Electronic elections, winter 2007

MICHAEL NÜSKEN

3. Exercise sheet Hand in solutions until Sunday, 23 December 2007.

Exercise 3.1 (Security of a re-encryption mixnet).

(12+3 points)

We want to prove that the security of a re-encryption mixnet based on ElGamal can be reduced to the security of the underlying ElGamal encryption scheme. In other words: if we can break the anonymity of the mixnet then we can also break ElGamal encryption.

In the entire exercise we only consider a key-only attack, ie. the attacker only gets the setup.

Note that the security of the ElGamal encryption scheme is equivalent to the so-called decisional Diffie-Hellman problem for the underlying group G, which is given four elements $g, g^{\alpha}, g^{\beta}, g^{\gamma} \in G$ decide whether $\alpha\beta = \gamma$ (Tsiounis & Yung 1998).

We work in some (multiplicatively written) group G generated by an element g of order q, all this specified in the global setup. The receiver of the mixnet has the private key $\alpha \in \mathbb{Z}_q$ which defines the public key $a = g^{\alpha} \in G$. We use $\mathrm{enc}_a(x,\varrho) = (g^{\varrho},a^{\varrho}x)$ and $\mathrm{dec}_{\alpha}(r,y) = yr^{-\alpha}$.

(i) Check that $\operatorname{dec}_{\alpha} \operatorname{enc}_{a}(x, \varrho) = x$.

- 1
- The attacker \mathcal{A} is given input and output of one particular mix, ie. a list of encrypted messages $(g^{\varrho_i}, a^{\varrho_i}x_i)_{i\in I}$ and a re-encrypted and re-order list $(g^{\varrho'_i}, a^{\varrho'_i}x_{\sigma(i)})_{i\in I}$ where σ is a permutation of I. The random exponents ϱ_i , ϱ'_i and the permutation σ are unknown to the attacker.
- The attacker tries to determine $\sigma^{-1}(i_0)$ for some element $i_0 \in I$.
- Suppose that he can always do so.
- \circ The reducer, that is you, is given four elements (g, a, g^{ϱ}, b) and tries to determine whether $b = a^{\varrho}$. The reducer is allowed to query the attacker and prepare the attacker's entire environment, ie. all its inputs, also those coming from oracles.

2

2

1

1

+3

- o You feed the attacker with
 - the mix's input $c_0=(g^\varrho,bx)$, $c_1=(g^{\varrho_1},a^{\varrho_1}x)$, and
 - the mix's output $c_0' = (g^{\delta_0} g^{\varrho}, a^{\delta_0} bx), c_1' = (g^{\varrho_1'}, a^{\varrho_1'} x).$
- (ii) Argue that we can execute all operations in polynomial time. (Where a call to the attacker only counts as a single time unit.)
 - (iii) Prove that the ciphertext c'_i is a re-encryption of ciphertext c_i . In other words, c_0 and c'_0 are both encryptions of bx, and c_1 and c'_1 are both encryptions of x.
 - (iv) Decrypting c_0 we get $dec_{\alpha}(c_0) = bxa^{-\varrho}$. Prove that this is equal to x if and only if $b = a^{\varrho}$.
 - (v) Prove that if $b \neq a^{\varrho}$ the attacker will answer that $\sigma^{-1}(1) = 1$.
 - (vi) Prove that if $b=a^\varrho$ the attacker can only guess and will answer 0 or 1 at random. (Assume that the attacker chooses uniformly if there is an ambiguity.)

Now, you play the above game twice (say), and answer " $b \neq a^{\varrho}$ " if and only if the attacker answers $\sigma^{-1}(1) = 1$ in both queries.

- (vii) Prove that you give the correct answer with probability at least 75%.
 - (viii*) Suppose that the attacker only succeeds with a considerable advantage over guessing, say $\operatorname{prob}(\mathcal{A}(\dots) = "\sigma^{-1}(1) = 1") > \frac{3}{4}$. (Here, n is the security parameter, say the length q in bits, and c is some constant depending on \mathcal{A} only.) Prove that you still answer correctly with probability at least $\frac{9}{16}$.

Refining all this leads to the theorem:

Theorem. Assume that at least one mix of an ElGamal re-encryption mixnet is uncorrupted.

If the decisional Diffie-Hellman problem is intractable, then the mixnet is (computationally) anonymous.

If ElGamal encryption is secure against a key-only attacker trying to distinguish the encryptions of (one of) two self-chosen plaintexts, then the mixnet is (computationally) anonymous.

Exercise 3.2 (Secret sharing).

(2+4 points)

Fix p = 1009 and consider polynomials over the field \mathbb{F}_p with p elements. Let u_i , $0 \le i < 8$ be chosen at random but all different, say $u_0 = -1$, $u_1 = 5$, $u_2 = 17$, $u_3 = 42$, $u_4 = 97$, $u_5 = 127$, $u_6 = 571$, $u_7 = 800$. A polynomial of degree less than 8 has been determined with f(0) being a secret key to a safe containing $1\,000\,000 \in$. Secret bearer i gets the share $(u_i, f(u_i))$. The secret bearers 1 through 7 collide and so together they know $f(u_1) = 1$, $f(u_2) = 120$, $f(u_3) = 712$, $f(u_4) = 95$, $f(u_5) = 761$, $f(u_6) = 20$, $f(u_7) = 841$. Only the secret bearer 0 stays honest.

- (i) Suppose due to an indescretion the seven learn that $u_0 = -1$, yet not the value $f(u_0)$. Make (or prove) a statistics: For every value $s \in \mathbb{F}_p$ count the number of share values $f(u_0)$ leading to this secret.
- (ii) Suppose due to an indescretion the seven learn that $f(u_0) = 194$, yet not u_0 . Make a statistics: For every value $s \in \mathbb{F}_p$ count the number of share nodes u_0 leading to this secret.
- (iii) Compare the results: is one of the indiscretions a problem for scret bearer 0? Which one? Why? Can you describe "how much" information was disclosed?

Note that MuPAD has a function interpolate which also works over a finite field Dom::GaloisField(p);

References

YIANNIS TSIOUNIS & MOTI YUNG (1998). On the security of ElGamal based encryption. In *Public Key Cryptography*, HIDEKI IMAI & YULIANG ZHENG, editors, number 1431 in Lecture Notes in Computer Science, 117–134. Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-64693-0. ISSN 0302-9743. URL http://dx.doi.org/10.1007/BFb0054009.