3. Assignment: Security of RSA

(Hand in solutions on Tuesday, December 4th during the lecture)

Exercise 3.1 (Polynomial-time reductions). (6 points)

If you recall from a previous lecture, we had found four problems related to the breaking of RSA. Given a public key (N, e), these four problems were:

- B_1: factor N as the product of two primes p and q.
- B_2: compute d, the multiplicative inverse of e modulo $\varphi(N)$.
- B_3: compute $\varphi(N)$.
- B_4: compute the plaintext x for a given encrypted message $y = x^e$.

We had then proved that we had several polynomial-time reductions between those different problems. Namely:

$$B_4 \leq_P B_2 \equiv_P B_3 \leq_P B_1.$$

We also said that we had $B_1 \leq_P B_3$, but left the proof as an exercise. Well, here we are now!

(i) Given a “black-box” algorithm $A_{\varphi}(N, e)$ that computes $\varphi(N)$, give a polynomial-time algorithm which, given the public key (N, e) of an instance of RSA, factors N.

Hint: Recall that N is an RSA modulus, i.e. the product of two distinct prime numbers p and q. Hence $\varphi(N)$ has a particular form which you may use to retrieve p and q.

Cryptography

JOACHIM VON ZUR GATHEN, JÉRÉMIE DETREY
Exercise 3.2 (Multiplicativity attack). (6 points)

We consider an instance of RSA given by its modulus N, and its respectively public and secret exponents e and d.

Let’s take two messages x_1 and x_2 in the message space \mathbb{Z}_N and encrypt them as $y_1 = x_1^e \mod N$ and $y_2 = x_2^e \mod N$.

(i) What is the encryption y_3 of a third message x_3 satisfying $x_3 = x_1 \cdot x_2 \mod N$?

Now let’s suppose that we are the attacker and that we want to decrypt a particular message y that Alice has sent to Bob. We know that there exists an x such that $y = x^e \mod N$, but we don’t know this x.

1. (i) What is the decryption of the ciphertext $y' = y \cdot z^e \mod N$, for any $z \in \mathbb{Z}_N$?

2. (ii) Suppose we manage to find a particular z so that $y' = y \cdot z^e \mod N$ is not “suspicious-looking”, in the sense that Bob (the owner of the secret key) accepts to decrypt it for us\(^1\). Explain the details of the attack then used to retrieve x.

2. (iii) The existence of such attacks comes from the multiplicative property of RSA encryption. Find a simple way to prevent these attacks (for example using hash functions).

\(^1\)This is what we call a chosen-ciphertext attack.