Review

We showed how two parties who share a random session key can use a pseudo-random function generator to talk securely over a totally insecure channel.

Next time we will discuss how to share a session key.

Today we will discuss some new primitives.
One-Way Functions

A *one-way function* is a function that is easy to compute, but hard – on the average – to invert.

Let $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ be a polynomial-time computable function. We assume that the length of $f(x)$ is determined by the length of x; say $|f(x)| = \ell(|x|)$. (For convenience, assume ℓ is one-one.) We say f is *one-way* if the following holds for every I:

Let I be be a polynomially bounded adversary.
Define $q_I(n)$ to be the probability that if x is randomly chosen from $\{0, 1\}^n$ and I is run on $f(x)$ and I outputs β, then $f(\beta) = f(x)$.

THEN $q_I(n)$ is negligible.

Remark: It is not too hard to see that if a one-way function f exists, we can convert it to a one-way function f' such that $|f'(x)| = |x|$.
Theorem: ((Håstad, Impagliazzo, Levin, Luby))
There exist one-way functions \(\iff \) there exist pseudo-random generators.

Proof of \(\iff \): Let \(G \) be a pseudo-random number generator with length function \(\ell(n) = 2n \). It is easy to see that \(G \) is one-way.

Harder Fact: Every pseudo-random number generator is a one-way function.

Application: A one-way function \(f \) can be used to login to a computer: the computer need only store \(f(\text{PASSWORD}) \) instead of the PASSWORD.

Now assume DES is a pseudo-random function generator; define \(f : \{0,1\}^{56} \rightarrow \{0,1\}^{64} \) by \(f(x) = \text{DES}_x(\bar{0}) \). Then the above fact shows that \(f \) is one-way; this \(f \) was used by UNIX for logins.
Proof of \(\Longrightarrow \):

We will consider a simpler case due to Yao, and Goldreich/Levin. Let \(f \) be a one-way permutation, that is, for every \(n \), \(f \) maps \(\{0, 1\}^n \) one-one/onto \(\{0, 1\}^n \).

Fact: One can show that the following is hard for an adversary: random \(r, x \in \{0, 1\}^n \) are chosen, and the adversary is given \(r \) and \(f(x) \); he wants to find \((r \cdot x) \) (the inner product mod 2 of \(r \) and \(x \)). Then his success probability is negligibly greater than \(1/2 \).

We now see that the following number generator

\(G \) (that expands its input by one bit) is pseudo-random:

\[
G(rx) = [r, f(x), (r \cdot x)].
\]

Why? \(r \) is random; because \(x \) is random and \(f \) is a permutation, \(f(x) \) is random. So none of the first \(2n \) bits are predictable. And the above fact shows that the last bit is also unpredictable.
(Public Key) Signature Scheme (or primitive) consists of the following polynomial-time computable functions:

- **KEYGEN**(1^n, random bits) = (pub, pri).
 (Assume size of keys determines n.)

- For every $m \in \{0, 1\}^*$, $\text{SIGN}(pri, m) \in \{0, 1\}^n$.

- For every $m \in \{0, 1\}^*$ and $\sigma \in \{0, 1\}^n$, $\text{VER}(pub, m, \sigma) \in \{0, 1\}$.

We insist that if **KEYGEN** outputs (pub, pri), then $\text{VER}(pub, m, \text{SIGN}(pri, m)) = 1.$
Definition of Security for Signature Schemes

For every polynomially (in n) bounded adversary A:

A sees pub, chooses m_1, queries $\text{SIGN}_{pri}(m_1)$, chooses m_2, queries $\text{SIGN}_{pri}(m_2)$, etc.

A then chooses a message m for which he has not queried SIGN_{pri} and produces an attempted signature σ.

(Note that because A is polynomially bounded, the sizes of the m_i and m will be bounded by a polynomial in n.)

Let $q_A(n)$ be the probability that $\text{VER}(pub, m, \sigma) = 1$.

Then $q_A(n)$ is negligible.

(Remark:) It does not help to allow SIGN to be probabilistic. If it were, we can make it deterministic by including in the private key the key k for a pseudo-random function generator F; for each message m to be signed, just use $F_k(m)$ instead of the random bits.
Theorem: (Goldwasser, Micali, Rivest)
There exist public key signature schemes \(\iff\)
there exist one-way functions (or pseudo-random generators).

In practice, signature schemes proposed or in use are based on strong versions of assumptions from public-key encryption technology, rather than doing the construction of this theorem. Ideas from this theorem are nonetheless useful.
Say that we have a secure signature scheme S, but we can only sign messages of length n (for example) with it.

Say that we have a hash family h: For every $k \in \{0, 1\}^n$ and every $m \in \{0, 1\}^*$, $h_k(m) \in \{0, 1\}^n$ and $h_k(m)$ can be computed in time polynomial in $n + |m|$.

Define the (full) signature scheme S':

Add to the keys of S a key k for a hash family. Define

$\text{SIGN}'_{\text{pri}, k}(m) = \text{Sign}_{\text{pri}}(h_k(m))$, and

$\text{VER}'_{\text{pub}, k}(m, \sigma) = \text{VER}_{\text{pub}}(h_k(m), \sigma)$.

For this to be secure, we need the hash family h to be strongly collision resistant.
Definitions of collision resistance for hash family \(h \) against a polynomially (in \(n \)) bounded adversary \(A \)

Private collision resistance: If \(A \) sees \(1^n \) but isn’t given random key \(k \), then the probability is negligible that \(A \) finds \(m_1 \neq m_2 \) such that \(h_k(m_1) = h_k(m_2) \).

These hash families provably exist.

Weak (public) collision resistance: If \(A \) sees \(1^n \), chooses \(m_1 \), is then given random key \(k \), then the probability is negligible that \(A \) finds \(m_2 \neq m_1 \) such that \(h_k(m_1) = h_k(m_2) \).

These hash families exist \(\iff \) one-way functions exist.

(Naor/Yung, Rompel)

Strong (public) collision resistance: If \(A \) sees \(k \), then the probability is negligible that \(A \) finds \(m_1 \neq m_2 \) such that \(h_k(m_1) = h_k(m_2) \). To prove the existence of these hash families, it appears that we need *more* than one-way functions.
Say that we have a secure signature scheme S, but we can only sign messages of length $2n$ with it, and say that we have a hash family h that is only guaranteed to satisfy weak collision resistance?

Can we get a secure (full) signature scheme from it?

Define the (full) probabilistic signature scheme S':

To sign m using pri, randomly choose a key k for the hash family, $|k| = n$, and let $\text{SIGN}'_{pri}(m) = [k, \text{Sign}_{pri}[k, h_k(m)]]$, and $\text{VER}'_{pub, k}(m, [k, \sigma]) = \text{VER}_{pub}([k, h_k(m)], \sigma)$.

Can you prove that this is secure?
Distribution Smoothing Hash Family

Let h be a hash family, $h_k : \{0, 1\}^m \rightarrow \{0, 1\}^n$, $m > n$. For a set $S \subseteq \{0, 1\}^m$ of size much bigger than 2^n, we wish that for most k, the distribution $h_k(S)$ on $\{0, 1\}^n$ is very close to uniform.

If D is a distribution on $\{0, 1\}^n$ and U is the uniform distribution, we define

$$\text{DIST}(D, U) = \frac{1}{2} \sum_{x \in \{0, 1\}^n} |D(x) - U(x)|$$

the maximum, over every (not necessarily polynomial-time) algorithm, of the probability of accepting a random member of D minus the probability of accepting a random member of U.

It turns out a sufficient property for h is **2-way independence**: For every two distinct $x, y \in \{0, 1\}^m$, $\text{prob}_k(h_k(x) = h_k(y)) = 1/2^n$.
Theorem: Let $S \subseteq \{0, 1\}^m$, $|S| \geq 2^t$.

Let h be a 2-way independent hash family of functions mapping $\{0, 1\}^m$ to $\{0, 1\}^n$.

Then for all but a negligible fraction of the keys k,

$$\text{DIST}(h_k(S), U) \leq \frac{1}{2^{(t-n)/3}}.$$

Example of a 2-way independent h: View k as a pair $[a, b]$ of elements from the field $\text{GF}(2^m)$ and view $x \in \{0, 1\}^m$ as members of $\text{GF}(2^m)$.

Then define

$h_{[a,b]}(x) =$ the rightmost n bits of $ax + b$ (with arithmetic in $\text{GF}(2^m)$).
Let p be an n-bit prime, and say $p - 1 = 2q$ where q is prime.

Let \mathbb{Z}_p^* be the group $\{1, 2, \ldots, p - 1\}$ with multiplication mod p.

Let g be a generator of a subgroup G of \mathbb{Z}_p^* of size q.

So G has at least 2^{n-2} elements, each one an n-bit string.

We will see later that there is a session-key exchange protocol in which the two parties share a random member α of G.

But they really want to share a random string.

So they use a 2-way independent hash family of functions mapping $\{0, 1\}^n$ to (say) $\{0, 1\}^{n/2}$. They chose a random (public) k, and use as the session key $h_k(\alpha)$.