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1 Solving Recurrences

1. CN = CN

2

+ N for N ≥ 2 with C1 = 0

The recurrence is defined when N = 2n,i.e, when N is a power of 2 In
fact:
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If the sum N + N

2
+ N

4
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8
+ · · · is infinite, it evaluates to exactely 2N .

Since we stop at 1, this value is an approximation to the exact answer.
The precise solution involves properties of the binary representation
of N .

2. CN = 2CN

2

+ N for N ≥ 2 with C1 = 0

Again, the recurrence is precisely defined only when N is a power of
2:

C2n = 2C2n−1 + 2n
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So the recurrence is about N log N
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3. CN = 2CN

2

+ 1 for N ≥ 2 with C1 = 1
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The recurrence evaluates then to 2N (when N is a power of 2).

2 Some recursive algorithms

1. • factorial function (iterative version)

Algorithm 1. factI(n)

(a) int fact = 1;

(b) int i = 2;

(c) while (i ≤ n)
fact = fact × i++;

(d) return fact;

• factorial function (recursive version)

Algorithm 2. factR(n)

(a) (if n == 0) then return 1

(b) else return factR(n-1)× n;

• Cost: solving the recurrence CN = CN−1 results in CN = N .

2. • gcd function (iterative version)

Algorithm 3. gcdI(a,b)

(a) int r ;

(b) while ( b != 0 )

– r = a % b;

– a = b ;

– b = r;

(c) return (a);
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• gcd function (recursive version)

Algorithm 4. gcdR(a,b)

(a) (if b == 0) then return a

(b) else return gcd(b,a % b);
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