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7. Exam preparation sheet

You will find the following remarks on the exam:

Verify whether your exam exercise sheets are complete: It should contain Exercise 1 to
Exercise 7. Insert your name and matrikel (student number) on each sheet. Approaches,
solutions and all side calculations must be written to the given paper. Please use also the
back sides. If you need extra paper ask the survisor. Do not remove the staple!

Do write with blue or black ink!
Do NOT use a pencil or any other erasable pen.

The exam must be handled independently. Permitted auxiliary means are: writing mate-
rials, a pocket calculator (non-programmable, without division with remainder, without
linear algebra software), and a cheat sheet, DIN A4, two-sided, written only with your
own handwriting. Any other utilities, even own paper, are not permitted.

An attempt at deception leads to failure for this exam and possibly other measures
— even if the attempt is only detected later.

Exercise 1 (Democratic elections). (0 points)

What are the main properties of democratic elections? Sketch them and their inter-
relations. (In particular: Which properties do we need for free elections, which for
fair elections?)

Exercise 2 (Tool: The Extended Euclidean Algorithm). (0 points)

(i) Find s, t ∈ Z such that s · 17 + t · 39 = 1.

(ii) Find s, t ∈ Z such that s · 14 + t · 55 = 1.

(iii) Find s, t ∈ F2[x] such that s · (x + x3 + x5) + t · (1 + x + x3 + x4 + x8) = 1.

Exercise 3 (RSA). (0 points)

Let’s ‘play’ at RSA. Use the primes p = 71, q = 79 and e = 17.

(i) Compute secret and public key.

(ii) Explain how to encrypt x = 991.

(iii) Explain how to decrypt y = 99.

(iv) Explain why encrypting x giving y and then decrypting the y giving z, al-
ways gives z = x. Go back to the theorem of Lagrange, Euler or Fermat.
(Cite the theorem that you use.)
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Exercise 4 (Blind signatures). (0 points)

The following questions describe a blinding protocol based on the RSA signature
scheme. Let B have the RSA public key (N, e) and secret key (N, d). In order to
receive blind signatures from B, party A uses an own blinding key b ∈ Z

×

N :

Protocol. Blind signature.

Input: Party A has a message x ∈ Z
×

N .
Output: Party A gets a signature S(x) such that S(x)e = x in Z

×

N where (N, e) is
B’s public key.

1. A chooses b←−− Z
×

N and sends X = x · be ∈ ZN to B.
2. B produces the signature S(X) = Xd ∈ Z

×

N and sends it to A.
3. A recovers S(x) = b−1 · S(X) ∈ Z

×

N .

(i) Let N = p·q where p = 10000000000037, q = 1000001000021and e = 216+1 =
65537. Compute the secret exponent d of B. Let k ∈ ZN be a random number
and m ∈ ZN be the integer value of the ASCII text: blinded.

(a) Compute the blinded message M .

(b) Compute B’s blinded signature S(M) and also B’s clear text signature
S′(m), using B’s secret key d.

(c) Compute the clear text signature S(m) such as A recovers it using k.
Compare this signature to the value S′(m) above.

Exercise 5 (ElGamal signatures). (0 points)

We choose a prime number p = 12347, q = 6173, and the group G = 〈g〉 < Z
×

p

with g = 22. We use α = 5432 as the secret part of the key K = (p, q, g, α, a). The
function ∗ : 〈g〉 → Zq is defined by ∗(k mod p) = k mod q for 0 < k < p. The hash
function is essentially the identity: hash(x) = x mod q. The message x to be signed
consists of the least significant four digits of your student registration number. Use
β = 399 as your random number from Z

×

p−1. Example: If the student registration
number is 1234567, then x = 4567.

(i) 2 Show: the order of g and the size of G is q,

or better: show that h = 2 generates Z
×

p and conclude the prior from it. (Ie.
# 〈h〉 = p− 1.)

(ii) Compute the public key a = gα ∈ G.

(iii) Compute the signature sig
K

(x, β) = (x, b, γ).

(iv) Verify your signature.
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Exercise 6 (Security of a re-encryption mixnet). (0 points)

We want to prove that the security of a re-encryption mixnet based on ElGamal
can be reduced to the security of the underlying ElGamal encryption scheme. In
other words: if we can break the anonymity of the mixnet then we can also break
ElGamal encryption.

In the entire exercise we only consider a key-only attack, ie. the attacker only gets
the setup.

Note that the security of the ElGamal encryption scheme is equivalent to the so-
called decisional Diffie-Hellman problem for the underlying group G, which is
given four elements g, gα, gβ, gγ ∈ G decide whether αβ = γ (?).

We work in some (multiplicatively written) group G generated by an element g of
order q, all this specified in the global setup. The receiver of the mixnet has the
private key α ∈ Zq which defines the public key a = gα ∈ G. We use enca(x, %) =
(g%, a%x) and decα(r, y) = yr−α.

(i) Check that decα enca(x, %) = x.

◦ The attacker A is given input and output of one particular mix, ie. a list
of encrypted messages (g%i , a%ixi)i∈I and a re-encrypted and re-order list
(g%′

i , a%′

ixσ(i))i∈I where σ is a permutation of I . The random exponents %i,
%′i and the permutation σ are unknown to the attacker.

◦ The attacker tries to determine σ−1(i0) for some element i0 ∈ I .

◦ Suppose that he can always do so.

◦ The reducer, that is you, is given four elements (g, a, g%, b) and tries to de-
termine whether b = a%. The reducer is allowed to query the attacker and
prepare the attacker’s entire environment, ie. all its inputs, also those com-
ing from oracles.

◦ You feed the attacker with

– the mix’s input c0 = (g%, bx), c1 = (g%1 , a%1x), and

– the mix’s output c′0 = (gδ0g%, aδ0bx), c′1 = (g%′

1 , a%′

1x).

(ii) Argue that we can execute all operations in polynomial time. (Where a call
to the attacker only counts as a single time unit.)

(iii) Prove that the ciphertext c′i is a re-encryption of ciphertext ci. In other words,
c0 and c′0 are both encryptions of bx, and c1 and c′1 are both encryptions of x.

(iv) Decrypting c0 we get decα(c0) = bxa−%. Prove that this is equal to x if and
only if b = a%.

(v) Prove that if b 6= a% the attacker will answer that σ−1(1) = 1.

(vi) Prove that if b = a% the attacker can only guess and will answer 0 or 1 at ran-
dom. (Assume that the attacker chooses uniformly if there is an ambiguity.)



4

Now, you play the above game twice (say), and answer “b 6= a%” if and only if the
attacker answers σ−1(1) = 1 in both queries.

(vii) Prove that you give the correct answer with probability at least 75%.

(viii*) Suppose that the attacker only succeeds with a considerable advantage over
guessing, say prob(A(. . . ) = “σ−1(1) = 1”) > 3

4 . (Here, n is the security
parameter, say the length q in bits, and c is some constant depending on A
only.) Prove that you still answer correctly with probability at least 9

16 .

Refining all this leads to the theorem:

Theorem. Assume that at least one mix of an ElGamal re-encryption mixnet is
uncorrupted.

If the decisional Diffie-Hellman problem is intractable, then the mixnet is (compu-
tationally) anonymous.

If ElGamal encryption is secure against a key-only attacker trying to distinguish
the encryptions of (one of) two self-chosen plaintexts, then the mixnet is (compu-
tationally) anonymous.

Exercise 7 (An electronic voting scheme). (0 points)

The scheme by Chaum (1981) proceeds in three stages.

Registration Each voter submits a temporary (one-time) public encryption key
through a decryption mixnet to a bulletin board.

Voting The voter encrypts his vote with the temporary private encryption key
and submits it together with the temporary public encryption key through a
decryption mixnet to another bulletin board.

Tallying All votes are open on the bulletin board: so just inspect that!

(i) Explain why the voting is anonymous.

(ii) Explain why the voter does not have a receipt.

(iii) How is eligibility granted?

(iv) Which problems remain to be solved?


