
1

C) Public Key Cryptography
C.a) Fundamentals
C.b) RSA with Applications
C.c) DSA and Diffie Hellman

W. Schindler: Cryptography, B-IT, winter 2006 / 2007



2

C.a) Fundamentals



3
C.1  Introducing Remark

• Public key cryptosystems are widely spread. They 
are used for various purposes, in particular to 
ensure secrecy and to provide authenticity and data 
integrity.

• In any case there exist two keys, a secret (private) 
key to which only its legitimate owner should have 
access to and a public key which is publicly known 
(as its name indicates).

• It shall be practically infeasible to determine the 
secret key from the public key although this is 
principally possible (with unlimited computational 
power).



4
C.1  (continuation)

• In public key encryption schemes the legitimate 
receiver of a message uses his secret key to 
decrypt the ciphertext that has been encrypted with 
his public key.

• In public key signature schemes the public key is 
used to verify signatures that have been generated 
with the secret key.

• The security of a public key cryptosystem usually 
depends on a number theoretic problem that is 
assumed to be practically infeasible (e.g., the 
factorization of large numbers → RSA, Section C.b).



5
C.2  Remark

• Many proposals for public key cryptosystems have 
turned out to be insecure (e.g. knapsack 
cryptosystems). 

• Before we consider concrete examples of public 
key cryptosystems we provide fundamental facts 
that will be needed in the later sections.



6
C.3  Definition

The Euler phi function (Euler totient function) is 
defined by 

ϕ: N → N,   ϕ(n):= |{ k ≤ n : gcd(k,n)=1 }|,

i.e. it assigns n the number of coprime positive 
integers that are ≤ n.

Example: ϕ(1) = 1, ϕ(6) = 2, ϕ(101) = 100



7
C.4  Some Useful Facts

(i) ϕ(p) = p-1               for p prime
(ii) ϕ(ps) = (p-1) ps-1     for p prime and s ≥ 1
(iii) ϕ(ab)= ϕ(a)ϕ(b)    for any coprime a,b

(iv) Assume that n = p1
s_1p2

s_2 … pm
s_m where p1, … ,   

pm are different primes and s1,… ,sm ≥ 1. By (ii) and 
(iii) we have
ϕ(n)= ϕ(p1

s_1)… ϕ(pm
s_m) 

= (p1-1) p1
s_1-1… (pm-1)pm

s_m-1

Details: Blackboard + Exercises



8
C.5  Remark

• If the factorization of n is known the computation of 
ϕ(n) is easy even for large n.

Note: If the factorization of n is unknown the 
computation of ϕ(n) may become practically 
infeasible for large n.



9
C.6  Square & Multiply Exponentiation Algorithm

• A typical task in public key cryptography is the 
computation of yd (mod n) for large integers y, d, n. 

• The ‘natural’attempt, namely to compute yd  first and 
then to compute its remainder modulo n is not 
practically feasible because the intermediate value 
yd is gigantic. For typical RSA parameters that are 
used today yd had up to about 10310 decimal digits.

• Instead, a modular exponentiation algorithm has to 
be applied that processes the exponent in small 
portions. 



10

temp := y

temp := temp2 (mod n)

for i=w-2 down to 0 do {

}

if (di = 1) then  temp := temp * y (mod n)    

computes  y  → yd (mod n)  with d = (dw-1,… ,d0)2 

return temp   (= yd (mod n) )

C.6  (continued)



11
C.7  Remark

• The square & multiply exponentiation algorithm 
(s&m) is the most elementary modular 
exponentiation algorithm.

• To compute yd (mod n) the s&m algorithm requires 
≈ log2(d) modular squarings and about 0.5*log2(d) 
modular multiplications with the basis y. If d denotes 
a secret RSA key then d is usually in the same 
order of magnitude as the modulus n.

• At cost of additional memory the number of 
multiplications can be reduced by applying a table-
based modular exponentiation algorithm (cf. 
“Handbook of Applied Cryptography”, for instance).



12
C.8  Fermat’s Little Theorem

Theorem:
Let p denote a prime. Then

ap-1 ≡ 1 (mod p)     if  gcd(a,p)=1.



13
C.9 Remark

• Fermat’s formula usually fails for composite moduli.

Counterexample:
1414 ≡ 1 (mod 15) but 

214 ≡ 4 (mod 15) 

• Euler’s Theorem (next slide) generalizes Fermat’s 
Little Theorem.



14
C.10  Euler’s Theorem

Theorem:
For any positive integer n

aϕ(n) ≡ 1 (mod n)                if  gcd(a,n)=1.



15
C.11 Primality Testing

Task: Verify whether an integer is prime 

Straight-forward approach (trial division):
Divide n by all primes ≤ .

• The straight-forward approach is appropriate for 
small n but practically infeasible for large n. (It 
costs too much time.)

• In practice, probabilistic primality tests are applied. 
• Fermat’s little Theorem suggests the following 

primality test (next slide). 

n



16
C.12  Fermat’s Primality Test

Goal: verify whether n is prime
Input: n (odd integer), t (security parameter)

flag:=0; i=1;
while ((i ≤ t) && (flag=0)) do { 

choose a random integer a ∈ {2,… ,n-2};
if  an-1 ≡ 1 (mod n) then flag:=1;

}
if (flag=1) return ‘n is composite’
else return ‘n is (probably) prime’.

/



17
C.12  (continued)

• If gcd(a,n)=1 and an-1 ≡ 1 (mod n) then n cannot be a 
prime, I.e. it is composite. 

• Even if an-1 ≡ 1 (mod n) for all t trials n need not 
necessarily be a prime! (Recall that 1414 ≡ 1 (mod 
15), for instance, although 15 is not prime.) 

• Therefore Fermat’s and other primality tests are 
called ‘probabilistic’.

• Alternatively, before exponentiation it may be 
checked whether gcd(a,n)>1, which proved 
compositeness without exponentiation. This has little 
practical meaning since it is very unlikely to find such 
integers by chance.

/



18

• For a ∈ {1,… ,n-1} let  an-1 ≡ 1 (mod n). Then a is 
called a witness (to compositeness) for n.

• If n is composite and a ∈ {1,… ,n-1} fulfils               
an-1 ≡ 1 (mod n) then a is called a Fermat liar for n, 
and n is called a pseudoprime to the base a.

Example (cf. C.9): 
(i) 2 is a witness for 15.
(ii) 14 is a Fermat liar for 15, and 15 is a pseudoprime 

to the base 14. 

C.13  Definition

/



19
C.14  Efficiency

• Assume that n is composite
Fact: If there exists one integer a ∈ Zn* with an-1 ≡ 1 

(mod n) then there are at least (n / 2) many 
integers in {1,… ,n-1} with this property.

Consequence: In this case the probability that n is 
erroneously assumed to be prime (since n passes 
all  t  trials of Fermat’s primality test) is  ≤ 0.5 t. 
For t=40, for instance, the right-hand-side ≈ 10-12.

/



20
C.14  (continued)

Attention: There exist composite integers n with                  
an-1 ≡ 1 (mod n) for all coprime a (i.e. for all a 
∈Zn*). 

Such integers are called Carmichael numbers. 
Consequence: For Carmichael numbers Fermat’s

primality test only outputs ‘n is composite’if 
gcd(a,n)>1. It is yet very unlikely to find such a 
base a by chance. 

Note: Although there exist infinitely many 
Carmichael numbers they are relatively rare.

Details: Blackboard + Exercises



21
C.14  (continued)

Note: There exist other probabilistic primality tests 
that are more efficient than Fermat’s primality test. 
In practice, usually the Miller-Rabin primality test 
(→ Exercises) is applied.



22
C.15 Factoring Large Integers

Goal: Factorize a composite integer n

Straight-forward approach (trial division):
Divide n successively by the primes ≤ .)

• The straight-forward approach is appropriate for 
small n but practically infeasible for large n. 

• For large n more efficient factorization algorithms 
are needed.

• Fermat’s little Theorem suggests the following 
factorization algorithm.

n



23
C.16  Pollard’s p-1 method

Input:
n (odd integer with unknown factorization p1p2… pm   

where p1,… ,pm denote distinct primes; RSA: m=2)
B (integer, ‘smoothness bound’)

Goal: Find the prime factors p1,… ,pm

• First step: Find any non-trivial factor d of n (i.e., 
1<d<n).

• If the non-trivial factors are still composite apply 
the factorization algorithm the these integers. 



24

where q is prime and w the largest 
exponent with qw ≤ n 

Choose a random integer a∈{2,… ,n-1}
If d:=gcd(a,n)>1 return d
Compute ar (mod n)
d:= gcd(ar –1 (mod n),n)
if (d=1) or (d=n) return ‘failure’
else return d

C.16  (continued)

∏
≤

=
Bq

wqr :



25

Note:
If 1 < d < n then d and (n/d) are non-trivial factors of n. 
There exist different variants to construct r. In any case 

it is a product of many small primes.

C.16  (continued)



26
C.17  Justification

• If gcd(a, pj)>1 a nontrivial factor of n is found. For 
large n this is very unlikely.

• Assume that pj is a prime factor of n such that all 
prime factors of (pj-1) are ≤ B. Then r is a multiple 
of pj-1. If gcd(a,pj)=1 Fermat’s Little Theorem then 
implies  ar –1 ≡ 0 (mod pj), i.e. ar –1 is a multiple of 
pj and hence d:=gcd(ar –1(mod n),n)≥ pj .

• If d=1 the algorithm may be run again with a larger 
smoothness bound B.

• Note that if pi –1 divides r for each prime pi then 
d=n. If d=n the algorithm should be run again with 
a smaller smoothness bound B.



27
C.18  Efficiency

• Pollard’s p-1 algorithm is much more efficient than 
trial divisions since one run of the algorithm checks 
all primes p simultaneously for which all prime 
factors of p-1 are ≤ B.

• It is yet very likely that p-1 itself has at least one 
prime factor which is non-negligibly large (compared 
to the size of p). Unless n is relatively small (or p-1 
falls into unusually small primes) Pollard’s p-1 
algorithm requires a gigantic smoothness bound B. 

• Consequently, for large integers n more efficient 
factorization algorithms are needed.



28
C.18  (continued)

• For ‘medium sized’integers n elliptic curve 
factorization methods are appropriate. 

• For ‘large’integers n (e.g., RSA moduli) usually the 
quadratic sieve or the number field sieve are 
applied. These algorithms are continuously 
improved.

• Presently, the number field sieve is the most 
efficient factorization algorithm.

Note: In 2005 a 667 bit integer (RSA challenge) was 
factored with the number field sieve. 



29
C.18  (continued)

Basic idea of sieving algorithms:
• Find integers x and y with x2 ≡ y2 (mod n).
• Justification: This equation is equivalent to   

0 ≡ x2 - y2 ≡ (x+y)(x-y) (mod n).
• If x ≡ ± y (mod n) then gcd(x+y,n) gives a non-

trivial divisor of n.
/



30
C.19  Discrete Logarithm

• We already know that the computation of            
yd (mod n) is easy even for large integers 

• Now consider the inverse problem: 
Given the triple (y,b,n) find an integer (often, the 
smallest non-negative integer) with 
yx ≡ b (mod n)
(if there is such a number x!). 



31
C.19  (continued)

Definition: Let G denote a finite group and g∈G. The 
order of g, denoted by ord(g), equals the smallest 
exponent r for which gr =1 in G.

Note: The equation yx ≡ b (mod n) has a solution for 
each b∈Zn* if and only if y ∈ Zn* generates Zn*, i.e., 
if <y> := {y,y2 (mod n),… ,yord(y)(mod n)=1} = Zn* .



32
C.20  Definition

In analogy to the real numbers the value x is called 
the discrete logarithm of b (to base y). 

The problem of finding the integer x in the equation 
yx ≡ b (mod n) is called a discrete log problem.



33
C.21  Remark

• The discrete log problem can be formulated in any 
finite group G. Some authors called it the 
generalized discrete log problem.

• Several public key cryptosystems rely on discrete 
log problems that are assumed to be practically 
intractable. 

• The hardness of the discrete log problem depends 
on the group G.



34
C.22  Example

• Let G denote the additive group Zn. In Zn the discrete 
log problem is very easy. In fact, if gcd(y,n)=1  
solving the equation
y+… +y = y ⋅ x ≡ b (mod n)    (additive group!)
merely demands the computation of the 
multiplicative inverse y -1(mod n).

• Let <y> = Zp* for a large prime p (let’s say 1024 bit). 
The discrete log problem
yx ≡ b (mod p) 
in Zp* is practically intractable.



35
C.23  Remark

• Over the reals the logarithm function is easy to 
compute since x1 < x2 implies log(x1) < log(x2).

• This is not true in Zp*, for instance. 
Example:
For p=5 and y=2 we have 22 ≡ 4 > 23 ≡ 3 (mod 5). 

Note: Simplified speaking, this is the reason for the 
hardness of the discrete log problem in Zp*. 



36
C.24  Solving the Discrete Log Problem

• For small n one may simply compute y, y2 (mod n), 
y3 (mod n), … until the first term equals b. 

• For large n more efficient algorithms are needed. 
• We discuss the baby step – giant step algorithm, an 

elementary algorithm which is applicable in any 
group G since it does exploit any peculiarities of G.



37
C.25  Baby-Step Giant-Step Algorithm

Goal: Given a finite group G, a generator y of G and 
an element b∈G, solve the equation
yx = b          (e.g., yx ≡ b (mod p) for G = Zp*)

• Let m denote the smallest integer that is

||)( Gyord =≥

• Then x = vm+w with unknown integers 0 ≤ v,w < m.

Observation: The above equation can simply be 
transformed into (ym )v = b(yw )-1



38
C.25  (continued)

• For w  = 0,1,… ,m-1 compute and store the pairs 
(w,b(yw )-1) in a Table T (baby steps).

• Order the entries of T with respect to their second 
components.

• Compute r:=ym

• For i=0 to m-1 do {
compute ri (giant step) and check whether ri is contained 
in T
if yes: return x:=im+(first component of that T-entry)

}



39
C.26  Efficiency

• The baby-step giant-step algorithm needs at most  
2*|G|0.5 group operations (compared to 0.5*|G| 
group operations (average value) for exhaustive 
search). Additionally, the storage and the ordering 
of |G|0.5 data pairs are necessary. 

• Example: For G = Zp*, p = 999983, the baby-step  
giant-step algorithm needs the computation of at 
most 2*1000 modular multiplications modulo p, and 
the storage and ordering of 1000 data pairs. The 
exhaustive search needs 500000 modular 
multiplications in average.



40
C.26  Efficiency

• However, large groups G demand gigantic tables. 
(Example: A 200 bit prime requires 2100 table 
entries.)

• There exist more efficient algorithms to solve the 
discrete log problem. 

• This is yet beyond the scope of this course. We just 
mention that the index calculus method and a new 
algorithm that uses the number field sieve are most 
efficient.

• In 2006 the discrete log problem in Zp* for a 448 bit 
prime p was solved.



41
C.27  The Chinese Remainder Theorem (CRT)

Theorem: Let n1,… ,nt denote pairwise relatively prime 
integers (i.e. gcd(ni,nj) = 1 for i ≠ j) and n:=n1… nt.

(i) To any set of congruences 
y1 ≡ a1 (mod n1) 

…
yt ≡ at (mod nt)

there exists an integer y with y ≡ aj (mod nj) for all j ≤ t.
(ii) In Zn this solution is unique, and any two solutions 

y[1] and y[2] in Z differ by a multiple of n.



42
C.27  (continued)

(iii) There exist integers N1,… ,Nt with the following 
property:  
Ni ≡ 1 (mod ni) but Ni ≡ 0 (mod nj) for all j ≠ i. 

(iv) y ≡ a1 N1 +… + at Nt (mod n)

Proof: see literature

More Details: Blackboard



43
C.28  Hash Functions

• Hash functions map bit strings of arbitrary length to 
bit strings of fixed length m.

Examples:
• MD5 (m=128) 
• SHA-1, RIPEMD160 (m=160) 
• SHA-2 family (m ≥ 224) 
• Whirlpool (m=512) 
• …



44
C.28  (continued)

A hash function H should meet several conditions. In 
particular:

• (one-way property) Given h∈{0,1}m it shall not be 
practically feasible to find a pre-image x with H(x)=h 
with non-negligible probability. 

Note: Of course, for each h ∈{0,1}m infinitely many 
pre-images should exist. The difficulty is to find 
them.



45
C.28  (continued)

• (second pre-image resistance) Given H(x)=h it shall 
not be practically feasible to find a second pre-
image x’≠x with H(x’)=h with non-negligible 
probability. 

• (collision resistance) It shall not be practically 
feasible to find two values x ≠ y with H(x)=H(y) with 
non-negligible probability.



46
C.29  Security

(i) Usually the collision resistance is the condition 
that is hardest to achieve. (Note that the so-called 
birthday paradox limits the necessary number of 
operations to 2m/2.) 

(ii) Nearly all known successful attacks on hash 
functions violate the collision resistance.

(iii)MD5 is no longer collision-resistant. Collisions can 
be generated within about a minute. The needed 
number of operations is by far smaller than 
2128/2=264.

(iv)Today no SHA-1 collisions are known. However, 
the SHA-1 algorithm is doubtlessly not as strong 
as it was believed some years ago.



47
C.30  Fields of Application and Efficiency

• Hash functions are used in different areas of 
cryptography, e.g. for 
w digital signatures (→ C.b)
w MACs (→ B.c, C.b (HMAC))
w random number generators (→ B.e)
w …

• The widespread dedicated hash functions are 
tailored to 32 bit architectures. Hence they run very 
fast on computers but are usually slow on smart 
cards.


