B-it Bridging Course (SS05)

Lecturer: L. EL AIMANI

Solutions

1 Assignment 1

1.1 Solving Recurrences

1. Oy =Cx + N for N > 2 with C; =0

2
The recurrence is defined when N = 2" i.e, when N is a power of 2 In
fact:

N
CNZC%—I-N:C%—FE—FN

If the sum N + % + % + % +--- is infinite, it evaluates to exactely 2/V.
Since we stop at 1, this value is an approximation to the exact answer.

The precise solution involves properties of the binary representation
of N.

2. Oy =2Cy + N for N > 2 with C; =0
2

Again, the recurrence is precisely defined only when N is a power of
2:

Con = 2Com-1 + 2"

CQ"L 02'”71
on = on—1 +1
C2n 2
oz T1+1
=N

So the recurrence is about N log N



3. Cyn=2Cy +1 for N >2 with C; =1
2

CNZQC%—I—l
:2(20%-1-1)-1-1

=2"Cx +2"71+2" 2 4 241
=2"Cy + 2" 42" R 24 ]
=" 4 2n o2 4241
=ontl_1

=2N -1

The recurrence evaluates then to 2N (when N is a power of 2).

1.2 Some recursive algorithms

1. e factorial function (iterative version)
Algorithm 1. factI(n)
(a) int fact = 1;
(b) inti = 2;
(¢) while (i < n)
fact = fact x i++;
(d) return fact;
e factorial function (recursive version)
Algorithm 2. factR(n)
(a) (if n == 0) then return 1
(b) else return factR(n-1)x n;

e Cost: solving the recurrence Cy = C'y_1 results in Cy = N.

2. e gcd function (iterative version)
Algorithm 3. gedI(a,b)
(a) int r;
(b) while (b !=0)
—r=a¥%b;
—a=b;
— b=

(c) return (a);

e gcd function (recursive version)



Algorithm 4. gcdR(a,b)
(a) (if b == 0) then return a
(b) else return ged(b,a % b);



2 Assignment 2

2.1 Recursive lists

1. Concatenation of lists
We define concat: list x list — list as the concatenation of two lists.
e length(concat(l, m)) = length(l) + length(m)

e i"(concat(l, m), j) = i*"(1,j) if 1 <j < length(l), i*"(m,j-length(l))
otherwise.

e concat(empty_list, 1) =1
e concat(cons(e, 1), m) = cons(e,concat(l,m))
2. Search of an element (present) in a list
We define search: list x element — position. Complete the following
axioms:
e content(search(l, e))=e
e search(cons(e,l), e) = head(cons(e,l))
e e # f, search(cons(e, 1), f)= succ(search(l,f))

2.2 Mathematical properties of binary trees

Property 1. A binary tree with N internal nodes has 2N links: N-1 links
to internal nodes and N+1 links to external nodes.

Proof. In any tree, each node except the root, has a unique parent, and
every edge connects a node to its parent, so there are N-1 links connecting
internal nodes. Similarly, each of the N +1 external nodes has one link, to
its unique parent. O



2.3 Assignment 3

sectionMathematical properties of binary trees

Property 2. The internal path length of a binary tree with N internal nodes
is at least N log(Z) and at most N(N —1)/2

Proof. The worst case and best case are achieved for the same trees referred

to in the discussion of a binary tree’s height’s bounds, namely, the degenerate

tree and the balanced tree.

The internal path length of the worst case treeis 0 +1+ -+ N — 1 =

N(N —-1)/2.

The best case tree has N + 1 external nodes at height no more that log N.

Multiplying these and applying the property that relates the external path of

tree with its internal path we get the bound (N +1)log N —2N < Nlog(%)
O

2.4 Tree traversal

e Preorder: node left right
nENIN3NENTNANN10MN121215191111013

e Inorder: left node right
nen3n7n1ni2niengn4nensnNgn13nN1INe

e Postorder: left right node
neN7N3N12M107M8M14M1MN131M11M9N5N2T0



3 Assignment 4

3.1 Sorting using a BST

e The tree traversal suitable in this case is the inorder one: it will give
the following sequence: aaeegilmnoprstx.

e A sorting method consists on building a BST using successive inser-
tions at the leaf and then using the inorder traversal. The first oper-
ation takes O(height of the tree * n), where n is the size of the array
to be sorted. The traversal takes O(n).

3.2 Remove operation in a BST

Algorithm 5. remove: tree x item — tree
1. remove(< x,emptyTree(),emptyTree() >, x) = emptyTree()
remove(< x, emptyTree(),d ,z) = d

remove(< x, g,emptyTree() ,z) =g

e e

if g and d are different from the empty tree then remove(< x,g,d >
;&) =< max(g), max(g),d >

Algorithm 6. max: tree — node

1. mazx (< r,g,emptyTree() >) =r.

2. if d # emptyTree(), then mazx(< r,g,d >) = maz(d)
Algorithm 7. max: tree — tree

1. max(< r,g,emptyTree() >) =g

2. if d # emptyTree() then max(< 1, g,d >) =<r,g, max(d) >

3.3 Quicksort: example

ASORTINGEXAMPLE
AAORTINGEXSMPLE
AAMELINGEOSXPTR
AAGELIEMNOPRSTX
AAEEGILMNOPRSTX



