Arithmetic operators for pairing-based cryptography

Jérémie Detrey

Cosec, B-IT, Bonn, Germany
jdetrey@bit.uni-bonn.de

Joint work with:
Jean-Luc Beuchat LCIS, University of Tsukuba, Japan
Nicolas Brisebarre LIP, École Normale Supérieure de Lyon, Lyon, France
Eiji Okamoto
Masaaki Shirase
Tsuyoshi Takagi LCIS, University of Tsukuba, Japan IST Lab., Future University, Hakodate, Japan IST Lab., Future University, Hakodate, Japan

Outline of the talk

- Pairings?
- Arithmetic over $\mathbb{F}_{3 m}$
- Unified operator
- Results
- Final thoughts

Elliptic curves

- E defined by an equation of the form $y^{2}=x^{3}+A x+B$

Elliptic curves

- E defined by an equation of the form $y^{2}=x^{3}+A x+B$
- $E(K)$ set of rational points over a field K

Elliptic curves

- E defined by an equation of the form $y^{2}=x^{3}+A x+B$
- $E(K)$ set of rational points over a field K
- Additive group law over $E(K)$

Elliptic curves

- E defined by an equation of the form $y^{2}=x^{3}+A x+B$
- $E(K)$ set of rational points over a field K
- Additive group law over $E(K)$
- Many applications in cryptography
- EC-based Diffie-Hellman key exchange
- EC-based Digital Signature Algorithm

Elliptic curves

- E defined by an equation of the form $y^{2}=x^{3}+A x+B$
- $E(K)$ set of rational points over a field K
- Additive group law over $E(K)$
- Many applications in cryptography
- EC-based Diffie-Hellman key exchange
- EC-based Digital Signature Algorithm

- But there's more: bilinear pairings

Bilinear pairings

- $G_{1}=\langle P\rangle$ an additively-written group
- G_{2} a multiplicatively-written group

Bilinear pairings

- $G_{1}=\langle P\rangle$ an additively-written group
- G_{2} a multiplicatively-written group
- A bilinear pairing on $\left(G_{1}, G_{2}\right)$ is a map

$$
\hat{e}: G_{1} \times G_{1} \rightarrow G_{2}
$$

that satisfies the following conditions:

- computability: ê can be efficiently computed
- non-degeneracy: $\hat{e}(P, P) \neq 1_{G_{2}}$
- bilinearity: for all Q_{1}, Q_{2} and $R \in G_{1}$,

$$
\hat{e}\left(Q_{1}+Q_{2}, R\right)=\hat{e}\left(Q_{1}, R\right) \hat{e}\left(Q_{2}, R\right) \quad \text { and } \quad \hat{e}\left(R, Q_{1}+Q_{2}\right)=\hat{e}\left(R, Q_{1}\right) \hat{e}\left(R, Q_{2}\right)
$$

Bilinear pairings

- $G_{1}=\langle P\rangle$ an additively-written group
- G_{2} a multiplicatively-written group
- A bilinear pairing on $\left(G_{1}, G_{2}\right)$ is a map

$$
\hat{e}: G_{1} \times G_{1} \rightarrow G_{2}
$$

that satisfies the following conditions:

- computability: ê can be efficiently computed
- non-degeneracy: $\hat{e}(P, P) \neq 1_{G_{2}}$
- bilinearity: for all Q_{1}, Q_{2} and $R \in G_{1}$,

$$
\hat{e}\left(Q_{1}+Q_{2}, R\right)=\hat{e}\left(Q_{1}, R\right) \hat{e}\left(Q_{2}, R\right) \quad \text { and } \quad \hat{e}\left(R, Q_{1}+Q_{2}\right)=\hat{e}\left(R, Q_{1}\right) \hat{e}\left(R, Q_{2}\right)
$$

- Immediate property: for any integer a,

$$
\hat{e}(a P, P)=\hat{e}(P, a P)=\hat{e}(P, P)^{a}
$$

Pairings in cryptography

- At first, used to reduce discrete logarithm problems to simpler instances
- Menezes-Okamoto-Vanstone (MOV) attack, 1993

Pairings in cryptography

- At first, used to reduce discrete logarithm problems to simpler instances
- Menezes-Okamoto-Vanstone (MOV) attack, 1993
- One-round three-party key agreement (Joux, 2000)
- Identity-based encryption
- Boneh-Franklin, 2001
- Sakai-Kasahara, 2001
- ...
- Short signatures
- Boneh-Lynn-Shacham (BLS), 2001
- Zang-Safavi-Naini-Susilo (ZSS), 2004
- ...

Pairings over elliptic curves

- E defined over a finite field $\mathbb{F}_{p^{m}}$, with p prime and $m \geq 1$
- An integer ℓ not divisible by p

Pairings over elliptic curves

- E defined over a finite field $\mathbb{F}_{p^{m}}$, with p prime and $m \geq 1$
- An integer ℓ not divisible by p

- Multiplicative group, ℓ-th roots of unity: $G_{2}=\mu_{\ell} \subset \mathbb{F}_{p^{k m}}^{*}$
- k is the embedding degree of the curve E

Pairings over elliptic curves

- E defined over a finite field $\mathbb{F}_{p^{m}}$, with p prime and $m \geq 1$
- An integer ℓ not divisible by p

- Multiplicative group, ℓ-th roots of unity: $G_{2}=\mu_{\ell} \subset \mathbb{F}_{p^{k} m}^{*}$
- k is the embedding degree of the curve E

$$
\hat{e}: E\left(\mathbb{F}_{p^{m}}\right)[\ell] \times E\left(\mathbb{F}_{p^{m}}\right)[\ell] \rightarrow \mu_{\ell}
$$

Pairings over elliptic curves

- Which embedding degree?

Pairings over elliptic curves

- Which embedding degree?
- ordinary curves? usually very large k

Pairings over elliptic curves

- Which embedding degree?
- ordinary curves? usually very large k
- supersingular curves?

Finite field $\mathbb{F}_{p^{m}}$	Maximal k
m even	3
m odd, $p=2$	4
m odd, $p=3$	6
m odd, $p>3$	2

Pairings over elliptic curves

- Which embedding degree?
- ordinary curves? usually very large k
- supersingular curves?

Finite field $\mathbb{F}_{p^{m}}$	Maximal k
m even	3
m odd, $p=2$	4
m odd, $p=3$	6
m odd, $p>3$	2

Pairings over elliptic curves

- Which embedding degree?
- ordinary curves? usually very large k
- supersingular curves?

Finite field $\mathbb{F}_{p^{m}}$	Maximal k
m even	3
m odd, $p=2$	4
m odd, $p=3$	6
m odd, $p>3$	2

- Which pairing?
- Weil pairing
- Tate pairing
- η_{T} pairing
- Ate pairing

Pairings over elliptic curves

- Which embedding degree?
- ordinary curves? usually very large k
- supersingular curves?

Finite field $\mathbb{F}_{p^{m}}$	Maximal k
m even	3
m odd, $p=2$	4
m odd, $p=3$	6
m odd, $p>3$	2

- Which pairing?
- Weil pairing
- Tate pairing
- η_{T} pairing
- Ate pairing

$\eta_{\text {T }}$ pairing in characteristic 3

$$
\hat{\eta_{T}}: E\left(\mathbb{F}_{3^{m}}\right)[\ell] \times E\left(\mathbb{F}_{3^{m}}\right)[\ell] \rightarrow \mu_{\ell} \subset \mathbb{F}_{3^{6 m}}
$$

- Need for arithmetic over:
- $\mathbb{F}_{3 m}$
- $\mathbb{F}_{36 m}$

$\eta_{\text {T }}$ pairing in characteristic 3

$$
\hat{\eta_{T}}: E\left(\mathbb{F}_{3^{m}}\right)[\ell] \times E\left(\mathbb{F}_{3^{m}}\right)[\ell] \rightarrow \mu_{\ell} \subset \mathbb{F}_{3^{6 m}}
$$

- Need for arithmetic over:
- $\mathbb{F}_{3 m}$
- $\mathbb{F}_{3^{\circ m}}$ arithmetic on the underlying field $\mathbb{F}_{3 m}$

$\eta_{\text {T }}$ pairing in characteristic 3

$$
\hat{\eta_{T}}: E\left(\mathbb{F}_{3^{m}}\right)[\ell] \times E\left(\mathbb{F}_{3^{m}}\right)[\ell] \rightarrow \mu_{\ell} \subset \mathbb{F}_{3^{6 m}}
$$

- Need for arithmetic over:
- $\mathbb{F}_{3 m}$
- $\mathbb{F}_{36 m}$ arithmetic on the underlying field $\mathbb{F}_{3 m}$
- Operations over \mathbb{F}_{3} :

Operation	Count	$m=97$
$+/-$	$121\left\lfloor\frac{m}{4}\right\rfloor+186$	3090
\times	$25\left\lfloor\frac{m}{4}\right\rfloor+79$	679
a^{3}	$17\left\lfloor\frac{m}{2}\right\rfloor+9$	825
a^{-1}	1	1

$\eta_{\text {T }}$ pairing in characteristic 3

$$
\hat{\eta_{T}}: E\left(\mathbb{F}_{3^{m}}\right)[\ell] \times E\left(\mathbb{F}_{3^{m}}\right)[\ell] \rightarrow \mu_{\ell} \subset \mathbb{F}_{36 m}
$$

- Need for arithmetic over:
- $\mathbb{F}_{3 m}$
- $\mathbb{F}_{30 m}$ arithmetic on the underlying field $\mathbb{F}_{3 m}$
- Operations over $\mathbb{F}_{3 m}$:

Operation	Count	$m=97$
$+/-$	$121\left\lfloor\frac{m}{4}\right\rfloor+186$	3090
\times	$25\left\lfloor\frac{m}{4}\right\rfloor+79$	679
a^{3}	$17\left\lfloor\frac{m}{2}\right\rfloor+9$	825
a^{-1}	1	1

- Arithmetic over \mathbb{F}_{3} :
- Polynomial basis: $\mathbb{F}_{3^{m}} \cong \mathbb{F}_{3}[x] /(f(x))$
- Degree- m irreducible polynomial $f(x)$ carefully chosen

Addition over $\mathbb{F}_{\mathbf{3}^{m}}$

Addition over $\mathbb{F}_{\mathbf{3}^{m}}$

- coefficient-wise addition over \mathbb{F}_{3}

Addition over $\mathbb{F}_{3}{ }^{m}$

- coefficient-wise addition over \mathbb{F}_{3}
- addition over \mathbb{F}_{3} : small look-up table

Addition, subtraction and accumulation over $\mathbb{F}_{3^{m}}$

- sign selection: multiplication by 1 or 2

$$
-a(x) \equiv 2 a(x) \quad(\bmod 3)
$$

- feedback loop for accumulation

Multiplication over $\mathbb{F}_{3 \mathrm{~m}}$

- Parallel-serial multiplication
- multiplicand loaded in a parallel register
- multiplier loaded in a shift register
- Most significant coefficients first
- D coefficients processed at each iteration: $\left\lceil\frac{m}{D}\right\rceil$ iterations per multiplication

Multiplication over $\mathbb{F}_{3}{ }^{m}$

- partial product generator (PPG): m multiplications over \mathbb{F}_{3}
- multiplication by x^{i} : only wiring
- simple modular reductions

Cubing over $\mathbb{F}_{3 \mathrm{~m}}$

- Cubing in characteristic 3 is the Frobenius map
- We compute the normal form of $a(x)^{3} \bmod f(x)$

Cubing over $\mathbb{F}_{3 \mathrm{~m}}$

- Cubing in characteristic 3 is the Frobenius map
- We compute the normal form of $a(x)^{3} \bmod f(x)$
- Example: $m=97$ and $f(x)=x^{97}+x^{12}+2$

$$
\begin{aligned}
a(x)^{3} \bmod f(x) & =\left(a_{32} x^{96}+a_{64} x^{95}+a_{96} x^{94}+\cdots+a_{33} x^{2}+a_{65} x+a_{0}\right) \times 1 \\
& +\left(0+a_{60} x^{95}+a_{88} x^{94}+\cdots+0+a_{61} x+a_{89}\right) \times 1 \\
& +\left(0+a_{60} x^{95}+a_{92} x^{94}+\cdots+0+a_{61} x+a_{93}\right) \times 1
\end{aligned}
$$

Cubing over $\mathbb{F}_{\mathbf{3 m}}$

- Cubing in characteristic 3 is the Frobenius map
- We compute the normal form of $a(x)^{3} \bmod f(x)$
- Example: $m=97$ and $f(x)=x^{97}+x^{12}+2$

$$
\begin{aligned}
a(x)^{3} \bmod f(x) & =\left(a_{32} x^{96}+a_{64} x^{95}+a_{96} x^{94}+\cdots+a_{33} x^{2}+a_{65} x+a_{0}\right) \times 1 \\
& +\left(0+a_{60} x^{95}+a_{88} x^{94}+\cdots+0+a_{61} x+a_{89}\right) \times 1 \\
& +\left(0+a_{60} x^{95}+a_{92} x^{94}+\cdots+0+a_{61} x+a_{93}\right) \times 1 \\
& =w_{1} \cdot \nu_{1}(x)+w_{2} \cdot \nu_{2}(x)+w_{3} \cdot \nu_{3}(x)
\end{aligned}
$$

- Required hardware:
- only wires to compute the $\nu_{i}(x)$'s
- possibly multiplications over \mathbb{F}_{3}
- multi-operand addition over $\mathbb{F}_{3 m}$

Cubing over $\mathbb{F}_{\mathbf{3}^{m}}$

- feedback loop for successive cubings
- sign selection for computing either $a(x)^{3}$ or $-a(x)^{3}$

Inversion over $\mathbb{F}_{3 \mathrm{~m}}$

- Extended Euclidean algorithm?

Inversion over $\mathbb{F}_{3 \mathrm{~m}}$

- Extended Euclidean algorithm?
- fast computation
- ... but need for additional hardware

Inversion over $\mathbb{F}_{3 \mathrm{~m}}$

- Extended Euclidean algorithm?
- fast computation
- ... but need for additional hardware
- Preferred solution: Fermat's little theorem

$$
a(x)^{-1}=a(x)^{3^{m}-2} \text { on } \mathbb{F}_{3^{m}}
$$

Inversion over $\mathbb{F}_{\mathbf{3 m}}$

- Extended Euclidean algorithm?
- fast computation
- ... but need for additional hardware
- Preferred solution: Fermat's little theorem

$$
a(x)^{-1}=a(x)^{3^{m}-2} \text { on } \mathbb{F}_{3 m}
$$

- algorithm by Itoh and Tsujii
- requires only multiplications and cubings over $\mathbb{F}_{3^{m}}$

Inversion over $\mathbb{F}_{\mathbf{3 m}}$

- Extended Euclidean algorithm?
- fast computation
- ... but need for additional hardware
- Preferred solution: Fermat's little theorem

$$
a(x)^{-1}=a(x)^{3^{m}-2} \text { on } \mathbb{F}_{3^{m}}
$$

- algorithm by Itoh and Tsujii
- requires only multiplications and cubings over $\mathbb{F}_{3^{m}}$
- only one inversion for the full pairing: delay overhead is negligible ($<1 \%$)

The full processing element

The full processing element

- For the η_{T} pairing:
almost no parallelism between additions, multiplications and cubings
- Can we share hardware resources between the three operators?

Unified operator

Unified operator

Unified operator

Unified operator

Results

- Full co-processor for computation of the η_{T} pairing
- field: \mathbb{F}_{397} with $f(x)=x^{97}+x^{12}+2$
- processing element: unified operator with $D=3$
- prototype on a Xilinx Virtex-II Pro 4 FPGA

Results

- Full co-processor for computation of the η_{T} pairing
- field: \mathbb{F}_{397} with $f(x)=x^{97}+x^{12}+2$
- processing element: unified operator with $D=3$
- prototype on a Xilinx Virtex-II Pro 4 FPGA
- Area: 1833 slices (63% of the FPGA) and 6 memory blocks (21\%)
- Clock frequency: 145 MHz
- Full η_{T} pairing: 27800 clock cycles
- Computation time: $192 \mu \mathrm{~s}$

Comparisons

Architecture	Area	Time	FPGA
Proposed solution (CHES'07)	1833 slices	$192 \mu \mathrm{~s}$	Virtex-II Pro
Grabher and Page (CHES'05)	4481 slices	$432 \mu \mathrm{~s}$	Virtex-II Pro
Kerins et al. (CHES'05)	55616 slices	$850 \mu \mathrm{~s}$	Virtex-II Pro
Ronan et al. (ITNG'07)	10000 slices	$178 \mu \mathrm{~s}$	Virtex-II Pro
Beuchat et al. (Arith'07 \& WAIFI'07)	18000 LEs Jiang (Univ. Honk Kong, 2007) 74000 slices)	$33 \mu \mathrm{~s}$	Cyclone II

Conclusion

- Unified operator generator
- Arithmetic over $\mathbb{F}_{p^{m}} \cong \mathbb{F}_{p}[x] /(f(x))$ for given p, m and $f(x)$
- Support for the following operations:
- addition
- multiplication
- Frobenius map $\left(a(x)^{p} \bmod f(x)\right)$
- inverse Frobenius map $(\sqrt[p]{a(x)} \bmod f(x))$

Future work

- Characteristic 2
- simpler arithmetic
- better suited to FPGAs (fast multiplication)

Future work

- Characteristic 2
- simpler arithmetic
- better suited to FPGAs (fast multiplication)
- Pairing on hyperelliptic curves

Future work

- Characteristic 2
- simpler arithmetic
- better suited to FPGAs (fast multiplication)
- Pairing on hyperelliptic curves
- Ate pairing
- Side-channel

Thank you for your attention

Questions?

