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Introduction 
 
Electronic transactions and activities taken place over Internet need to be protected 
against all kinds of interference, accidental or malicious. The general task of the 
information technology security is to provide this protection. In order to secure the 
information transmission, various systems/schemes like cryptographic systems, 
digital signature schemes etc. are implemented. 
 
Due to drastic and continuous increasing trend in the number of business 
transactions and financial activities in electronic formats, deploying a system for 
legally binding electronic contracts becomes essential. Digital signature schemes 
play a vital role in providing such binding. Again, it is very easy to modify and 
manipulate electronic documents in various ways. Electronic documents duly signed 
by digital signature should resist such manipulations. 
 
Beside their design and extra properties, signature schemes are expected to be 
secure. Formalizing security notions for signature schemes allows one to assess the 
system’s security by providing a security proof, thereby giving a guarantee of trust. 
 
This report documents my presentation in the seminar on notions of security. Using 
the notions of security, I present the security proof for the short message variant of 
Gennaro-Halevi-Rabin (GHR) signature scheme. This report is organized as follows: 
first, a brief introduction on digital signature, reductionist security and notions of 
security is provided. Then the mathematical assumption on strong RSA problem is 
discussed, followed by a brief description on the GHR signature scheme. Finally, the 
reduction of SRSA problem, believed to be intractable, to breaking the GHR 
signature scheme in the strongest sense is presented. 
 
 
Digital Signature 
 
Just like a handwritten signature on a document, the digital/electronic signature 
allows to relate an individual to a specific digital/electronic file. The following are 
important requirements for digital signatures: 
 

 The signature must be tightly attached to the signed document. 
 It should be easy to sign for the legitimate signer, easy to verify the signature 

for the recipient, and hard to sign for a forger. 
 The signer should not be able to deny that he signed the document. 
 Sometimes it is important that a signed document can only be used once for 

its legitimate purpose, not several times (say, a cheque). 
 
In order to obtain most/all of the requirements of digital signature, a signature 
scheme is required. A signature scheme must have a key generator that produces the 
pair of keys (sk, pk), the signature signing function S, and the signature verification 
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function V. Here sk is the signer’s secret key and pk is the key for verification. In a 
symmetric system, a same secret key k is used for signing and verification functions, 
i.e., k = sk = pk. In an asymmetric system, sk is kept private by the signer and pk 
may be publicly published to everybody. 
 
To sign a message m, the signature s is generated using s = Ssk(m). Here the 
signature s is another message. For any signature (i.e., message) z, Vpk(m, z) is either 
true or false, namely  
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A message authentication scheme (or cryptographic transmission scheme), private 
key or public key, is considered to be a good choice for implementing the signature 
scheme. The decryption is used as signing function and the encryption is used for 
verification: 
 

 
 

Figure 1: Implementation of a signature scheme using a cryptographic scheme 
 
A public key encryption system like RSA or ElGamal can be used. Then Alice’s key S 
is her secret key, used for decryption in the communication mode, and Bob verifies 
Alice’s signature using her public key K. 
 
 
Reductionist Security 
 
Once a cryptographic system or a signature scheme is described/established, how 
can its security be proved? The common practice in the last decade was trying to 
exhibit an attack. If there was an attack, the system was insecure. But if there was no 
such attack, it was quite difficult to certainly label it as secured. It was seen that a 
system that was considered secure for a long period of time, had broken later.    
 
Nowadays a different approach is used. The idea is to provide security proof that no 
attack exists under some mathematical assumptions. But the assumption has to be 
reasonable. If there is any attack found, it indicates that the assumption is wrong. 
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There is a good number of mathematical problems those have been drawing the 
attention of many scholars, professionals, analysts and researchers for a long time. 
Yet there is no probabilistic polynomial time solution for these problems and hence 
these problems are presumed as hard. The mathematical assumptions based on these 
problems are more appropriate and carry more sense than just exhibiting attacks. A 
relationship is established between the mathematical problems and the 
systems/schemes described by means of reduction.  
 
To prove A ⇐  B, i.e., problem A is reducible to problem B; it is needed to show an 
algorithm (with polynomial resources) that solves A with access to an oracle that 
solves B. 
 
There is no straightforward and direct formulation of security proof. There are only 
reductions. The security based on reduction is termed as the provable security or 
reductionist security.   
 
To get a security proof, one needs to 
 

1. Formally define the security notion to achieve, 
2. Make precise mathematical assumptions, 
3. Design a system (a signature scheme) and describe its operational modes, 
4. Exhibit a reduction from the assumed underlying problem to breaking the 

scheme in the sense of the defined security notion. 
 
 
Notions of Security 
 
A security notion (or level) is entirely defined by pairing an adversarial goal with an 
adversarial model. Depending on the context in which a given signature scheme (or 
cryptosystem) is used, one may formally define a security notion for the system, 
 

 by telling what goal an adversary would attempt to reach (the adversarial 
goal), and 

 what means or information are made available to the attacker (the adversarial 
or attack model). 

 
Here some of the adversarial goals as well as adversarial models related to digital 
signatures are briefly described. 
 
Adversarial Goals 
 
Unbreakability: The attacker recovers the secret key sk from the public key pk (or an 
equivalent key if any). This goal is denoted UB. It is implicitly appeared with public-
key signature scheme (or cryptography). 
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Universal Unforgeability: The attacker, without necessarily having recovered sk, can 
produce a valid signature s of any message m in the message space. It is noted UUF. 
 
Existential Unforgeability: The attacker creates a message m and a valid signature s 
of it (likely no control over the message). This is denoted EUF. 
 
Adversarial Models 
 
Key-Only Attacks: The adversary only has access to the public key pk. This is 
denoted KOA. This is an unavoidable scenario in public-key signature scheme (or 
cryptography). 
 
Known Message Attacks: An adversary has access to signatures for a set of known 
messages. It is noted KMA. 
 
Chosen Message Attacks: Here the adversary is allowed to use the signer as an 
oracle (full access), and may request the signature of any message of his choice 
(multiple requests of the same message are allowed). It is denoted CMA. 
 
Putting the adversarial goal on the y-axis and adversarial model on the x-axis, the 
security notions are obtained. The intersecting points represent security notions. For 
example, UB-KOA, UB-KMA, EUF-CMA etc are security notions. If there are u 
adversarial goals and v adversarial models, there will be u × v security notions. 
 

 
Figure 2: The notions of security for signature scheme 

 
The security notions are explained with an example with RSA signature scheme. In 
1978, Rivest-Shamir-Adleman proposed this scheme. In the RSA one-way trapdoor 
permutation,  
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o Alice sets n = p⋅q where p and q are large random primes. She picks a public 
exponent e co-prime to ϕ(n) = (p − 1)⋅(q − 1). She computes d = e−1 mod ϕ(n) 
and publishes (n, e) as public key. She keeps d as her private key. 

 
o To sign a message ∗∈ nZm , Alice compute the signature s = D(m) = md mod n 

and sends (m, s) to Bob, 
 

o To verify the pair (m, s), Bob computes m’ = E(s) = se mod n and accepts the 
signed message if m’ = m. 

 
Assume Bob picks some random s” and computes m” = E(s”). Then (m”, s”) is a 
valid pair since s” = D(m”) is a valid signature of m”. However, Bob can generate 
signatures for messages he does not control. We already know that this capability is 
known as existential forgery. Existential forgery is a weak form of forgery, and 
practical applications of digital signatures might live with it. Therefore, RSA 
signature scheme is existential forgeable even in key-only attacks. Finally, it can be 
said that RSA signature scheme is not EUF-KOA (Existentially Unforgeable under 
Key-Only Attacks), and hence not EUF-KMA and not EUF-CMA. 
 
Again, RSA is a morphism. For any two elements ∗∈ nZmm 21 , ,  
 

( ) nmmmm ddd mod2121 ⋅=⋅ , 
 
meaning that D(m1⋅m2) = D(m1)⋅D(m2). Now suppose Bob wants Alice’s signature for 
some specific message m. 
 

• He picks a random ∗∈ nZm1  and computes m2 = m/m1 mod n, i.e. Bob finds 
m1, m2 such that m1⋅m2 = m (mod n), 

• Assume Bob asks Alice to sign m1 and m2 and receives D(m1) and D(m2), 
• Bob computes s =D(m) = D(m1)⋅D(m2) mod n on his own and get a valid pair 

(m, s) for his message m.  
 
This is called a universal forgery under a chosen message attack. It is much worse 
than existential forgery, because the attacker obtains the signature of any message he 
wants with probability one, without asking the signer to sign it. Therefore, RSA 
signature scheme is not UUF-CMA (Universally Unforgeable under Chosen Message 
Attacks). 
 
From the plot, it can be said that UB-KOA is the weakest/lower security notion. On 
the other hand, EUF-CMA is the highest/upper. In EUF-CMA, the attacker is 
provided the maximum information/resources and asked to do the weakest task.   
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Because EUF-CMA is the upper security level, it is desirable to prove security with 
respect to this notion. Formally, an signature scheme is said to be (q, τ, ε)-secure if 
for any adversary A with running time upper-bounded by τ, 
 
        SuccEUF-CMA(A) = Pr ( ) ( ) ( ) ( ) ( ) ( )[ ] ε<=←← ∗⋅∗∗ 1,,,,,1, *, smpkVpkAsmGpksk skSk , 
 
where the probability is taken over all random choices. Here, τ means operations 
(more specifically the running time) of the scheme and ε means the success rate of 
the scheme. 
 
The notation AS(sk,·) means that the adversary has access to a signing oracle 
throughout the game, but at most q times. The message m* output by A was never 
requested to the signing oracle. 
 

 
 

Figure 3: The EUF-CMA game playing environment 
 
 
Mathematical Assumptions 
 
Public-key design allows constructing systems by assembling and connecting 
smaller cryptographic or atomic primitives together. For example: one-way 
functions, hash functions, arithmetic operations etc. Cryptographic primitives are 
connected to plenty of (supposedly) intractable problems: 
 

 Strong RSA (SRSA) is hard, 
 Discrete log is hard, 
 Diffie-Hellman is hard, 
 Factoring is hard, 
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Here the term ‘Hard’ means that there is no probabilistic polynomial time algorithm 
can solve the problem with non-negligible probability. The problem, which is 
associated with a probabilistic polynomial time algorithm that solves the problem, is 
not termed as ‘Hard’.  
 
Strong RSA Problem 
 
Let n = p⋅q be a safe RSA modulus and z ∈ Z*n. Find x and e such that 
 

z = xe mod n       with (x, e) ≠ (z, 1). 
 
An algorithm R is said to (τR, εR)-solve the SRSA problem if in at most τR operations, 
 

Pr ( ) ( ) ( )[ ] R
e

n
k nxzznRexZzRSAn ε≥=←←← ∗ mod,,,,,1  

 
where the probability is taken over R’s random tapes and the distribution of (n, z).  
 
Strong RSA Assumption  
 
The mathematical assumption based on SRSA problem (i.e., Strong RSA assumption) 
states that if an algorithm R is polynomially time bounded, the success of R is 
negligible. If k is the security parameter of the safe RSA modulus, then the SRSA 
assumption can be expressed for any (τR, εR)-solver as 
 

τR ≤ poly(k)    ⇒    εR = negl(k) 
 
It was introduced by Barić and Pfitzmann in 1999 as ‘Strong RSA Conjecture’, which 
states that:  
 
Given a randomly chosen RSA modulus n, and a random element z ∈ Z*n, it is 
infeasible to find a pair (e, x) with e > 1 such that xe = z (mod n). 
 
 
GHR Signature Scheme 
 
Gennaro-Halevi-Rabin (GHR) signature scheme is based on the hash-and-sign 
paradigm. It was presented in 1999 by Rosario Gennaro, Shai Halevi and Tal Rabin. 
In hash-and-sign schemes, the message to be signed is hashed using a ‘cryptographic 
hash function’ and the result is signed using a ‘standard signature scheme’, such as 
RSA. The GHR signature scheme resembles the standard RSA signature algorithm.  
 
In this seminar, only the short message variant of the GHR signature scheme is 
considered, where the maximum message length is 30 bits.  
 
The GHR scheme works as follows: 
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[1]. Generate a safe RSA modulus n = p⋅q with p = 2p’ + 1, q = 2q’ + 1, where p, q, p’ 
and q’ are distinct prime numbers. Randomly select z ∈ Z*n. 
 
Let H: {0, 1}l  Primes ≥  3 and ≠ p’, q’ be a collision-free hash function (l = 30). 
Publish (n, z) as public key. Keep (p, q) as private key. 
 
[2]. To sign a message m ∈ {0, 1}l, compute s = z1/H(m) mod n. 
 
[3]. Given (m, s), check whether sH(m) = z mod n. 
 
 
Reduction Proof 
 
The reduction, which is used for the security proof is SRSA  ≤  EUF-CMA(GHR).  
 
It means under the Strong RSA assumption, the GHR signature scheme is 
Existentially Unforgeable to a Chosen Message Attack in the standard model. 
 
In order to proof that, SRSA  ≤  EUF-CMA(GHR), it is needed to show that breaking 
EUF-CMA(GHR) allows to solve SRSA, i.e., that an adversary breaking GHR can be 
used as a black box tool to answer SRSA requests with non-negligible probability. 
 
The reduction R will behave as follows. 
 

 R is given n ← RSA(1k) and z ∈ Z*n, as well as an attacker A that (q, τA, εA)-
solves EUF-CMA(GHR), 

 R simulates G and transmits pk to A, 
 R receives signature queries from A: R will have to simulate a signing oracle 

with respect to pk at most q times, 
 A outputs a forgery (m^, s^) for GHR with probability εA, 
 R outputs non-trivial (x, e) such that z = xe mod n. 
 R will provide a perfect simulation and (τR, εR)-solve SRSA with 

 

l
A

R 2
ε

ε ≥ and ( )kpoly l
AR ,2+≤ ττ  

 
 
Simulation of Oracles 
 
The reduction has to simulate the attacker’s environment in a way that preserves (or 
does not alter too much) the distribution of all random variables which interact with 
it.  
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First the perfect simulation of key generation oracle G, signing oracle S and 
verification oracle V is provided according to the working principles. 
 
 

 
 

Figure 4: Simulating the attacker’s environment 
 
Simulation of G 
 
For each and every message mi ∈ {0, 1}l, compute H(mi). Set E = ( )∏ imH .  
 
Compute y = zE mod n and send the GHR public key (n, y) to A. 
 
Since n ← RSA(1k) (external to R) and z ∈ Z*n (external to R) are random choices, and 
z  z E is one-to-one {as E and ϕ(n) are co-prime, f(z) = zE mod n is a bijection}, (n, y) 
is perfectly indistinguishable from a random GHR public key (n ← RSA(1k), y ∈ Z*n). 
 
Therefore, the simulation of G is perfect. 
 
Simulation of S 
 
When A requests the signature of a message mi, send si = zE/H(mi) mod n. 
 
Knowing z and E, it is easy to extract a H(mi)-th root of y for any mi. A’s queries can 
be answered with perfectly valid signatures. 
 
Therefore, the simulation of S is perfect. 
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Simulation of V 
 
The signature si is verified using siH(mi) = zE mod n. The simulation of V is trivial. 
 
Therefore, the simulation of the attacker’s environment is perfect: 
 

Pr[A forges] ≥ εA 
 
Now, the forgery output by A with probability εA will be (m^, s^) where m^ is from 
the given message space and s^ = zE/H(m^) mod n. But it is mentioned earlier that with 
known z and E, R could have computed the forgery. Besides, the forgery must help 
R to get good solution for (x, e). As the forgery is not new and provides no clue to 
the solution for (x, e), it is not possible for R to come up with positive outcome. 
Hence, this is not a forgery and also not exploitable.   
 
 
Again, an alternative simulation of key generation oracle G, signing oracle S and 
verification oracle V is provided with a slight change in the working principles. 
 
Simulation of G 
 
Choose i ∈ {1, 2, ... ..., 2l} uniformly at random. 
 
For each message mj ∈ {0, 1}l, compute H(mj). Set E = ( )∏

≠ij
jmH . 

 
Compute y = zE mod n and send the GHR public key (n, y) to A. 
 
Since n ← RSA(1k) (external to R) and z ∈ Z*n (external to R) are random choices, and 
z  z E is one-to-one {as E and ϕ(n) are co-prime, f(z) = zE mod n is a bijection}, (n, y) 
is perfectly indistinguishable from a random GHR public key (n ← RSA(1k), y ∈ Z*n). 
 
Therefore, the simulation of G is still a perfect one. 
 
Simulation of S 
 
When A requests the signature of a message mj:  
 

 If j ≠ i, send si = zE/H(mj) mod n. 
 If j = i, abort the simulation experiment  

 
A’s queries can be answered with perfectly valid signatures except when the query 
message is mi. 
 
Since i is chosen in [1, 2l] independently from the attacker’s view, 
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Pr[perfect simulation] = Pr[mi ∉ Queries(A)] ll
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Simulation of V 
 
The signature si is verified using siH(mi) = zE mod n. The simulation of V is the same 
and again trivial. 
 
Now, assume that at the end of the game, A outputs a forgery (m^, s^) with m^ = mi 
and s^ = s. Then 
 

sH(mi) = y = zE mod n 
 
As H(mi) and E are co-prime, the Bézout theorem says there must be a and b such 
that a⋅H(mi) + b⋅E = 1. Using the Extended Euclidian Algorithm, the values of a and 
b can easily be computed. Now, 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )iiiiii
mHbabmHmHabEmHaEbmHaEbmHa szszzzzzzzz ⋅=⋅=⋅=⋅=== ⋅⋅⋅+⋅1  

 
Finally, R sets x = za⋅sb and e = H(mi) and outputs a genuine solution (x, e). 
 
 
Analysis 
 
From the two different simulations, it is clear that when the simulation is perfect, A 
can never produce a valid forgery which will eventually be used by R for obtaining 
the solution pair (x, e). On the other hand, in case of the alternative simulation, the 
probability of a successful forgery depends on number of conditions (i.e., lucks). 
These include: 
 

• A will not query the message mi which is chosen at random during the 
simulation of G. If A queries message mi, the system will abort and A is not 
expected to provide a forgery. 

• The message in A’s forgery (m^, s^) must be mi i.e., m^ = mi.   
 
Therefore, it can be stated that with the accurate implementation of GHR scheme, it 
is not possible for R to obtain the solution even with the help of A. A is assumed to 
be able to break the GHR scheme, but actually A is not capable of doing so. It is vivid 
that if A could break the scheme easily, solving the SRSA problem by R would be 
easy. 
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On the other hand, if we analyze the attack model available to A, we can verify that 
A has the GHR public key (n, y) and at most q message-signature pair (mw, sw), 
where 1 ≤ w ≤ q. 
 
Now, if A wants to put forward a forgery for a message m^; a signature can be 
obtained by A applying the formula s^ = zE/H(m^) mod n. For doing that, A must need 
the value of z and E. 
 
With the available information, i.e., values of (n, y); A can only get the values of z 
and E solving the equation y = zE mod n, which is nothing but the SRSA problem 
(assuming that A has the specific hash function too). From the mathematical 
assumption as well as the simulations; it is clear that, solving SRSA is hard (even 
with the help of A that is capable of forging the scheme). Therefore, it can be said 
that since the SRSA problem is assumed hard, producing forgery on the scheme is 
also hard. 
 
 
Finally, we have got, 
 

(a) If A could forge on the scheme under chosen message attacks easily, solving 
the SRSA problem by R would be easy. 

(b) The SRSA problem is presumed hard, producing forgery on the GHR 
signature scheme is also hard. 

 
Hence, it is proved that SRSA  ≤  EUF-CMA(GHR). 
 
 
Conclusion 
 
According to the requirements of getting a security proof, we have  
 

 defined a security notions for signature scheme,  
 made precise mathematical assumption (SRSA is hard),  
 described the operation modes of GHR signature scheme and  
 finally performed a reduction from the underlying problem of the 

mathematical assumption (SRSA problem) to existentially forging of the GHR 
signature scheme under chosen message attacks. 

 
Therefore, it is evident that GHR signature scheme is secure.   


