
1

B.d) AES

W. Schindler: Cryptography, B-IT, winter 2006 / 2007

2
B.96 AES (Advanced Encryption Standard)

AES is a symmetric block cipher with
• plaintext space P = ciphertext space C = {0,1}128

• key space
w K = {0,1}128 (usual case) or
w K = {0,1}192 or
w K = {0,1}256

• Depending on the size of K the AES is a round-
based block cipher with (cf. B.99)
w 10 rounds or
w 12 rounds or
w 14 rounds

• AES is not a Feistel cipher.

3
B.97 AES (History)

• In 1997 NIST (National Institute for Standards and
Technology) initiated a competition to find a
successor of DES.

• Requirements
w Security, especially resistance against linear and

differential attacks
w Efficiency (hardware and software implementations)
w Scalability
w Royalty freeness

4
B.97 AES (History)

• 1st Round (1998):
w 15 algorithms were submitted
w main aspect: security
w 5 algorithms “survived” the first round

• 2nd Round
w Main aspect: Efficiency on various platforms

• Winner of the competition: Rijndael (designers: V.
Rijmen, J. Daemen,)

5
B.98 Remark

Note: Cryptanalysts from all over the world
analyzed the submitted AES candidates. Security
and implementation aspects were discussed on
many crypto conferences.

6
B.99 Scalability

• The AES consists of Nr rounds and uses a 32*Nk
bit key

• Admissible pairs: (Nr, Nk) =
w (10,4) (usual case)
w (12,6)
w (14,8)

Note: Rijndael additionally considered the cases P =
C = {0,1}192 and P = C = {0,1}256. These options
have not been standardized.

7
B.100 State Space

• plaintext block: (s00,s10,s20,s30,s01,s11,… , s33) ∈
({0,1}8)16 ≅ {0,1}128 . (The sij denote bytes.)

• The plaintext block is transformed into the state
state

s00 s01 s02 s03

s10 s11 s12 s13

s20 s21 s22 s23

s30 s31 s32 s33

8
B.100 (continued)

• The plaintext bytes fill the state array, column by
column (direction: top - down), beginning with the
leftmost column.

• After encryption the (final) state is transformed into
a ciphertext block.

Decryption: ciphertext block → state → plaintext block

9

plaintext block (128 bit = 16 Byte) → state
AddRoundKey(state,RoundKey_0*) [[* non-standard

notation]]
For i =1 to Nr-1 do {

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, RoundKey_i*)

}
SubBytes(state)
ShiftRows(state) final round
AddRoundKey(state, RoundKey_Nr*)
state → ciphertext block

B.101 AES (coarse structure)

10
B.102 Remark

(i) The AES cipher consists of four ‘basic’
transformations. These transformations operate
on the state.

(ii) The final round is different from the others. (The
MixColumns(.) operation is missing.)

(iii) AES is a byte-oriented cipher. Each state byte sij is
interpreted as an element in the finite field GF(28)

11
B.103 A Reminder: Finite Fields

• For any integer n>1 Zn :={0,… ,n-1} is a ring
(equipped with the addition and multiplication
modulo n).

• In general Zn is not a field.
• Example: 2 ∈ Z4 has no multiplicative inverse

modulo 4.
• If p is prime Zp ={0,1,… ,p-1} is a field.
• Example: Z2, Z17, Z101 are fields.

Note: The definition of a group, a ring and a field can
be found in any elementary algebra book.

12
B.103 (continued)

Fact:
(i) To any prime p and any positive integer k there
exists a finite field with pk elements.
(ii) All fields with pk elements are isomorphic.
(iii) Any finite field contains p’k’elements where p’
is a prime and k’a positive integer.

Notation: In the following GF(pk) stands for a finite
field with pk elements. For p prime we alternatively
use the notations Zp and GF(p).

13
B.103 (continued)

• GF(2)[X] denotes the ring of polynomials over
GF(2).

• Example: X4+1, X2+X ∈ GF(2)[X]
• A polynomial p(X) with deg(p(X)) ≥ 1 is called

irreducible in GF(2)[X] if it cannot be expressed as
a product of two non-constant polynomials.

Example:
(i) X2+X = X (X + 1) is not irreducible in GF(2)[X]
(ii) X2+X+1 is irreducible in GF(2)[X]

14
B.103 (continued)

• The AES cipher considers the polynomial
m(X) := X8 + X4 + X3 + X + 1 ∈ GF(2)[X]
This polynomial is irreducible in GF(2)[X].

• < m(X) > := { p(X)m(X)| p(X) ∈ GF(2)[X] }
• Fact: The factor ring GF(2)[X] / < m(X) > is a field.

More precisely, it is (isomorphic to) GF(28). That is,
GF(28) ≅ { p(X) + < m(X) > | p(X) ∈ GF(2)[X] }.

15
B.103 (continued)

Reminder: For concrete computations modulo n we
use the set of representatives Zn = {0,1,… ,n-1}.

Similarly, for computations in GF(28) we use the set of
representatives
R:={p(X) ∈ GF(2)[X] | deg(p(X)) < deg(m(X))=8}
Polynomials are added and multiplied modulo m(X).

A more detailed treatment: blackboard

16
B.104 Example

• X8 ≡ X4 + X3 + X + 1 (mod m(X))
• Let a:=X6+X4+X1+1 and b:= X2+X1+1
• Then a+b = X6+X4+X1+1+X2 +X1+1= X6+X4+X2

(The corresponding coefficients are added modulo
2.)

• a*b = (X6+X4+X1+1)(X2+X1+1)
= (X8+X6+X5+X2) +(X7+X5+X2+X1)+(X6+X4+X1+1)
= X8+ X7+X4+1 ≡ X4+X3+X+1 + X7+X4+1
= X7 + X3 + X (mod m(X))

17
B.105 Miscellaneous

• We identify a byte b = (b7,b6,… ,b0) with the
polynomial b7X7 + b6X6 + … + b0

• Bytes are added and multiplied according to the
laws in the field GF(28).

• In hexadecimal notation the byte (b7,b6,… ,b0) reads
(8*b7+ 4*b6+ 2*b5+ b4, 8*b3+ 4*b2+ 2*b1+b0).

• Example: In hexadecimal notation (11010011)
reads D3.

18
B.106 Next Steps

Study the basic transformations
• SubBytes(state)
• ShiftRows(state)
• MixColumns(state)
• AddRoundKey(state, RoundKey)

19
B.107 SubBytes

• SubBytes(.) maps an element t ∈ GF(28) to S(t)
where S: GF(28) → GF(28) denotes a fixed non-
GF(2)-linear bijective mapping.

• More precisely,
S(t)=At-1+c for t ≠ 0.
S(0)=c

• In particular,
w t-1 denotes the inverse of t in GF(28), viewed as a 8-bit

vector
w A is a fixed (8x8) matrix over GF(2)
w c is a fixed vector in GF(2)8

20
B.107 (continued)

A:=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

c:=

1
1
0
0
0
1
1
0

The computation of At-1+c demands an inversion, a
matrix-vector multiplication and a vector addition
over GF(2).

21
B.108 Remark

• AES implementations neither invert bytes nor
perform matrix-vector multiplication since this was
too costly.

• Instead, the values of S are stored, and SubBytes(.)
needs only one table-lookup.

• The SubBytes(.) transformation is called S-box.

22
B.109 ShiftRows

• The ShiftRows(.) transformation shifts the rows of the
state cyclically to the left. To be precise
w Row 0 is not shifted
w Row 1 is shifted cyclically by 1 position to the left
w Row 2 is shifted cyclically by 2 positions to the left
w Row 3 is shifted cyclically by 3 positions to the left

23
B.110 MixColumns

• MixColumns(state) is given by a matrix-matrix
multiplication in GF(28):

s00 s01 s02 s03

s10 s11 s12 s13

s20 s21 s22 s23

s30 s31 s32 s33

02 03 01 01
01 02 03 01
01 01 02 03
03 02 01 01

Note: The matrix entries 01, 02 and 03 (hexadecimal
notation) correspond to the polynomials 1, X and X+1,
respectively.

24
B.111 AddRoundKey

• AddRoundKey(state, RoundKey) computes the next
state by adding RoundKey (interpreted as a 4x4
matrix over GF(28)) to the state.

Note: AddRoundKey(.,.) implies a bitwise XOR
addition.

25
B.112 Key Scheduling

• A non-linear feedback shift register on 32-bit
words is used to compute the (Nr+1) round keys
from the encryption key K.

• Each round key is as large as the state (i.e., it
consists of 128 bits.)

26
B.112 (continued)

Definitions:
• word: w=(b0,b1,b2,b3) (data type, consists of 4 Bytes)
• SubWord(w):=(SubBytes(b0), SubBytes(b1),

SubBytes(b2), SubBytes(b3))
• RotWord((b0,b1,b2,b3)):= (b1,b2,b3,b0)
• Rcon(n): ((02)n-1,(00),(00),(00))

The first byte equals Xn-1 (mod m(X)) ∈ GF(28)
(hexadecimal notation).

Note: On the next slide we concentrate on the case
Nk=4, i.e. on 128 bit keys. The other key lengths are
treated similarly.

27
B.112 (continued) [128-bit keys]

for j:=0 to 3 do w[j] := jth key word
j := 4
while (j < 4 * 11) {

temp = w[j-1]
if (j ≡ 0 (mod 4))

temp = SubWord(RotWord(temp)) ⊕ Rcon(j/4)
else temp = SubWord(temp)
w[j] = w[j-4] ⊕ temp
j := j + 1

}

28
B.112 (continued)

first round key: (w[0], w[1], w[2], w[3])
second round key: (w[4], w[5], w[6], w[7])

…
last round key: (w[40], w[41], w[42], w[43])

Note: When AddRoundKey(.,.) is called the ith
time the word w[4*i+j] is added to the jth
column of the state.

29
B.113 Decryption

Decryption:
w The order of the basic transformations has to be reversed.
w Each basic transformation is replaced by its inverse.
w The order of the round keys is reversed.

• AddRoundKey(.,RoundKey) is self-inverse.
• The inverse transformations of SubBytes(.),

ShiftRows(.), MixColumns(.) are called
InvSubBytes(.), InvShiftRows(.), InvMixColumns(.).

30

ciphertext block (128 bit = 16 Byte) → state
AddRoundKey(state,RoundKey)
For Nr-1 downto 1 do {

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, RoundKey)
InvMixColumns(state)

}
InvShiftRow(state)
InvSubBytes(state)
AddRoundKey(state, RoundKey)
state → plaintext block

B.113 (continued)

31
B.114 Equivalent Decryption Algorithm

• The transformations SubBytes(.) and ShiftRows(.)
commute.

• MixColumns(.) and hence InvMixColumns(.) are
linear transformations.

• → The inverse operations may be reordered (see
next slide).

32

ciphertext block (128 bit = 16 Byte) → state
AddRoundKey(state,RoundKey_(Nr-1))

For i =Nr-1 downto 1 do {
InvSubBytes(state)
InvShiftRows(state)
InvMixColumns(state)
AddRoundKey(state, InvMixColumn(RoundKey_i)*)

} [[* non-standard notation]]
InvSubBytes(state)
InvShiftRows(state)
AddRoundKey(state, RoundKey_0)
state → ciphertext block

B.114 (continued)

33
B.115 Remark

• A comprehensive justification of the AES design
criteria is beyond the scope of this course.

• However, we consider the question what happened
if one of these basic transformations would be left
out, or equivalently, substituted by the identity
mapping at all its occurrences.

34
B.116 Consequences of Missing AddRoundKey(.,.)

• The ciphertext would not depend on a key. There
existed only one encryption transformation.

• Logically, this was equivalent to a key space
containing only one key.

35
B.117 Consequences of Missing MixColumns(.)

• The AES encryption split into four independent
‘small’encryption algorithms (each affecting one row
of the state).

• That is, AES was an encryption algorithm with
plaintext and ciphertext block length of 32 bits. We
already know that this is too small.

36
B.118 Consequences of Missing ShiftRows(.)

• The AES encryption split into four independent
‘small’encryption algorithms (each affecting one
column of the state).

• That is, AES was an encryption algorithm with
plaintext and ciphertext block length of 32 bits. We
already know that this is too small.

37
B.119 Consequences of Missing SubBytes(.)

• The transformations ShiftRows(.), MixColumns(.):
GF(28)16→ GF(28)16 are GF(28)-linear

• The transformation AddRoundKey(.,.) adds the round
key to the state.

• Under this condition the key scheduling
transformation: GF(28)16 → GF(28)16*11 was GF(28)-
affine.

Conclusion: If the S-box transformation was replaced
by the identity mapping it was very easy to recover
an AES key by a known-plaintext attack (why?). In
fact it required no more than elementary linear
algebra.

38
B.120 Vulnerability against Attacks

• The resistance against known types of attacks (e.g.
linear and differential attacks) was one important
design criterion in the AES competition.

• Compared to DES, for instance, the AES has a rich
algebraic structure. In 2002 and 2003 several
algebraic attacks were proposed. It was suggested
to consider specific systems of non-linear
equations over GF(2) or GF(28), resp., whose
solution recover an AES key.

39
B.121 (continued)

• Some researchers predicted that these attacks were
considerably more efficient than exhaustive key
search. This lowered the confidence in the AES in
the public.

• These conjectures could not be confirmed in the
following years. Some assertions were shown to be
definitely false.

40
B.122 Background

• Any mapping f: {0,1}n → {0,1} can be expressed by
a polynomial over GF(2).

Example:
(i) n=2, f(0,0) = f(0,1) = f(1,0) = 0, f(1,1) = 1

Then f(x1,x2):= x1x2

(ii) n=2, f(0,0) = f(1,0) = 1, f(0,1) = f(1,1) = 0
Then f(x1,x2):= 1 - x2

41
B.123 Impact on Block Ciphers

• Principally, each block cipher Enc :{0,1}n × {0,1}m →
{0,1}n could be represented by n nonlinear
polynomials in n+m binary variables. (Each variable
corresponds to a particular plaintext, resp. to a
particular key bit.)

• With this polynomial representation a known
plaintext attack is equivalent to solving a system of
non-linear equations (unknown key k).

42
B.123 (continued)

Problem: For reasonable parameters n and m the
polynomials consist of a gigantic number of
monomials.

Note: The number of monomials can be reduced by
introducing additional variables and formulating
additional equations.

• Due to its algebraic structure for the AES cipher
systems of non-linear equations with a moderate
number of terms were found.

43
B.123 (continued)

• In 2002 Murphy & Robshaw worked out a system
of 4800 quadratic and 3008 linear equations over
GF(28) in 4608 variables. A part of its solution
gives the AES key.

• Unlike for linear equations solving systems of non-
linear equations over finite fields is difficult. No
universal algorithm is known that works efficiently
for arbitrary systems of non-linear equations.

Note: Until now algebraic attacks did not yield more
efficient attacks than exhaustive key search.

44
B.124 Remark

For more sophisticated security analysis and
(further) attacks on the AES (resp. on the AES
with a reduced number of rounds) the interested
reader is referred to the literature.

