Cryptography

Joachim von zur Gathen, Jérémie Detrey

4. Assignment: Computing discrete logarithms

(Hand in solutions on Tuesday, December 11th during the lecture)

Exercise 4.1 (Baby-step giant-step).

The objective of this exercise is to re-discover and understand a classical algorithm for computing discrete logarithms: the baby-step giant-step algorithm.

Before tackling the general algorithm, let's look at a simple example: we consider the multiplicative group \mathbb{Z}_{25}^{\times}and the primitive element $g=2$.
(i) How many elements are there in \mathbb{Z}_{25}^{\times}?
(ii) Using trial multiplication, compute $\operatorname{dlog}_{2}(6)$, the discrete logarithm of 6 1 in base 2 .

We now want to compute the discrete logarithm of $x=19$. But instead of using the trial multiplication method, we will use the baby-step giant-step method.
For this purpose, we first fix an integer m. For instance, let's take $m=5$ here.
(iii) Compute the value of $x \cdot g^{i}$, for i from 0 to $m-1$. These are called baby steps.
(iv) Now, compute the value of $g^{j m}$ for j from 0 to $\left\lceil\left(\# \mathbb{Z}_{25}^{\times}\right) / m\right\rceil-1$. These are the giant steps.
(v) Find a collision between baby steps and giant steps. Namely, a pair of \square integers i and j such that $x \cdot g^{i}=g^{j m}$.
(vi) Conclude on the discrete logarithm of 19 in base 2.

Now on to the general case.
(vii) Describe an algorithm for computing discrete logarithms based on the baby-step giant-step approach shown above. Keep m as a parameter of this algorithm.
(viii) What is the complexity (in terms of group operations and storage re2 quirements) of this algorithm (depending on m)?

2
(ix) What is the best choice for m ?

