Entropy of the Inner State of an FCSR

Andrea Röck INRIA Paris - Rocquencourt, France

Kryptotag, 9th Novembre 2007

Outline

- Entropy after one Iteration
- Final Entropy
- Lower Bound
- Conclusion

Part 1 FCSR

Introduction

- Feedback with Carry Shift Register (FCSR): Introduced by [Goresky Klapper 97], [Marsaglia Zamand 91] and [Couture L'Ecuyer 94].
- Binary FCSR in Galois architecture [Goresky Klapper 02].
- Used in stream cipher *e.g.* the eSTREAM candidate F-FCSR [Arnault Berger 05].

FCSR in Galois architecture (1)

▶ n: Size of main register.

 \triangleright d: Integer which determines feedback positions. Carry bit if $d_i = 1$.

- \blacktriangleright (m(t), c(t)): State at time t with

 - m(t) = ∑_{i=0}ⁿ⁻¹ m_i(t)2ⁱ: 2-adic description of the main register.
 c(t) = ∑_{i=0}ⁿ⁻¹ c_i(t)2ⁱ: 2-adic description of the carry register, where $c_i(t) = 0$ for $d_i = 0$.

FCSR in Galois architecture (2)

Update function:

$$m_{n-1}(t+1) = m_0(t),$$

$$d_i = 1 : 2c_i(t+1) + m_i(t+1) = m_0(t) + c_i(t) + m_{i+1}(t),$$

$$d_i = 0 : m_i(t+1) = m_{i+1}(t).$$

Properties

- ▶ q = 1 2d thus q < 0.
- ▶ p = m + 2c thus $0 \le p \le |q|$.
- ► The output of the FCSR is the 2-adic description of

$$\frac{p}{q}$$
.

▶ The output of the FCSR has the maximal period of |q| - 1 if and only if 2 has order |q| - 1 modulo q.

We have

- \bullet n bits in the main register and
- $\ell = HammingWeight(d) 1$ carry bits.
- Initial Entropy: $n + \ell$ bits.
- Entropy after one iteration: H(1).
- Final Entropy: H^f .

Part 2 Entropy after one Iteration

Idea

- lnitial entropy: $n + \ell$.
- Question: Entropy loss after one feedback?

Method:

- Counting the number of (m(0), c(0))'s which produce the same (m(1), c(1)).
- Using the equations of the update function.

Method

- ▶ Let (m(0), c(0)) be an initial state which produces (m(1), c(1)).
- ▶ We want a different (m'(0), c'(1)) to produce the same (m(1), c(1)).
- ▶ Only possible positions to change are i such that d_i = 1 and m_{i+1}(0) + c_i(0) = 1.
- \blacktriangleright For j such positions there are
 - $2^{j} 1$ other initial states which produce the same (m(1), c(1)).
 - $\binom{\ell}{i}2^n j$ states (m(1), c(1)) in this category.
- Entropy after one iteration:

$$H(1) = \sum_{j=0}^{\ell} 2^{n-j} {\ell \choose j} \frac{2^j}{2^{n+\ell}} \log_2\left(\frac{2^{n+\ell}}{2^j}\right) = n + \frac{\ell}{2}.$$

Part 3 Final Entropy

Final Entropy

- **Goal:** Entropy when we reached the cycle.
- ▶ Idea: How many (m, c)'s create the same p = m + 2c.
- ▶ Lemma: Let us take an FCSR with maximal period and let v(p) denote the number of states (m, c) with p = m + 2c. Each 0 ≤ p ≤ |q| correspond to a point to the cycle which is reached by v(p) initial values after the same number of iterations and thus has a probability of v(p)/2n+ℓ.
- **Method:** Get v(p) by looking at bit per bit addition of m and 2c.
- **Final Entropy**:

$$H^{f} = \sum_{p=0}^{|q|} \frac{v(p)}{2^{n+\ell}} \log_2\left(\frac{2^{n+\ell}}{v(p)}\right)$$

Notations

▶ $i = \lfloor \log_2(p) \rfloor$: Most significant bit in p which is 1.

▶ $\ell' = \#\{j \leq i | d_{j-1} = 1\}$: Number of feedback positions smaller or equal to *i*.

► r(p) = max{j < i|d_{j-1} = 0, p_j = 1}: Index where a carry of the bit by bit addition is not forwarded.

• $f_1(r)$: Helping function.

$$f_1(r) = \begin{cases} 2^r & \text{for } r \ge 0\\ 1 & \text{for } r = -1 \end{cases}$$

▶ $\ell''(r) = \#\{j < r | d_{j-1} = 1\}$: Number of feedback positions smaller than r.

4 Cases (1)

Case a: 1 < i < n and $d_{i-1} = 0$

$$H_a(n, i, \ell, \ell') = 2^i \ 2^{\ell' - n - \ell} (n + \ell - \ell').$$

Case b: 1 < i < n and $d_{i-1} = 1$

$$H_b(n, r, \ell, \ell', \ell'') = f_1(r) 2^{-n-\ell} \left[2^{\ell'-2} \left(3 \ 2^{\ell'-\ell''-1} + 1 \right) (n+\ell-\ell'') - 2^{\ell''} S_1(\ell'-\ell'') \right].$$

4 Cases (2)

• Case c: i = n and $2^n \le p \le |q|$

$$H_{c}(n,r,\ell,\ell'') = f_{1}(r)2^{-n} \left[2^{-1} \left(2^{\ell-\ell''} - 1 \right) (n+\ell-\ell'') - 2^{\ell''-\ell} S_{2}(\ell-\ell'') \right].$$

▶ Case d: $0 \le p \le 1$ ("i = 0")

$$H_d(n, \ell) = 2^{-n-\ell} (n+\ell).$$

Approximation

• Approximating $\sum_{x=2^{k-1}+1}^{2^k} x \log_2(x)$ and $\sum_{x=1}^{2^k-1} x \log_2(x)$ by using

$$\frac{1}{2} \left(x \log_2(x) + (x+1) \log_2(x+1) \right) \approx \int_x^{x+1} y \log_2(y) \, dy$$

for large x.

 \blacktriangleright Result for some arbitrary values of d.

n	d	ℓ	H^{f}	lb H^f	ub H^f	lb H^f , $k>5$	ub H^f , $k>5$
8	0xAE	4	8.3039849	8.283642	8.3146356	8.3039849	8.3039849
16	0xA45E	7	16.270332	16.237686	16.287598	16.270332	16.270332
24	0xA59B4E	12	24.273305	24.241851	24.289814	24.273304	24.273305
32	0xA54B7C5E	17		32.241192	32.289476	32.272834	32.272834

Part 4 Lower Bound

Lower Bound of the Final Entropy

Induction Base:

An FCSR, where the feedback positions are all group together at the least significant position, has a final entropy larger than n.

Induction Step:

If we move a feedback position one position to the left, the final entropy increases.

Part 5 Conclusion

Conclusion

- After one iteration we loose already $\ell/2$ bits of entropy.
- We presented an algorithm which calculates the final state entropy of an FCSR with maximal period.
- ► The algorithm works in O(n²) if the values of the sums ∑_{x=2^{k-1}+1}^{2^k} x log₂(x) and ∑_{x=1}^{2^k-1} x log₂(x) are known. Otherwise we need O(2^ℓ) steps to calculate the sums.
- \blacktriangleright The approximation of the sum works very well for large k.
- For all FCSR the final entropy is larger than n bits.

