Cryptography

Joachim von zur Gathen, Jérémie Detrey

6. Tutorial: Cryptographic hash functions

Exercise 6.1 (Derivated hash functions).
Let $h_{0}:\{0,1\}^{2 m} \rightarrow\{0,1\}^{m}$ be a collision-resistant hash function with $m \in \mathbb{N}_{>0}$.
Note: in the following, "|" denotes the concatenation of bit strings.
(i) We construct a hash function $h_{1}:\{0,1\}^{4 m} \rightarrow\{0,1\}^{m}$ as follows: Interpret the bit string $x \in\{0,1\}^{4 m}$ as $x=\left(x_{1} \mid x_{2}\right)$, where both $x_{1}, x_{2} \in\{0,1\}^{2 m}$ are words with $2 m$ bits. Then compute the hash value $h_{1}(x)$ as

$$
h_{1}(x)=h_{0}\left(h_{0}\left(x_{1}\right) \mid h_{0}\left(x_{2}\right)\right) .
$$

Show that h_{1} is collision-resistant.
(ii) Let $i \in \mathbb{N}, i \geq 1$. We define a hash function $h_{i}:\{0,1\}^{2^{i+1} m} \rightarrow\{0,1\}^{m}$ recursively using h_{i-1} in the following way: Interpret the bit string $x \in$ $\{0,1\}^{2^{i+1} m}$ as $x=\left(x_{1} \mid x_{2}\right)$, where both $x_{1}, x_{2} \in\{0,1\}^{2^{i} m}$ are words with $2^{i} m$ bits. Then the hash value $h_{i}(x)$ is defined as

$$
h_{i}(x)=h_{0}\left(h_{i-1}\left(x_{1}\right) \mid h_{i-1}\left(x_{2}\right)\right) .
$$

Show that h_{i} is collision-resistant.

Exercise 6.2 (DLP and hash functions).
The numbers $q=7541$ and $p=15083=2 q+1$ are prime. We choose the group $G=\{z \mid$ ord $z \mid q\}<\mathbb{Z}_{p}^{\times}$. Let $\alpha=604$ and $\beta=3791$ be elements of G.
(i) Show that both elements α and β have order q in \mathbb{Z}_{p}^{\times}and (thus) generate the same subgroup.
(ii) Consider the hash function

$$
\begin{aligned}
h: \mathbb{Z}_{q} \times \mathbb{Z}_{q} & \longrightarrow G \\
\left(x_{1}, x_{2}\right) & \longmapsto \alpha^{x_{1}} \beta^{x_{2}} .
\end{aligned}
$$

Compute $h(7431,5564)$ and $h(1459,954)$.
(iii) Find $\log _{\alpha} \beta$.
(iv) Prove that for any p, q (both prime with q dividing $p-1$) finding a collision of h solves a discrete logarithm in the order q subgroup of \mathbb{Z}_{p}^{\times}(which is thought to be difficult...).

Exercise 6.3 (Hash functions for long messages).
We want to use the previous discrete-logarithm-based hash function to build a hash function for messages of arbitrary length, as seen in the lecture.

First of all, we need to tweak our original hash function so that it complies with a few requirements: since we are now working at the bit level, we need a hash function \tilde{h} from \mathbb{Z}_{2}^{m} to \mathbb{Z}_{2}^{t}.
(i) What are the conditions on m and t so that \tilde{h} remains collision-resistant?
(ii) Compute m and t.
(iii) Recall the method for hashing long messages. Give the corresponding pseudo-code.
(iv) Hash the two bit strings 100 and 110001101001001110.
(v) Find a collision of \tilde{h} and of h.
(vi) Conclude on the discrete logarithm of β in base α.

