Cryptography

JOACHIM VON ZUR GATHEN, JÉRÉMIE DETREY

4. Tutorial: Discrete logarithms

Exercise 4.1 (Exponentiation).

Given a group \((G, \odot)\), where \(\odot\) denotes the group law operating on \(G\), we take an element \(g \in G\) of order \(\ell\).

We define the exponentiation of \(g\) over \(G\) with respect to the \(\odot\) operation as the map

\[
\exp_g : \mathbb{Z} \longrightarrow G \quad x \longmapsto g^x = g \odot g \odot \ldots \odot g \quad (x \text{ times})
\]

(i) Show that we can also see it as a map

\[
\exp_g : \mathbb{Z}_\ell \longrightarrow G \quad x \longmapsto g^x.
\]

Solution. We take an integer \(x \in \mathbb{Z}_n\) and write \(x = x' + k \cdot \ell\), where \(x' \in \mathbb{Z}_\ell\). Since the order of \(g\) is \(\ell\), we have

\[
\exp_g(x) = g^x = g^{x+k \cdot \ell} = g^{x'} \odot g^{k \cdot \ell} = g^{x'} \odot 1_G = g^{x'} = \exp_g(x')
\]

We can then restrict ourselves to exponents modulo \(\ell\).

Exercise 4.2 (Discrete logarithm in \(\mathbb{Z}_n\)).

We consider here the additive group \((\mathbb{Z}_n, +)\), where \(n\) is a positive integer.

(i) Given an element \(g \in \mathbb{Z}_n\), define the map \(\exp_g\) over \(\mathbb{Z}_n\).

Solution. \(\exp_g\) is simply the integer multiplication modulo \(n\):

\[
\exp_g : x \longmapsto x \cdot g \mod n.
\]
Take $n = 42$ and $g = 5$.

(ii) What is the additive order of g?

Solution. The order of g is 42, since 5 is coprime to 42.

(iii) What is the discrete logarithm of 1 in base g? Namely, find an integer x such that $\exp_g(x) = 1$ in \mathbb{Z}_{42}.

Solution. $\log_5(1) = 17$, as $17 \cdot 5 \equiv 1 \pmod{42}$.

(iv) Find a general way to compute discrete logarithms over \mathbb{Z}_n. Restrict yourselves to the case when g is coprime to n.

Solution. Since g is coprime to n, we can compute g^{-1}, the multiplicative inverse of g modulo n. Then, since $\exp_g(x) = x \cdot g$, we have $\log_g(y) = y \cdot g^{-1} = \exp_{g^{-1}}(y)$.

This corresponds to a change of base: 1 is another generator of \mathbb{Z}_n, and moreover $\log_1(y) = y$. We can then write

$$\log_g(y) = \log_g(1) \cdot \log_1(y) = \log_g(1) \cdot y.$$

And since $\log_g(1) \cdot g \equiv 1 \pmod{n}$, we have that $\log_g(1) = g^{-1}$.

(v) Would \mathbb{Z}_n be a wise choice for implementing the Diffie-Hellman key exchange?

Solution. Obviously not, since we can easily break the discrete logarithm problem over such groups.

Exercise 4.3 (Discrete logarithm in \mathbb{Z}_n^\times).

We now consider the multiplicative subgroup $(\mathbb{Z}_n^\times, \times)$ of integers modulo a positive integer n.

(i) Compute the discrete logarithm in base 2 of 3 in \mathbb{Z}_{43}^\times.

Solution. $2^4 = 16 \equiv 3 \pmod{43}$, hence $\log_2(3) = 4$.

(ii) Same question in \mathbb{Z}_{23}^\times.

Solution. $2^8 = 256 \equiv 3 \pmod{23}$, hence $\log_2(3) = 8$.

(iii) What is the discrete logarithm in base 2 of 3 in \mathbb{Z}_{299}^*?

Hint: $299 = 13 \times 23$.

Solution. We are looking for an x such that $2^x \equiv 3 \pmod{299}$. Equivalently, we want $2^x \equiv 3 \pmod{13}$ and $2^x \equiv 3 \pmod{23}$. So $x \equiv 4 \pmod{12}$ and $x \equiv 8 \pmod{22}$, which gives $x = 52$.

We can check that $x^{52} \equiv 3 \pmod{299}$.