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I E (K ) set of rational points over a field K

I Additive group law over E (K )

I Many applications in cryptography

• EC-based Diffie-Hellman key exchange
• EC-based Digital Signature Algorithm
• ...

I But there’s more: bilinear pairings
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ê : G1 × G1 → G2

that satisfies the following conditions:

• computability: ê can be efficiently computed
• non-degeneracy: ê(P,P) 6= 1G2

• bilinearity: for all Q1, Q2 and R ∈ G1,

ê(Q1 + Q2,R) = ê(Q1,R)ê(Q2,R) and ê(R,Q1 + Q2) = ê(R,Q1)ê(R,Q2)

I Immediate property: for any integer a,

ê(aP,P) = ê(P, aP) = ê(P,P)a
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Pairings in cryptography

I At first, used to reduce discrete logarithm problems to simpler instances

• Menezes-Okamoto-Vanstone (MOV) attack, 1993
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Pairings in cryptography

I At first, used to reduce discrete logarithm problems to simpler instances

• Menezes-Okamoto-Vanstone (MOV) attack, 1993

I One-round three-party key agreement (Joux, 2000)

I Identity-based encryption

• Boneh-Franklin, 2001
• Sakai-Kasahara, 2001
• ...

I Short signatures

• Boneh-Lynn-Shacham (BLS), 2001
• Zang-Safavi-Naini-Susilo (ZSS), 2004
• ...
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I Additive group, Fpm-rational `-torsion points: G1 = E (Fpm)[`]

I Multiplicative group, `-th roots of unity: G2 = µ` ⊂ F∗
pkm

I k is the embedding degree of the curve E

ê : E (Fpm)[`]× E (Fpm)[`] → µ`
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ηT pairing in characteristic 3

η̂T : E (F3m)[`]× E (F3m)[`] → µ` ⊂ F36m

I Need for arithmetic over:

• F3m

• F36m
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η̂T : E (F3m)[`]× E (F3m)[`] → µ` ⊂ F36m

I Need for arithmetic over:

• F3m

• F36m––––– arithmetic on the underlying field F3m

I Operations over F3m:

Operation Count m = 97
+/− 121bm

4 c+ 186 3090
× 25bm

4 c+ 79 679
a3 17bm

2 c+ 9 825
a−1 1 1

I Arithmetic over F3m:

• Polynomial basis: F3m ∼= F3[x ]/(f (x))
• Degree-m irreducible polynomial f (x) carefully chosen
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Addition over F3m

a(x) + b(x)

a(x) b(x)
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Addition over F3m

a(x) + b(x)

a(x) b(x)

(am−1 + bm−1)

am−1 bm−1

mod 3

(a0 + b0)

b0a0

mod 3
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b1a1
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Jérémie Detrey – Arithmetic operators for pairing-based cryptography 8 / 21



8

Addition over F3m

a(x) + b(x)

a(x) b(x)

(am−1 + bm−1)

am−1 bm−1

mod 3

(a0 + b0)

b0a0

mod 3

(a1 + b1)

b1a1

mod 3

+
0
1
2

0
0
1
2

1

0
2

1 2
2
0
1

• coefficient-wise addition over F3

• addition over F3: small look-up table
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Addition, subtraction and accumulation over F3m

0

c3

c2

c4

c0

load add/sub

add/sub accumulate

b(x)

a(x)

r(x)

c1

load

c5

enable

+
/−

+
/−

• sign selection: multiplication by 1 or 2

−a(x) ≡ 2a(x) (mod 3)

• feedback loop for accumulation
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Multiplication over F3m

I Parallel-serial multiplication

• multiplicand loaded in a parallel register
• multiplier loaded in a shift register

I Most significant coefficients first

I D coefficients processed at each iteration:
⌈m

D

⌉
iterations per multiplication
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Multiplication over F3m

c1

c0

enable clear
c3 c4

shift register

c2

load shift

load

a(x)

b(x)

r(x)

P
P
G

m
od

f(
x
)

m
od

f(
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)

×x

m
od

f(
x
)

×x2

×x3

P
P
G

P
P
G

• partial product generator (PPG): m multiplications over F3

• multiplication by x i : only wiring
• simple modular reductions
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Cubing over F3m

I Cubing in characteristic 3 is the Frobenius map

I We compute the normal form of a(x)3 mod f (x)
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Cubing over F3m

I Cubing in characteristic 3 is the Frobenius map

I We compute the normal form of a(x)3 mod f (x)

I Example: m = 97 and f (x) = x97 + x12 + 2

a(x)3 mod f (x) = (a32x
96 + a64x

95 + a96x
94 + · · · + a33x

2 + a65x + a0 ) × 1

+ ( 0 + a60x
95 + a88x

94 + · · · + 0 + a61x + a89) × 1

+ ( 0 + a60x
95 + a92x

94 + · · · + 0 + a61x + a93) × 1
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Cubing over F3m

I Cubing in characteristic 3 is the Frobenius map

I We compute the normal form of a(x)3 mod f (x)

I Example: m = 97 and f (x) = x97 + x12 + 2

a(x)3 mod f (x) = (a32x
96 + a64x

95 + a96x
94 + · · · + a33x

2 + a65x + a0 ) × 1

+ ( 0 + a60x
95 + a88x

94 + · · · + 0 + a61x + a89) × 1

+ ( 0 + a60x
95 + a92x

94 + · · · + 0 + a61x + a93) × 1

= w1 · ν1(x) + w2 · ν2(x) + w3 · ν3(x)

I Required hardware:

• only wires to compute the νi(x)’s
• possibly multiplications over F3

• multi-operand addition over F3m
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Cubing over F3m

c0 c1

enable
c3

c2

load

a(x)

r(x)

select sign

ν3(x)

ν1(x)

ν2(x)

×
±

w
3

×
±

w
2

×
±

w
1

• feedback loop for successive cubings
• sign selection for computing either a(x)3 or −a(x)3
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Inversion over F3m

I Extended Euclidean algorithm?
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I Extended Euclidean algorithm?

• fast computation
• ... but need for additional hardware

I Preferred solution: Fermat’s little theorem

a(x)−1 = a(x)3m−2 on F3m

• algorithm by Itoh and Tsujii
• requires only multiplications and cubings over F3m

• only one inversion for the full pairing: delay overhead is negligible (< 1%)
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The full processing element

multiplication

addition

cubing

r(x)

b(x)
a(x)

control

Jérémie Detrey – Arithmetic operators for pairing-based cryptography 15 / 21



15

The full processing element

multiplication

addition

cubing

r(x)

b(x)
a(x)

control

I For the ηT pairing:
almost no parallelism between additions, multiplications and cubings

I Can we share hardware resources between the three operators?
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Unified operator
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Results

I Full co-processor for computation of the ηT pairing

• field: F397 with f (x) = x97 + x12 + 2
• processing element: unified operator with D = 3
• prototype on a Xilinx Virtex-II Pro 4 FPGA
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Results

I Full co-processor for computation of the ηT pairing

• field: F397 with f (x) = x97 + x12 + 2
• processing element: unified operator with D = 3
• prototype on a Xilinx Virtex-II Pro 4 FPGA

I Area: 1833 slices (63% of the FPGA) and 6 memory blocks (21%)

I Clock frequency: 145 MHz

I Full ηT pairing: 27800 clock cycles

I Computation time: 192 µs
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Comparisons

Architecture Area Time FPGA

Proposed solution 1833 slices 192 µs Virtex-II Pro

(CHES’07)

Grabher and Page 4481 slices 432 µs Virtex-II Pro

(CHES’05)

Kerins et al. 55616 slices 850 µs Virtex-II Pro

(CHES’05)

Ronan et al. 10000 slices 178 µs Virtex-II Pro

(ITNG’07)

Beuchat et al. 18000 LEs 33 µs Cyclone II

(Arith’07 & WAIFI’07) (≈ 9000 slices)

Jiang 74105 slices 21 µs Virtex-4 LX

(Univ. Honk Kong, 2007)
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Conclusion

I Unified operator generator

I Arithmetic over Fpm ∼= Fp[x ]/(f (x)) for given p, m and f (x)

I Support for the following operations:

• addition
• multiplication
• Frobenius map (a(x)p mod f (x))
• inverse Frobenius map ( p

√
a(x) mod f (x))
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Future work

I Characteristic 2

• simpler arithmetic
• better suited to FPGAs (fast multiplication)
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Future work

I Characteristic 2

• simpler arithmetic
• better suited to FPGAs (fast multiplication)

I Pairing on hyperelliptic curves

I Ate pairing

I Side-channel
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Thank you for your attention

Questions?
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