B-it Bridging Course (SS05)

Lecturer: L. EL AIMANI

Assignment 1

1 Solving Recurrences

1. Cy =Cn + N for N >2 with C; =0

2
The recurrence is defined when N = 2" i.e, when N is a power of 2 In
fact:

N
CNZC%—I-N:C%—FE—FN

N N
1
= 01+ N1 - 57))
=2N
If the sum N + % + % + % +--- is infinite, it evaluates to exactely 2.

Since we stop at 1, this value is an approximation to the exact answer.

The precise solution involves properties of the binary representation
of N.

2. Oy =2Cy + N for N > 2 with C; =0

2
Again, the recurrence is precisely defined only when N is a power of
2:

C2n = 2027171 + 2”

C27l Czn—l
on = 2n—1 +1
Czn 2
s t1+1
=N

So the recurrence is about N log N



3. Cyn=2Cy +1 for N >2 with C; =1
2

CNZQC%-FI
:2(20%4—1)4—1

=2"Cy +2"71 + 2" 4 241
=2"Cy +2" 42" P 4241
=2m 4ot on? 4 4241
—ontl _q

—2N -1

The recurrence evaluates then to 2N (when N is a power of 2).

2 Some recursive algorithms

1. e factorial function (iterative version)
Algorithm 1. factI(n)
(a) int fact = 1;
(b) inti = 2;
(¢) while (i < n)
fact = fact x i++;
(d) return fact;
e factorial function (recursive version)
Algorithm 2. factR(n)
(a) (if n == 0) then return 1
(b) else return factR(n-1)x n;

e Cost: solving the recurrence Cy = Cy_1 results in Cy = N.

2. e gcd function (iterative version)
Algorithm 3. gedI(a,b)
(a) int r ;
(b) while (b!=10)
—r=a%b;
—a=b;
— b=

(c) return (a);



e gcd function (recursive version)
Algorithm 4. gcdR(a,b)
(a) (if b == 0) then return a
(b) else return ged(b,a % b);



