ANGRIFF AUF BIVIUM MITTELS SAT SOLVER

Tobias Eibach, Enrico Pilz

Fakultät für Informatik Universität Ulm

9.11.2007

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 ATTACK DESCRIPTION

- **2** CURRENT RESULTS
- **3** COMPARING TO OTHER ATTACKS

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

4 OUTLOOK

5 References

BIVIUM / TRIVIUM

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Algorithm 1 Bivium Pseudocode

FOR i from 1 to N do

$$\begin{array}{l}t_{1} \leftarrow s_{66} + s_{93} \\t_{2} \leftarrow s_{162} + s_{177} \\z_{i} \leftarrow t_{1} + t_{2} \\t_{1} \leftarrow t_{1} + s_{91} * s_{92} + s_{171} \\t_{2} \leftarrow t_{2} + s_{175} * s_{176} + s_{69} \\(s_{1}, s_{2}, ..., s_{93}) \leftarrow (t_{2}, s_{1}, ..., s_{92}) \\(s_{94}, s_{95}, ..., s_{177}) \leftarrow (t_{1}, s_{94}, ..., s_{176})\end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

...

$$\begin{split} s_{66} + s_{93} + s_{162} + s_{177} + z_1 &= 0 \\ s_{65} + s_{92} + s_{161} + s_{176} + z_2 &= 0 \\ ... \\ s_1 + s_{28} + s_{97} + s_{112} + z_{66} &= 0 \\ s_{27} + s_{69} + s_{96} + s_{111} + s_{162} + s_{175} * s_{176} + s_{177} + z_{67} &= 0 \\ s_{26} + s_{68} + s_{95} + s_{110} + s_{161} + s_{174} * s_{175} + s_{176} + z_{68} &= 0 \\ s_{25} + s_{67} + s_{94} + s_{109} + s_{160} + s_{173} * s_{174} + s_{175} + z_{69} &= 0 \\ ... \\ s_4 + s_{14} * s_{15} + s_{29} * s_{30} + s_{31} + s_{55} + s_{80} * s_{81} + s_{82} + s_{94} + s_{95} * s_{96} + s_{97} + s_{122} * s_{123} + s_{124} + s_{160} + z_{147} &= 0 \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Some lines of a CNF file:

```
66 -93 -162 -177 0
-66 93 -162 -177 0
-66 -93 162 -177 0
-66 -93 -162 177 0
-178 66 93 171 91 92 0
-178 66 93 171 -91 92 0
-178 66 93 171 91 -92 0
178 -66 93 171 91 92 0
178 -66 93 171 -91 92 0
178 -66 93 171 91 -92 0
```

Bivium instances have about 445 variables and 9000 clauses.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

MANY VARIATIONS/STRATEGIES

- How to split the 2 phases? (create CNF solve CNF)
- When and how to split equations? More variables or higher degree?

- How many equations?
- Using Gaussian elimination?
- Also the following results imply certain strategies.

We studied several questions that come up when implementing the attack:

- Which SAT solver to use?
- 2 Which variables to guess?
- 3 How many variables to guess?
- What about the Hamming weight?
- **5** More ... but not in this talk.

	guess 40	guess 45	guess 50
satelite	46.10	3.32	0.26
minisat	67.32	5.06	0.36
picosat	103.96	5.78	0.42
rsat	229.09	11.49	0.79
zchaff	735.08	17.36	0.78

TABLE: Comparing SAT solvers

(time for one instance, 100 random instances averaged, guess: Ending)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

WHERE TO GUESS

method	time	
Beginning	204	
Ending	9	
Ending2	1070	
DreiVier	60	
Zufall1	791	
Zufall2	263	
Zufall3	2540	

TABLE: Comparing different guessing strategies

(Time to solve 100 random instances, guessing 48 variables.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

TIME VS GUESS NUMBER

(guess: Ending, 48 - 32 variables, time / $10^{10}_{,}$), and the second secon

TIME VS HAMMING WEIGHT

(guess: Ending - 36 variables, averaged over 100 instances)

E 990

Just to give a rough idea: (in seconds)

- Raddum: ≈ 2⁵⁶ -> 7205759 E10
- Maximov: ≈ 2^{52.3} -> 554458 E10
- McDonald: guess 34 -> 440 -> total: 756 E10.
- Our current attack: guess 37 (Ending) -> 43.85 -> total: 603 E10.

- OBDDs ... ?
- Groebner basis / F4 / F5 ... ?

OUTLOOK

Besides optimising this attack and producing more experimental results, the following should also be interesting:

- "Explaining" the experimental results
- Extending the results to Trivium
- Extending the approach to other stream ciphers
- Comparing the approach to other generic attacks

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

REFERENCES

Cannière and Preneel.

TRIVIUM - a stream cipher construction inspired by block cipher design principles, 2005.

Bard and Courtois and Jefferson. Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariat Polynomials over GF(2) via SAT-Solvers, 2007.

Cameron McDonald and Chris Charnes and Josef Pieprzyk. Attacking Bivium with MiniSat, 2007.

Thank you!

Questions?

