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B.96  AES (Advanced Encryption Standard)

AES is a symmetric block cipher with 
• plaintext space P = ciphertext space C = {0,1}128 

• key space 
w K = {0,1}128  (usual case) or
w K = {0,1}192  or
w K = {0,1}256

• Depending on the size of K the AES is a round-
based block cipher with (cf. B.99)
w 10 rounds   or
w 12 rounds   or
w 14 rounds

• AES is not a Feistel cipher.
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B.97  AES (History)

• In 1997 NIST (National Institute for Standards and 
Technology) initiated a competition to find a 
successor of DES.

• Requirements
w Security, especially resistance against linear and 

differential attacks
w Efficiency (hardware and software implementations)
w Scalability
w Royalty freeness
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B.97  AES (History)

• 1st Round (1998): 
w 15 algorithms were submitted
w main aspect: security
w 5 algorithms “survived” the first round

• 2nd Round
w Main aspect: Efficiency on various platforms

• Winner of the competition: Rijndael (designers: V. 
Rijmen, J. Daemen,)
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B.98  Remark

Note: Cryptanalysts from all over the world 
analyzed the submitted AES candidates. Security 
and implementation aspects were discussed on 
many crypto conferences.
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B.99  Scalability

• The AES consists of Nr rounds and uses a 32*Nk
bit key

• Admissible pairs: (Nr, Nk) =
w (10,4)  (usual case)
w (12,6)
w (14,8)

Note: Rijndael additionally considered the cases P = 
C = {0,1}192  and P = C = {0,1}256. These options 
have not been standardized.
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B.100  State Space

• plaintext block: (s00,s10,s20,s30,s01,s11,… , s33) ∈
({0,1}8)16 ≅ {0,1}128 .   (The sij denote bytes.)

• The plaintext block is transformed into the state
state

s00  s01  s02  s03 

s10   s11  s12  s13 

s20   s21  s22  s23 

s30   s31  s32  s33
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B.100 (continued)

• The plaintext bytes fill the state array, column by 
column (direction: top - down), beginning with the 
leftmost column.

• After encryption the (final) state is transformed into 
a ciphertext block.

Decryption: ciphertext block → state → plaintext block
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plaintext block (128 bit = 16 Byte) → state
AddRoundKey(state,RoundKey_0*)       [[* non-standard 

notation]]
For i =1 to Nr-1 do {

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, RoundKey_i*)

} 
SubBytes(state)
ShiftRows(state) final round
AddRoundKey(state, RoundKey_Nr*)
state → ciphertext block

B.101 AES (coarse structure)
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B.102 Remark

(i) The AES cipher consists of four ‘basic’
transformations. These transformations operate 
on the state.

(ii) The final round is different from the others. (The 
MixColumns(.) operation is missing.)

(iii) AES is a byte-oriented cipher. Each state byte sij is 
interpreted as an element in the finite  field  GF(28)
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B.103  A Reminder: Finite Fields

• For any integer n>1   Zn :={0,… ,n-1} is a ring 
(equipped with the addition and multiplication 
modulo n). 

• In general Zn is not a field. 
• Example: 2 ∈ Z4  has no multiplicative inverse 

modulo 4. 
• If p is prime Zp ={0,1,… ,p-1} is a field. 
• Example: Z2, Z17, Z101 are fields.

Note: The definition of a group, a ring and a field can 
be found in any elementary algebra book.
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B.103  (continued)

Fact:
(i) To any prime p and any positive integer k there 
exists a finite field with pk elements. 
(ii) All fields with pk elements are isomorphic.
(iii) Any finite field contains p’k’elements where p’
is a prime and k’a positive integer. 

Notation: In the following GF(pk) stands for a finite 
field with pk elements. For p prime we alternatively 
use the notations Zp and GF(p). 
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B.103  (continued)

• GF(2)[X] denotes the ring of polynomials over 
GF(2). 

• Example: X4+1, X2+X ∈ GF(2)[X]
• A polynomial p(X) with deg(p(X)) ≥ 1 is called 

irreducible in GF(2)[X] if it cannot be expressed as 
a product of two non-constant polynomials. 

Example:
(i) X2+X = X (X + 1) is not irreducible in GF(2)[X] 
(ii) X2+X+1 is irreducible in GF(2)[X]
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B.103  (continued)

• The AES cipher considers the polynomial
m(X) := X8 + X4 + X3 + X + 1  ∈ GF(2)[X]
This polynomial is irreducible in GF(2)[X].

• < m(X) > := { p(X)m(X)| p(X) ∈ GF(2)[X] }
• Fact: The factor ring GF(2)[X] / < m(X) > is a field. 

More precisely, it is (isomorphic to) GF(28). That is,
GF(28) ≅ { p(X) + < m(X) > | p(X) ∈ GF(2)[X] }. 
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B.103  (continued)

Reminder: For concrete computations modulo n we 
use the set of representatives Zn = {0,1,… ,n-1}. 

Similarly, for computations in GF(28) we use the set of 
representatives  
R:={p(X) ∈ GF(2)[X] | deg(p(X)) < deg(m(X))=8} 
Polynomials are added and multiplied modulo m(X).

A more detailed treatment: blackboard
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B.104  Example

• X8 ≡ X4 + X3 + X + 1  (mod m(X)) 
• Let a:=X6+X4+X1+1 and b:= X2+X1+1 
• Then a+b = X6+X4+X1+1+X2 +X1+1= X6+X4+X2

(The corresponding coefficients are added modulo 
2.)

• a*b = (X6+X4+X1+1)(X2+X1+1)
= (X8+X6+X5+X2) +(X7+X5+X2+X1)+(X6+X4+X1+1)
= X8+ X7+X4+1 ≡ X4+X3+X+1 + X7+X4+1 
=  X7 + X3 + X  (mod m(X)) 
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B.105  Miscellaneous

• We identify a byte b = (b7,b6,… ,b0) with the 
polynomial b7X7 + b6X6 + … + b0 

• Bytes are added and multiplied according to the 
laws in the field GF(28).

• In hexadecimal notation the byte (b7,b6,… ,b0) reads 
(8*b7+ 4*b6+ 2*b5+ b4, 8*b3+ 4*b2+ 2*b1+b0).

• Example: In hexadecimal notation (11010011) 
reads D3.
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B.106  Next Steps

Study the basic transformations
• SubBytes(state)
• ShiftRows(state)
• MixColumns(state)
• AddRoundKey(state, RoundKey)
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B.107  SubBytes

• SubBytes(.) maps an element t ∈ GF(28) to S(t) 
where S: GF(28) → GF(28) denotes a fixed non-
GF(2)-linear bijective mapping.

• More precisely, 
S(t)=At-1+c      for t ≠ 0.
S(0)=c

• In particular, 
w t-1 denotes the inverse of t in GF(28), viewed as a 8-bit 

vector
w A is a fixed (8x8) matrix over GF(2)
w c is a fixed vector in GF(2)8
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B.107  (continued)

A:=

1 0 0 0 1 1 1 1 
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0 
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

c:=

1
1
0
0 
0 
1 
1 
0

The computation of At-1+c demands an inversion, a 
matrix-vector multiplication and a vector addition 
over GF(2).
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B.108  Remark

• AES implementations neither invert bytes nor 
perform matrix-vector multiplication since this was 
too costly.

• Instead, the values of S are stored, and SubBytes(.) 
needs only one table-lookup.

• The SubBytes(.) transformation is called S-box.
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B.109  ShiftRows

• The ShiftRows(.) transformation shifts the rows of the 
state cyclically to the left. To be precise
w Row 0 is not shifted 
w Row 1 is shifted cyclically by 1 position to the left
w Row 2 is shifted cyclically by 2 positions to the left
w Row 3 is shifted cyclically by 3 positions to the left



23
B.110  MixColumns

• MixColumns(state) is given by a matrix-matrix 
multiplication in GF(28):

s00  s01  s02  s03 

s10   s11  s12  s13 

s20   s21  s22  s23 

s30   s31  s32  s33

02  03  01  01
01  02  03  01
01  01  02  03
03  02  01  01

Note: The matrix entries 01, 02 and 03 (hexadecimal 
notation) correspond to the polynomials 1, X and X+1, 
respectively.
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B.111  AddRoundKey

• AddRoundKey(state, RoundKey) computes the next 
state by adding RoundKey (interpreted as a 4x4 
matrix over GF(28)) to the state.

Note: AddRoundKey(.,.) implies a bitwise XOR 
addition.
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B.112  Key Scheduling

• A non-linear feedback shift register on 32-bit 
words is used to compute the (Nr+1) round keys 
from the encryption key K. 

• Each round key is as large as the state (i.e., it 
consists of 128 bits.)
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B.112  (continued)

Definitions:
• word: w=(b0,b1,b2,b3)  (data type, consists of 4 Bytes)
• SubWord(w):=(SubBytes(b0), SubBytes(b1), 

SubBytes(b2), SubBytes(b3))
• RotWord((b0,b1,b2,b3)):= (b1,b2,b3,b0) 
• Rcon(n): ((02)n-1,(00),(00),(00))   

The first byte equals Xn-1 (mod m(X)) ∈ GF(28) 
(hexadecimal notation). 

Note: On the next slide we concentrate on the case 
Nk=4, i.e. on 128 bit keys. The other key lengths are 
treated similarly.
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B.112 (continued) [128-bit keys]

for j:=0 to 3 do w[j] := jth key word
j := 4
while (j < 4 * 11) {                   

temp = w[j-1]
if (j ≡ 0 (mod 4))

temp = SubWord(RotWord(temp)) ⊕ Rcon(j/4)
else temp = SubWord(temp)
w[j] = w[j-4] ⊕ temp
j := j + 1

}
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B.112  (continued)

first round key:       (w[0],   w[1],   w[2],   w[3])
second round key: (w[4],   w[5],   w[6],   w[7])

…
last round key:     (w[40], w[41], w[42],  w[43])

Note: When AddRoundKey(.,.) is called the ith
time the word w[4*i+j] is added to the jth
column of the state.
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B.113  Decryption

Decryption:
w The order of the basic transformations has to be reversed.
w Each basic transformation is replaced by its inverse.
w The order of the round keys is reversed.

• AddRoundKey(.,RoundKey) is self-inverse.
• The inverse transformations of SubBytes(.), 

ShiftRows(.), MixColumns(.) are called 
InvSubBytes(.), InvShiftRows(.), InvMixColumns(.).
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ciphertext block (128 bit = 16 Byte) → state
AddRoundKey(state,RoundKey)
For Nr-1 downto 1 do {

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, RoundKey) 
InvMixColumns(state)

} 
InvShiftRow(state)
InvSubBytes(state)
AddRoundKey(state, RoundKey)
state → plaintext block

B.113  (continued)
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B.114  Equivalent Decryption Algorithm

• The transformations SubBytes(.) and ShiftRows(.) 
commute.

• MixColumns(.) and hence InvMixColumns(.) are 
linear transformations.

• → The inverse operations may be reordered (see 
next slide).
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ciphertext block (128 bit = 16 Byte) → state
AddRoundKey(state,RoundKey_(Nr-1))

For i =Nr-1 downto 1 do {
InvSubBytes(state)
InvShiftRows(state)
InvMixColumns(state)
AddRoundKey(state, InvMixColumn(RoundKey_i)*)

} [[* non-standard notation]]
InvSubBytes(state)
InvShiftRows(state)
AddRoundKey(state, RoundKey_0)
state → ciphertext block

B.114  (continued)
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B.115  Remark

• A comprehensive justification of the AES design 
criteria is beyond the scope of this course. 

• However, we consider the question what happened 
if one of these basic transformations would be left 
out, or equivalently, substituted by the identity 
mapping at all its occurrences.
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B.116  Consequences of Missing AddRoundKey(.,.)

• The ciphertext would not depend on a key. There 
existed only one encryption transformation. 

• Logically, this was equivalent to a key space 
containing only one key.
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B.117  Consequences of Missing MixColumns(.)

• The AES encryption split into four independent 
‘small’encryption algorithms (each affecting one row 
of the state).

• That is, AES was an encryption algorithm with 
plaintext and ciphertext block length of 32 bits. We 
already know that this is too small.
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B.118  Consequences of Missing ShiftRows(.)

• The AES encryption split into four independent 
‘small’encryption algorithms (each affecting one 
column of the state).

• That is, AES was an encryption algorithm with 
plaintext and ciphertext block length of 32 bits. We 
already know that this is too small. 
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B.119  Consequences of Missing SubBytes(.)

• The transformations ShiftRows(.), MixColumns(.): 
GF(28)16→ GF(28)16 are GF(28)-linear 

• The transformation AddRoundKey(.,.) adds the round 
key to the state.

• Under this condition the key scheduling 
transformation: GF(28)16 → GF(28)16*11 was GF(28)-
affine.

Conclusion: If the S-box transformation was replaced 
by the identity mapping it was very easy to recover 
an AES key by a known-plaintext attack (why?). In 
fact it required no more than elementary linear 
algebra.
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B.120  Vulnerability against Attacks

• The resistance against known types of attacks (e.g. 
linear and differential attacks) was one important 
design criterion in the AES competition. 

• Compared to DES, for instance, the AES has a rich 
algebraic structure. In 2002 and 2003 several 
algebraic attacks were proposed. It was suggested 
to consider specific systems of non-linear 
equations over GF(2) or GF(28), resp., whose 
solution recover an AES key. 
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B.121  (continued)

• Some researchers predicted that these attacks were 
considerably more efficient than exhaustive key 
search. This lowered the confidence in the AES in 
the public. 

• These conjectures could not be confirmed in the 
following years. Some assertions were shown to be 
definitely false.
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B.122  Background

• Any mapping f: {0,1}n → {0,1} can be expressed by 
a polynomial over GF(2).

Example: 
(i) n=2, f(0,0) = f(0,1) = f(1,0) = 0, f(1,1) = 1

Then f(x1,x2):= x1x2

(ii) n=2, f(0,0) = f(1,0) = 1, f(0,1) = f(1,1) = 0
Then f(x1,x2):= 1 - x2
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B.123  Impact on Block Ciphers

• Principally, each block cipher Enc :{0,1}n × {0,1}m →
{0,1}n could be represented by n nonlinear
polynomials in n+m binary variables. (Each variable 
corresponds to a particular plaintext, resp. to a 
particular key bit.) 

• With this polynomial representation a known 
plaintext attack is equivalent to solving a system of 
non-linear equations (unknown key k).
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B.123  (continued)

Problem: For reasonable parameters n and m the 
polynomials consist of a gigantic number of 
monomials. 

Note: The number of monomials can be reduced by 
introducing additional variables and formulating 
additional equations. 

• Due to its algebraic structure for the AES cipher 
systems of non-linear equations with a moderate 
number of terms were found.
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B.123  (continued)

• In 2002 Murphy & Robshaw worked out a system 
of 4800 quadratic and 3008 linear equations over 
GF(28) in 4608 variables. A part of its solution 
gives the AES key.

• Unlike for linear equations solving systems of non-
linear equations over finite fields is difficult. No 
universal algorithm is known that works efficiently 
for arbitrary systems of non-linear equations. 

Note: Until now algebraic attacks did not yield more 
efficient attacks than exhaustive key search.
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B.124  Remark

For more sophisticated security analysis and 
(further) attacks on the AES (resp. on the AES 
with a reduced number of rounds) the interested 
reader is referred to the literature.


