C) Public Key Cryptography
C.a) Fundamentals
C.b) RSA with Applications
C.c) DSA and Diffie Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

C.a) Fundamentals

C.1 Introducing Remark

* Public key cryptosystems are widely spread. They
are used for various purposes, in particular to
ensure secrecy and to provide authenticity and data
Integrity.

* In any case there exist two keys, a secret (private)
key to which only its legitimate owner should have
access to and a public key which is publicly known
(as its name indicates).

* |t shall be practically infeasible to determine the
secret key from the public key although this is
principally possible (with unlimited computational
power).

C.1 (continuation)

* In public key encryption schemes the legitimate
receiver of a message uses his secret key to
decrypt the ciphertext that has been encrypted with
his public key.

* In public key signature schemes the public key is
used to verify signatures that have been generated
with the secret key.

* The security of a public key cryptosystem usually
depends on a number theoretic problem that is
assumed to be practically infeasible (e.g., the
factorization of large numbers ® RSA, Section C.b).

C.2 Remark

* Many proposals for public key cryptosystems have
turned out to be insecure (e.g. knapsack
cryptosystems).

* Before we consider concrete examples of public

key cryptosystems we provide fundamental facts
that will be needed In the later sections.

C.3 Definition

The Euler phi function (Euler totient function) Is
defined by

i:N® N, jn)=|{k£En:gedkn=1},

l.e. It assigns n the number of coprime positive
Integers that are £ n.

Example: | (1) =1, (6) =2,] (101) = 100

C.4 Some Useful Facts

()] (p) = p-1 for p prime
(i)] (p5) = (p-1) pst forpprimeands3 1
(i) | (ab)=] (a)] (b) for any coprime a,b

(iv) Assume that n = p,5-1p,5-? ... p,>-™ where p, ...,
P, are different primes and s,...,S,, * 1. By (i) and
(il) we have
J (M=] (P> (Pr>-T)

= (P1-1) P> (P 1)Py S

Detalls: Blackboard + Exercises

C.5 Remark

* If the factorization of n is known the computation of
j (n) is easy even for large n.

Note: If the factorization of n is unknown the
computation of | (n) may become practically
Infeasible for large n.

9
C.6 Square & Multiply Exponentiation Algorithm

* A typical task in public key cryptography is the
computation of yd (mod n) for large integersy, d, n.

* The ‘natural’ attempt, namely to compute y¢ first and
then to compute its remainder modulo n is not
practically feasible because the intermediate value

ydis gigantic. For typical RSA parameters that are
used today y9 had up to about 10310 decimal digits.

* Instead, a modular exponentiation algorithm has to

ne applied that processes the exponent in small
nortions.

C.6 (continued)

10

‘computes y ® yd4(modn) withd=(d,.,...,dg), ‘

temp =y

for i=w-2 down to O do {
temp = temp? (mod n)
If (d, = 1) then temp :=temp *y (mod n)
}

return temp (= y9(mod n))

C.7 Remark

11

* The square & multiply exponentiation algorithm
(s&m) Is the most elementary modular

exponentiation algorithm.

* To compute y9 (mod n) the s&m
» log,(d) modular squarings and
modular multiplications with the
a secret RSA key then d Is usua
order of magnitude as the modu

algorithm requires
about 0.5*log,(d)
pasis y. If d denotes
ly In the same

us n.

* At cost of additional memory the number of
multiplications can be reduced by applying a table-
based modular exponentiation algorithm (cf.
“Handbook of Applied Cryptography”, for instance).

C.8 Fermat’s Little Theorem

12

Theorem:
Let p denote a prime. Then

aP1% 1 (modp) if ged(a,p)=1.

13
C.9 Remark

* Fermat’s formula usually fails for composite moduli.

Counterexample:
1414 ° 1 (mod 15) but
2140 4 (mod 15)

* Euler's Theorem (next slide) generalizes Fermat's
Little Theorem.

C.10 Euler’s Theorem

14

Theorem:
For any positive integer n

a (M ©° 1 (modn)

If gcd(a,n)=1.

C.11 Primality Testing

15

Task: Verify whether an integer is prime

Straight-forward approach (trial division):
Divide n by all primes £ /n.

* The straight-forward approach is appropriate for
small n but practically infeasible for large n. (It
costs too much time.)

* |n practice, probabilistic primality tests are applied.

* Fermat’s little Theorem suggests the following
orimality test (next slide).

C.12 Fermat’s Primality Test

16

Goal: verify whether n is prime
Input: n (odd integer), t (security parameter)

flag:=0; I1=1;

while ((i £ t) && (flag=0)) do {
choose a random integer a | {2,...,n-2};
if a19 1 (mod n) then flag:=1;

}

If (flag=1) return ‘n iIs composite’

else return ‘n is (probably) prime’.

17
C.12 (continued)

If gcd(a,n)=1 and a™! ¢ 1 (mod n) then n cannot be a
prime, l.e. it iIs composite.

Evenifa™ © 1 (mod n) for all t trials n need not
necessarily be a prime! (Recall that 1414 ° 1 (mod
15), for instance, although 15 is not prime.)

Therefore Fermat’'s and other primality tests are
called ‘probabilistic’.

Alternatively, before exponentiation it may be
checked whether gcd(a,n)>1, which proved
compositeness without exponentiation. This has little
practical meaning since it is very unlikely to find such
Integers by chance.

18
C.13 Definition

* Foral {1,....n-1}let a™ 9 1 (mod n). Then a is
called a witness (to compositeness) for n.

* |fniscomposite and al {1,...,n-1} fulfils
a1 9% 1 (mod n) then a is called a Fermat liar for n,
and n is called a pseudoprime to the base a.

Example (cf. C.9):
(1) 2is a witness for 15.

(11) 14 is a Fermat liar for 15, and 15 is a pseudoprime
to the base 14.

19
C.14 Efficiency

* Assume that n iIs composite

Fact: If there exists one integeral Z *withan19 1
(mod n) then there are at least (n / 2) many
Integers in {1,...,n-1} with this property.

Consequence: In this case the probability that n is
erroneously assumed to be prime (since n passes
all t trials of Fermat’s primality test) is £0.5 ¢

For t=40, for instance, the right-hand-side » 10-12,

C.14 (continued)

20

Attention: There exist composite integers n with
a™© 1 (mod n) for all coprime a (i.e. for all a
| Z.%).

Such integers are called Carmichael numbers.

Consequence: For Carmichael numbers Fermat’'s
primality test only outputs ‘'n is composite’ if
gcd(a,n)>1. It is yet very unlikely to find such a
base a by chance.

Note: Although there exist infinitely many
Carmichael numbers they are relatively rare.

Detalls: Blackboard + Exercises

21
C.14 (continued)

Note: There exist other probabilistic primality tests
that are more efficient than Fermat’s primality test.
In practice, usually the Miller-Rabin primality test
(® Exercises) Is applied.

C.15 Factoring Large Integers

22

Goal: Factorize a composite integer n

Straight-forward approach (trial division):
Divide n successively by the primes £+/n)

* The straight-forward approach is appropriate for
small n but practically infeasible for large n.

* For large n more efficient factorization algorithms
are needed.

* Fermat’s little Theorem suggests the following
factorization algorithm.

23
C.16 Pollard’s p-1 method

|Input:
n (odd integer with unknown factorization p;p....p,,

where p4,...,p,, denote distinct primes; RSA: m=2)
B (integer, ‘'smoothness bound’)

Goal: Find the prime factors p,...,p,,

* First step: Find any non-trivial factor d of n (i.e.,
1<d<n).

* If the non-trivial factors are still composite apply
the factorization algorithm the these integers.

C.16 (continued)

24

r=04q" where g Is prime and w the largest
GEB exponent with g% £ n

Choose a random integer al {2,...,n-1}
If d:=gcd(a,n)>1 return d

Compute a" (mod n)

d:= gcd(a" -1 (mod n),n)

If (d=1) or (d=n) return “failure’

else return d

25
C.16 (continued)

Note:
If 1 <d < nthend and (n/d) are non-trivial factors of n.

There exist different variants to construct r. In any case
It Is a product of many small primes.

26
C.17 Justification

If gcd(a, p)>1 a nontrivial factor of n is found. For
large n this is very unlikely.

Assume that p; is a prime factor of n such that all
prime factors of (p-1) are £ B. Then r is a multiple
of p;-1. If gcd(a,p;)=1 Fermat's Little Theorem then
implies a"—1° 0 (mod p)), I.e. @" -1 is a multiple of
p; and hence d:=gcd(a" —1(mod n),n)® p; .

If d=1 the algorithm may be run again with a larger
smoothness bound B.

Note that if p, —1 divides r for each prime p, then
d=n. If d=n the algorithm should be run again with
a smaller smoothness bound B.

27
C.18 Efficiency

* Pollard’s p-1 algorithm is much more efficient than
trial divisions since one run of the algorithm checks
all primes p simultaneously for which all prime
factors of p-1 are £ B.

* Itis yet very likely that p-1 itself has at least one
prime factor which is non-negligibly large (compared
to the size of p). Unless n is relatively small (or p-1
falls into unusually small primes) Pollard’s p-1
algorithm requires a gigantic smoothness bound B.

* Conseguently, for large integers n more efficient
factorization algorithms are needed.

28
C.18 (continued)

* For ‘'medium sized’ integers n elliptic curve
factorization methods are appropriate.

* For ‘large’ integers n (e.g., RSA moduli) usually the
guadratic sieve or the number field sieve are
applied. These algorithms are continuously
Improved.

* Presently, the number field sieve Is the most
efficient factorization algorithm.

Note: In 2005 a 667 bit integer (RSA challenge) was
factored with the number field sieve.

C.18 (continued)

29

Basic idea of sieving algorithms:

* Find integers x and y with x2° y2 (mod n).

* Justification: This equation is equivalent to
0° x2-y29 (x+y)(x-y) (mod n).

°* Ifx9 £y (mod n) then gcd(x+y,n) gives a non-
trivial divisor of n.

C.19 Discrete Logarithm

30

* We already know that the computation of
yd (mod n) is easy even for large integers

* Now consider the inverse problem:

Given the triple (y,b,n) find an integer (often, the
smallest non-negative integer) with

yX©° b (mod n)
(if there Is such a number x!).

31
C.19 (continued)

Definition: Let G denote a finite group and gl G. The

order of g, denoted by ord(g), equals the smallest
exponent r for which g" =1 in G.

Note: The equation y*° b (mod n) has a solution for
each bl Z *ifand only ify I Z.,* generates Z %, i.e.,
if <y>:={y,y? (mod n),...,y°rd®(mod n)=1} = Z *.

C.20 Definition

32

In analogy to the real numbers the value x is called
the discrete logarithm of b (to base vy).

The problem of finding the integer x in the equation
y*° b (mod n) Is called a discrete log problem.

33
C.21 Remark

* The discrete log problem can be formulated in any
finite group G. Some authors called it the
generalized discrete log problem.

* Several public key cryptosystems rely on discrete

log problems that are assumed to be practically
Intractable.

* The hardness of the discrete log problem depends
on the group G.

34
C.22 Example

* Let G denote the additive group Z,.. In Z_ the discrete
log problem Is very easy. In fact, if gcd(y,n)=1
solving the equation

y+...+4y =y xx % b (mod n) (additive group!)
merely demands the computation of the
multiplicative inverse y -1(mod n).

* Let<y>=Z *1or a large prime p (let's say 1024 bit).
The discrete log problem
y*° b (mod p)
In Z,* Is practically intractable.

35
C.23 Remark

* QOver the reals the logarithm function is easy to
compute since x,; < X, Implies log(x,) < log(x,).

* Thisis not true in Z,*, for instance.

Example:

For p=5 and y=2 we have 22° 4 > 23° 3 (mod 5).

Note: Simplified speaking, this is the reason for the
hardness of the discrete log problem in Z,*.

36
C.24 Solving the Discrete Log Problem

* For small n one may simply compute vy, y2 (mod n),
y3 (mod n), ... until the first term equals b.

* For large n more efficient algorithms are needed.

* We discuss the baby step — giant step algorithm, an
elementary algorithm which is applicable in any
group G since it does exploit any peculiarities of G.

37
C.25 Baby-Step Giant-Step Algorithm

Goal: Given a finite group G, a generator y of G and
an element bl G, solve the equation

y*=Dh (e.9., y*° b (mod p) for G = Z¥)
* Let m denote the smallest integer that is

3 Jord(y) =|G|

°* Then x = vm+w with unknown integers O £ v,w < m.

Observation: The above equation can simply be
transformed into (y™)V = b(y")

38
C.25 (continued)

Forw =0,1,...,m-1 compute and store the pairs
(w,b(y")1) in a Table T (baby steps).

Order the entries of T with respect to their second
components.

Compute r:=ym

For 1=0 to m-1 do {

compute r' (giant step) and check whether r' is contained
inT
If yes: return x:=im+(first component of that T-entry)

39
C.26 Efficiency

* The baby-step giant-step algorithm needs at most
2*|G|°-> group operations (compared to 0.5*|G|
group operations (average value) for exhaustive
search). Additionally, the storage and the ordering
of |G|%> data pairs are necessary.

* Example: For G =Z;* p =999983, the baby-step
glant-step algorithm needs the computation of at
most 2*1000 modular multiplications modulo p, and
the storage and ordering of 1000 data pairs. The
exhaustive search needs 500000 modular
multiplications in average.

40
C.26 Efficiency

However, large groups G demand gigantic tables.
(Example: A 200 bit prime requires 2199 table
entries.)

There exist more efficient algorithms to solve the
discrete log problem.

This is yet beyond the scope of this course. We just
mention that the index calculus method and a new
algorithm that uses the number field sieve are most
efficient.

In 2006 the discrete log problem in Z* for a 448 bit
prime p was solved.

41
C.27 The Chinese Remainder Theorem (CRT)

Theorem: Let n4,...,n, denote pairwise relatively prime
integers (i.e. gcd(n;,n) = 1forit J)and ni=n,...n,.

(1) To any set of congruences
y, ° a, (mod ny)

y:° & (mod n,)
there exists an integer y with y © a;(mod n)) for all] £1.

(i) In Z,, this solution Is unique, and any two solutions
Vi and Yi2) In Z differ by a multiple of n.

C.27 (continued)

42

(i) There exist integers Ny,...,N; with the following
property:
N; °© 1 (mod n;) but N;° 0 (mod n) forall J* i.
(Iv)y °® a; N, +...+ a,N; (mod n)

Proof: see literature

More Detalls: Blackboard

43
C.28 Hash Functions

* Hash functions map bit strings of arbitrary length to
bit strings of fixed length m.

Examples:

* MD5 (m=128)

* SHA-1, RIPEMD160 (m=160)
* SHA-2 family (m 3 224)

* Whirlpool (m=512)

C.28 (continued)

A hash function H should meet several conditions. In
particular:

* (one-way property) Given hl {0,1}™ it shall not be
practically feasible to find a pre-image x with H(x)=h
with non-negligible probability.

Note: Of course, for each h T {0,1}™ infinitely many
pre-images should exist. The difficulty is to find
them.

45
C.28 (continued)

* (second pre-image resistance) Given H(x)=h it shall
not be practically feasible to find a second pre-
Image x't x with H(x")=h with non-negligible
probabillity.

* (collision resistance) It shall not be practically
feasible to find two values x * y with H(X)=H(y) with
non-negligible probabillity.

46
C.29 Security

(1) Usually the collision resistance is the condition
that is hardest to achieve. (Note that the so-called
birthday paradox limits the necessary number of
operations to 2M2))

(11) Nearly all known successful attacks on hash
functions violate the collision resistance.

(I)MD5 is no longer collision-resistant. Collisions can
be generated within about a minute. The needed

number of operations Is by far smaller than
2128/2=064

(IV)Today no SHA-1 collisions are known. However,
the SHA-1 algorithm is doubtlessly not as strong
as it was believed some years ago.

47
C.30 Fields of Application and Efficiency

* Hash functions are used In different areas of
cryptography, e.g. for
w digital signatures (® C.b)
w MACs (® B.c, C.b (HMAQ))
w random number generators (® B.e)
w...

* The widespread dedicated hash functions are
tailored to 32 bit architectures. Hence they run very
fast on computers but are usually slow on smart
cards.

