p}{ }^{*}$, for instance.

Example:
For $\mathrm{p}=5$ and $\mathrm{y}=2$ we have $2^{2} \equiv 4>2^{3} \equiv 3(\bmod 5)$.

Note: Simplified speaking, this is the reason for the hardness of the discrete log problem in $Z_{p}{ }^{*}$.

C. 24 Solving the Discrete Log Problem

- For small n one may simply compute $y, y^{2}(\bmod n)$, $y^{3}(\bmod n), \ldots$ until the first term equals b.
- For large n more efficient algorithms are needed.
- We discuss the baby step - giant step algorithm, an elementary algorithm which is applicable in any group G since it does exploit any peculiarities of G.

C. 25 Baby-Step Giant-Step Algorithm

Goal: Given a finite group G, a generator y of G and an element $b \in G$, solve the equation

$$
y^{x}=b \quad\left(e . g ., y^{x} \equiv b(\bmod p) \text { for } G=Z_{p}^{*}\right)
$$

- Let m denote the smallest integer that is
$\geq \sqrt{\operatorname{ord}(y)}=\sqrt{|G|}$
- Then $\mathrm{x}=\mathrm{vm}+\mathrm{w}$ with unknown integers $0 \leq \mathrm{v}, \mathrm{w}<\mathrm{m}$.

Observation: The above equation can simply be transformed into $\left(y^{m}\right)^{v}=b\left(y^{w}\right)^{-1}$

C. 25 (continued)

- For $\mathrm{w}=0,1, \ldots, \mathrm{~m}-1$ compute and store the pairs (w,b(yw ${ }^{-1}$) in a Table T (baby steps).
- Order the entries of T with respect to their second components.
- Compute $\mathrm{r}:=\mathrm{y}^{\mathrm{m}}$
- For $\mathrm{i}=0$ to $\mathrm{m}-1$ do \{
compute r^{i} (giant step) and check whether r^{i} is contained in T
if yes: return $\mathrm{x}:=\mathrm{im}+($ first component of that T-entry)

C. 26 Efficiency

- The baby-step giant-step algorithm needs at most $2^{*}|\mathrm{G}|^{0.5}$ group operations (compared to $0.5^{*}|\mathrm{G}|$ group operations (average value) for exhaustive search). Additionally, the storage and the ordering of $|\mathrm{G}|^{0.5}$ data pairs are necessary.
- Example: For $G=Z_{p}{ }^{*}, p=999983$, the baby-step giant-step algorithm needs the computation of at most 2*1000 modular multiplications modulo p, and the storage and ordering of 1000 data pairs. The exhaustive search needs 500000 modular multiplications in average.

C. 26 Efficiency

- However, large groups G demand gigantic tables. (Example: A 200 bit prime requires 2^{100} table entries.)
- There exist more efficient algorithms to solve the discrete log problem.
- This is yet beyond the scope of this course. We just mention that the index calculus method and a new algorithm that uses the number field sieve are most efficient.
- In 2006 the discrete log problem in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$ for a 448 bit prime p was solved.

C. 27 The Chinese Remainder Theorem (CRT)

Theorem: Let $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{t}}$ denote pairwise relatively prime integers (i.e. $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$) and $n:=n_{1} \ldots n_{t}$.
(i) To any set of congruences

$$
y_{1} \equiv a_{1}\left(\bmod n_{1}\right)
$$

$$
y_{t} \equiv a_{t}\left(\bmod n_{t}\right)
$$

there exists an integer y with $y \equiv a_{j}\left(\bmod n_{j}\right)$ for all $j \leq t$.
(ii) $\ln Z_{n}$ this solution is unique, and any two solutions $y_{[1]}$ and $y_{[2]}$ in Z differ by a multiple of n.

C. 27 (continued)

(iii) There exist integers $\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{t}}$ with the following property:
$N_{i} \equiv 1\left(\bmod n_{i}\right)$ but $N_{i} \equiv 0\left(\bmod n_{j}\right)$ for all $\mathrm{j} \neq \mathrm{i}$.
(iv) $y \equiv a_{1} N_{1}+\ldots+a_{t} N_{t}(\bmod n)$

Proof: see literature

More Details: Blackboard

C. 28 Hash Functions

- Hash functions map bit strings of arbitrary length to bit strings of fixed length m.

Examples:

- MD5 (m=128)
- SHA-1, RIPEMD160 (m=160)
- SHA-2 family ($\mathrm{m} \geq 224$)
- Whirlpool ($\mathrm{m}=512$)

C. 28 (continued)

A hash function H should meet several conditions. In particular:

- (one-way property) Given $h \in\{0,1\}^{m}$ it shall not be practically feasible to find a pre-image x with $H(x)=h$ with non-negligible probability.

Note: Of course, for each $\mathrm{h} \in\{0,1\}^{m}$ infinitely many pre-images should exist. The difficulty is to find them.

C. 28 (continued)

- (second pre-image resistance) Given $\mathrm{H}(\mathrm{x})=\mathrm{h}$ it shall not be practically feasible to find a second preimage $x^{\prime} \neq \mathrm{x}$ with $\mathrm{H}\left(\mathrm{x}^{\prime}\right)=\mathrm{h}$ with non-negligible probability.
- (collision resistance) It shall not be practically feasible to find two values $x \neq y$ with $H(x)=H(y)$ with non-negligible probability.

C. 29 Security

(i) Usually the collision resistance is the condition that is hardest to achieve. (Note that the so-called birthday paradox limits the necessary number of operations to $2^{\mathrm{m} / 2}$.)
(ii) Nearly all known successful attacks on hash functions violate the collision resistance.
(iii)MD5 is no longer collision-resistant. Collisions can be generated within about a minute. The needed number of operations is by far smaller than $2^{128 / 2}=2^{64}$.
(iv)Today no SHA-1 collisions are known. However, the SHA-1 algorithm is doubtlessly not as strong as it was believed some years ago.

C. 30 Fields of Application and Efficiency

- Hash functions are used in different areas of cryptography, e.g. for
w digital signatures (\rightarrow C.b)
w MACs (\rightarrow B.c, C.b (HMAC))
w random number generators $(\rightarrow$ B.e)
W...
- The widespread dedicated hash functions are tailored to 32 bit architectures. Hence they run very fast on computers but are usually slow on smart cards.

