
B-it Bridging Course (SS05)

Lecturer: L. El Aimani

Assignment 1

1 Solving Recurrences

1. CN = CN

2

+ N for N ≥ 2 with C1 = 0

The recurrence is defined when N = 2n,i.e, when N is a power of 2 In
fact:

CN = CN

2

+ N = CN

4

+
N

2
+ N

= C N

2n
+

N

2n−1
+ · · · +

N

2
+ N

= C1 + N(2(1 −
1

2n
))

= 2N

If the sum N + N

2
+ N

4
+ N

8
+ · · · is infinite, it evaluates to exactely 2N .

Since we stop at 1, this value is an approximation to the exact answer.
The precise solution involves properties of the binary representation
of N .

2. CN = 2CN

2

+ N for N ≥ 2 with C1 = 0

Again, the recurrence is precisely defined only when N is a power of
2:

C2n = 2C2n−1 + 2n

C2n

2n
=

C2n−1

2n−1
+ 1

=
C2n−2

2n−2
+ 1 + 1

...

= n

So the recurrence is about N log N

1

3. CN = 2CN

2

+ 1 for N ≥ 2 with C1 = 1

CN = 2CN

2

+ 1

= 2(2CN

2

+ 1) + 1

...

= 2n
C N

2n
+ 2n−1 + 2n−2 + · · · + 2 + 1

= 2n
C1 + 2n−1 + 2n−2 + · · · + 2 + 1

= 2n + 2n−1 + 2n−2 + · · · + 2 + 1

= 2n+1
− 1

= 2N − 1

The recurrence evaluates then to 2N (when N is a power of 2).

2 Some recursive algorithms

1. • factorial function (iterative version)

Algorithm 1. factI(n)

(a) int fact = 1;

(b) int i = 2;

(c) while (i ≤ n)
fact = fact × i++;

(d) return fact;

• factorial function (recursive version)

Algorithm 2. factR(n)

(a) (if n == 0) then return 1

(b) else return factR(n-1)× n;

• Cost: solving the recurrence CN = CN−1 results in CN = N .

2. • gcd function (iterative version)

Algorithm 3. gcdI(a,b)

(a) int r ;

(b) while (b != 0)

– r = a % b;

– a = b ;

– b = r;

(c) return (a);

2

• gcd function (recursive version)

Algorithm 4. gcdR(a,b)

(a) (if b == 0) then return a

(b) else return gcd(b,a % b);

3

