5. Tutorial: Discrete logarithms (2)

The goal of this whole exercise sheet is to compute the discrete logarithm of \(\alpha = 259 \) in base \(g = 2 \) of the subgroup of \(\mathbb{Z}_{391}^\times \) generated by \(g \). Multiple techniques are involved, hence different exercises, which are in fact more or less independent.

Exercise 5.1 (Chinese remaindering).

(i) Noting that 391 = 23 \(\cdot \) 17, what is the order of \(\mathbb{Z}_{391}^\times \)? Give also its factored expression.

(ii) Compute the order \(d \) of \(g = 2 \) in \(\mathbb{Z}_{391}^\times \). You should use only a few operations to obtain the result.

(iii) What is the order of the subgroup \(G = \langle 2 \rangle < \mathbb{Z}_{391}^\times \)?

(iv) Using the Chinese remainder theorem, show that \(G \cong S_1 \times S_2 \), where \(S_1 \) and \(S_2 \) are subgroups of \(G \), with \(\#S_1 = 11 \) and \(\#S_2 = 8 \). Give generators for \(S_1 \) and \(S_2 \).

(v) Conclude on how to compute the discrete logarithm of \(\alpha \) in \(G \), using discrete logarithms in \(S_1 \) and \(S_2 \).

Exercise 5.2 (Pollard’s \(\rho \) method).

We now focus on solving the first part of the discrete logarithm in \(G \), namely compute \(\text{dlog}_{g_1}(\alpha_1) \), with \(\alpha_1 = \alpha^{d/d_1} \).

(i) Recall Pollard’s \(\rho \) method to compute discrete logarithms.

(ii) Apply it to our example, starting for instance with \(x_0 = y_0 = g_1^2 \cdot \alpha_1^3 \).
Exercise 5.3 (Pohlig-Hellman algorithm).

Now only the computation of the discrete logarithm in S_2 remains.

We first consider the subgroup S'_2 of S_2 generated by $g'_2 = g_2^{2^2}$.

(i) Show that $z \in S_2$ is in S'_2 if and only if $z^2 = 1$.

(ii) What is the order of this subgroup?

(iii) Show that $x_0 = \alpha_2^{2^2}$ is in S'_2.

(iv) Compute the discrete logarithm a_0 of x_0 in base g'_2 in S'_2.

(v) Similarly, compute a_1, the discrete logarithm of $x_1 = \alpha_2^{2^1} \cdot g_2^{-a_0 \cdot 2^1}$. Verify first that x_1 is in S'_2.

(vi) Same question for a_2, the discrete logarithm of $x_2 = \alpha_2^{2^0} \cdot g_2^{-a_1 \cdot 2^1 - a_0 \cdot 2^0}$.

(vii) Conclude on the discrete logarithm of α_2 in S_2.

Exercise 5.4 (Putting it all together).

(i) What is the discrete logarithm k of α in G?