
B-it Bridging Course (SS05)

Lecturer: L. El Aimani

Solutions

1 Assignment 1

1.1 Solving Recurrences

1. CN = CN

2

+ N for N ≥ 2 with C1 = 0

The recurrence is defined when N = 2n,i.e, when N is a power of 2 In
fact:

CN = CN

2

+ N = CN

4

+
N

2
+ N

= C N

2n
+

N

2n−1
+ · · · +

N

2
+ N

= C1 + N(2(1 −
1

2n
))

= 2N

If the sum N + N

2
+ N

4
+ N

8
+ · · · is infinite, it evaluates to exactely 2N .

Since we stop at 1, this value is an approximation to the exact answer.
The precise solution involves properties of the binary representation
of N .

2. CN = 2CN

2

+ N for N ≥ 2 with C1 = 0

Again, the recurrence is precisely defined only when N is a power of
2:

C2n = 2C2n−1 + 2n

C2n

2n
=

C2n−1

2n−1
+ 1

=
C2n−2

2n−2
+ 1 + 1

...

= n

So the recurrence is about N log N

1

3. CN = 2CN

2

+ 1 for N ≥ 2 with C1 = 1

CN = 2CN

2

+ 1

= 2(2CN

2

+ 1) + 1

...

= 2nC N

2n
+ 2n−1 + 2n−2 + · · · + 2 + 1

= 2nC1 + 2n−1 + 2n−2 + · · · + 2 + 1

= 2n + 2n−1 + 2n−2 + · · · + 2 + 1

= 2n+1 − 1

= 2N − 1

The recurrence evaluates then to 2N (when N is a power of 2).

1.2 Some recursive algorithms

1. • factorial function (iterative version)

Algorithm 1. factI(n)

(a) int fact = 1;

(b) int i = 2;

(c) while (i ≤ n)
fact = fact × i++;

(d) return fact;

• factorial function (recursive version)

Algorithm 2. factR(n)

(a) (if n == 0) then return 1

(b) else return factR(n-1)× n;

• Cost: solving the recurrence CN = CN−1 results in CN = N .

2. • gcd function (iterative version)

Algorithm 3. gcdI(a,b)

(a) int r ;

(b) while (b != 0)

– r = a % b;

– a = b ;

– b = r;

(c) return (a);

• gcd function (recursive version)

2

Algorithm 4. gcdR(a,b)

(a) (if b == 0) then return a

(b) else return gcd(b,a % b);

3

2 Assignment 2

2.1 Recursive lists

1. Concatenation of lists
We define concat: list × list → list as the concatenation of two lists.

• length(concat(l, m)) = length(l) + length(m)

• ith(concat(l, m), j) = ith(l,j) if 1 ≤ j ≤ length(l), ith(m,j-length(l))
otherwise.

• concat(empty list, l) = l

• concat(cons(e, l), m) = cons(e,concat(l,m))

2. Search of an element (present) in a list
We define search: list × element → position. Complete the following
axioms:

• content(search(l, e))= e

• search(cons(e,l), e) = head(cons(e,l))

• e 6= f, search(cons(e, l), f)= succ(search(l,f))

2.2 Mathematical properties of binary trees

Property 1. A binary tree with N internal nodes has 2N links: N-1 links
to internal nodes and N+1 links to external nodes.

Proof. In any tree, each node except the root, has a unique parent, and
every edge connects a node to its parent, so there are N-1 links connecting
internal nodes. Similarly, each of the N +1 external nodes has one link, to
its unique parent.

4

2.3 Assignment 3

sectionMathematical properties of binary trees

Property 2. The internal path length of a binary tree with N internal nodes
is at least N log(N

4
) and at most N(N − 1)/2

Proof. The worst case and best case are achieved for the same trees referred
to in the discussion of a binary tree’s height’s bounds, namely, the degenerate
tree and the balanced tree.
The internal path length of the worst case tree is 0 + 1 + · · · + N − 1 =
N(N − 1)/2.
The best case tree has N + 1 external nodes at height no more that log N .
Multiplying these and applying the property that relates the external path of
tree with its internal path we get the bound (N +1) log N − 2N < Nlog(N

4
)

2.4 Tree traversal

• Preorder: node left right
n0n1n3n6n7n4n8n10n12n2n5n9n11n13

• Inorder: left node right
n6n3n7n1n12n10n8n4n0n5n9n13n11n2

• Postorder: left right node
n6n7n3n12n10n8n4n1n13n11n9n5n2n0

5

3 Assignment 4

3.1 Sorting using a BST

• The tree traversal suitable in this case is the inorder one: it will give
the following sequence: a a e e g i l m n o p r s t x.

• A sorting method consists on building a BST using successive inser-
tions at the leaf and then using the inorder traversal. The first oper-
ation takes O(height of the tree * n), where n is the size of the array
to be sorted. The traversal takes O(n).

3.2 Remove operation in a BST

Algorithm 5. remove: tree × item → tree

1. remove(< x, emptyTree(), emptyTree() >,x) = emptyTree()

2. remove(< x, emptyTree(), d , x) = d

3. remove(< x, g, emptyTree() , x) = g

4. if g and d are different from the empty tree then remove(< x, g, d >
, x) =< max(g), ¯max(g), d >

Algorithm 6. max: tree → node

1. max (< r, g, emptyTree() >) = r.

2. if d 6= emptyTree(), then max(< r, g, d >) = max(d)

Algorithm 7. m̄ax: tree → tree

1. m̄ax(< r, g, emptyTree() >) = g

2. if d 6= emptyTree() then m̄ax(< r, g, d >) =< r, g, ¯max(d) >

3.3 Quicksort: example

A S O R T I N G E X A M P L E
A A O R T I N G E X S M P L E
A A M E L I N G E O S X P T R
A A G E L I E M N O P R S T X
A A E E G I L M N O P R S T X

6

