
Viruses And Antiviral Programs
Shahram Faridani

19.11.2007

Contents
1 Preference 2

2 A brief history of CIH 2

3 Propagation and technical speci�cation 2

4 Functionality of the virus 3

5 Coping with malicious software 4
5.1 Halting problem . 4

5.1.1 De�nition . 4

6 Virus identi�cation and obfuscation 4
6.1 Virus . 4
6.2 String matching . 5

7 developed viruses 5
7.1 Polymorphic Viruses . 5
7.2 Metamorphic viruses . 6

8 Smart virus scanner 7
8.1 Heuristic virus detection . 8
8.2 Abnormal program behavior . 8
8.3 Iterrupt . 8
8.4 Actual state of a�airs . 9

9 References 9

1

1 Preference
Computer viruses are a major problem in modem day computing. In A world, that data and
communication is may be the most valuable thing and information is power and authority losing
data regardless in which scale is very critical. For this reason are viruses a real problem. This
artikel talks on one hand about viruses, particularly their development and on the other hand
about antiviral programs and their functionality.

2 A brief history of CIH
CIH is a hardware destructive virus, it was discoverd �rst in 1998 and has been among the ten
most common viruses for several months. It was written by Chen Ing Hau from Taiwan as he
was a student. According to China Times he has never been punished for his act, thus there is a
case against him, which is pendding at the time. The name Chernobyl was coined because of the
complete coincidence of the payload trigger date in some variants of the virus, actually the virus
writer's birthday and the Chernobylaccident, which happened in Ukraine on April 26, 1986. It is
at the same time the birthday date of the writer. The name Space�ller is driven from the virus
behavior, it checks the uninfected �le for free space and get in there, so it stays unrecognizeable.
CIH is obviously not the �rst hardware destructive virus. There is another similar virus called
Aragon �rst discovered in 1992. It infects boot records and has the payload of resetting the
BIOS. On computers running outdated BIOSes, this can result in hardware damage (the CIH
virus being famous for this).

3 Propagation and technical speci�cation
Any program you receive from outside your computer could potentially be infected. Once you
are infected, the virus will soon spread throughout your computer, and so the chance of your
passing an infected �le to someone else is high.

Even though the �rst reports of CIH appeared only around the middle of 1998, the virus
reached the Number Two spot on the Sophos Virus Top Ten for the whole of 1998. This means it
is very common indeed. Programs infected with CIH have been seen on a number of cover CDs
from reputable magazines, and on a number of reputable websites. This has certainly helped the
virus achieve wide distribution. There were also several commercial sources, which were infected
such as:

� Yamaha shipped an infected version of a �rmware update software for their CD-R400
drives.

� Widely spread demo version of the Activision game SiN was infected as well.

� IBM shipped a batch of new Aptiva PCs with the CIH virus pre-installed during March
1999, just a month before the virus activates destructively.

Normally, CIH simply spreads itself. But on certain trigger dates, it detonates its warhead.
The warhead wipes out your hard disk, and then tries to overwrite the computer's BIOS chip.

2

Once the BIOS is overwritten, you will be unable to use your computer at all. Repair involves
physically removing the BIOS chip and replacing it with a fresh one. On some computers, the
BIOS chip is not removable, so it can only be replaced by swapping the entire motherboard.
There are several variants of CIH, with di�erent trigger conditions. The best known, and most
widespread, variant will detonate on 26 April. Other variants detonate on 26 June, or even on
the 26th of any month. CIH spreads under Windows 95 and Windows 98. DOS and Windows
3.x cannot spread CIH because they cannot run Windows 95/98 programs. Windows NT cannot
spread CIH because the virus uses programming tricks that do not work under NT. The virus
can infect Windows NT programs, but such programs will no longer run, and will therefore not
be infectious themselves .

Due to its infection mechanism, most antivirus software can deactivate the CIH virus but
cannot completely clean infected �les.

� Rami�cations:

1. infected �les cannot be restored to their original state, and will therefore produce
di�erent hashes or checksums than the original �le, which could cause the �le to fail
integrity checks because the virus signature is still present within the �le, the antivirus
software will continue to �ag infected �les, usually as �CIH (inactive)�.

2. The only way to get completely rid of CIH is to replace the a�ected �les with copies
of untouched originals. For systems that were roughly infected, this likely entails a
complete reinstallation of the operating system and software.

4 Functionality of the virus
This is a descreption of �rst version, which has been released on 4.April 1998.

1. Create the virus program.

2. The virus modi�cation IDT to get Ring0 privilege.

3. Virus code does not reload into system.

4. Call IFSMgr InstallF ileSystemApiHook to hook �le system.

5. Modi�es entry point of IFSMgr InstallF ileApiHook.

6. When system opens existing PE �le, the �le will be infected, and the �le does not need to
be reinfected.

7. It is also infected, even the �le is READ −ONLY .

8. When the �le is infected, the modi�cation date and time of the �le also do not be changed.

9. When my virus uses IFSMgr Ring0 FileI0, it will not call previous FileSystemApiHook,
it will call the function that the IFS manager would normally call to implement this par-
ticular I/O request.

3

There are some other recent variations of the virus in the wild right now. The virus got a new
look.It scans fot the security holes in host OS. This version caused: Ip con�icts,Font removal,
System Netbios Con�icts. it actually does not harm a system, but prompt con�icts on port 139
of the windows systems.

5 Coping with malicious software
In this section we are going to talk about viruses and the di�erent ways, how we can deal with
them.

5.1 Halting problem
Fact is a number of real-world problems that would be nice to be able to solve are not solvable.

5.1.1 De�nition
The problem of determining in advance whether a particular program or algorithm will terminate
or run forever. The halting problem is the canonical example of a provablyunsolvable problem.
Obviously any attempt to answer the question by actually executing the algorithm or simulating
each step of its execution will only give an answer if the algorithm under consideration does termi-
nate, otherwise the algorithm attempting to answer the question will itself run forever.It can be
represented as a set called halting set: k := (i, x)|programiwilleventuallyhaltifrunwithinputx.

Is there an algorithm to determine whether any arbitrary program halts? Turing proved the
answer is, no. Since many questions can be recast to this problem, we can conclude that some
programs are absolutely impossible, although heuristic or partial solutions are possible. The �rst
step in coping with a malicious software is, we should �nd out if an arbitrary program is infected
indeed. This problem is known as undecidability of virus detection. Adleman proved: If an
algorithm exists that can prove the presence of viruses in general case than exists an algorithm
that solves the halting problem (Reductio ad absurdum - proof by contradiction).

6 Virus identi�cation and obfuscation
There are several challenges surrounding the design of robust computer viruses and designing
algorithms to detect viruses. For a virus writer it is very imortant to write a virus, which is
di�cult to detect and a antiviral program developer tries to �nd a concept which can detect
viruses as much as possible.

6.1 Virus
A simple virus is a code that can make a copy of itself over and over again, it is relatively easy
to produce(also called �rst gen. viruses). Even such a simple virus is dangerous because it
will quickly use all available memory and bring the system to a halt. The modern viruses can
even more. They are capable of transmitting themselves across networks and bypassing security
systems.

4

6.2 String matching
String-matching consists in �nding one, or more generally, all the occurrences of a string (more
generally called a pattern) in a text. Idea: take a string of bytes from the virus that does not
change from generation to generation and use it to �nd other instances of the virus. It is the most
easiest method to �nd a virial code. Pattern matching is also a method used by viruses.Also
a method that is use by viruses to identify themselves.Viral self-identi�cation is necessary to
prevent overpopulation and to prevent a host being infected several of times. String matching is
very usefull by detecting �rst gen. viruses. The algorithm searches for a certain signature. Virus
writer use an algorithm to prevent multi-infection of a �le. At the same time it is the weak spot
of the virus. It gives the antiviral analyst a detection algorithm, when the virus is found. Once
the virus is �nd, it has the bene�t of identifying it in the wild. The antiviral programs has a
data base at their disposal, they performe a scanning process to �nd any simular signature. The
result of such a scanning is not always trustworthy. It produces sometimes some false positive
result for instance by new patches for programs.

7 developed viruses
Virus writers are getting smarter, they �nd more countermeasures to scanners. A very e�ective
alternative is using a code that has the capability of changing its own code, this allows the virus
to have hundreds, sometimes thousands, of di�erent variants, making it much more di�cult
to notice and/or detect. These types of viruses are called Polymorphic viruses or evolutionary
viruses. Polymorphism of a virus code may make it harder, and sometimes even nearly impossible,
to use virus string detection to identify an infected �le

7.1 Polymorphic Viruses
A polymorphic virus consists of two parts:

1. Header

2. Body

the header decrypts the body in memory .Once the body is decrypted the header transfers
control to the body. The body performs the normal viral operations. When the body is �nished
sends control to the host program.

A virus code may be encrypted and then attached to a �le in its encrypted form. The
encryption technique may be polymorphic (for example, vary from one generation to another, so
that the byte stream of each new viral infection is di�erent from its predecessor). Each time the
virus runs it will decrypt its own code in memory before control is transferred to it. Only a small
part of a virus code, which is known as a "decryptor", may be constant from one generation to
another.

Polymorphism of a virus code may make it harder, and sometimes even nearly impossible,
to use virus string detection to identify an infected �le. In this case The decryptor may be
generated by the virus code in such a way that it contains di�erent code for each new generation

5

Figure 1: Typical Polymorphic Virus

of the virus. The decryptor's byte stream may be di�erent for every new infection of the same
virus. Under such circumstances, there are no constant byte streams that can be used for virus
identi�cation in an entire virus code. It is a very easy and at the same time a very e�ektive
way to counter measure the string matching, in this case the antiviral program has no chance to
identify the string, and the virus keeps its funtionality totaly.

7.2 Metamorphic viruses
A Polymorphic virus changes its appearance in host programs.The virus uses a decryption routine
(known as the �decryptor�) in order to do this. A metamorphic virus, by comparison, is a
virus that also changes its appearance in host programs, however it does so without necessarily
depending on encryption. The di�erence in appearance comes from changes made by the virus
to its own body.

There are several techniques that can produce such an e�ect. The viruses use several tech-
niques to morphe the host program. One of these morphing techniques used by metamorphic
viruses is with the insertion and removal of �garbage� instructions. These are instructions that
have no e�ect on the function of the virus, but simply take up space and which can make anal-
ysis more di�cult when they appear in large quantities. Another technique is to change the
basic encoding of instructions at the opcode level. That is, switching between two di�erent
opcodes that are functionally-equivalent. Perhaps the most complex transformation of a meta-
morphic virus is the replacement of entire blocks of logic with functionally-equivalent blocks of
logic. Consider the task of adding x to y and z. One expression of this is ”(x + y) + z”. How-
ever, an alternative expression is to replace the single adition with a repeated addition instead:
”t1 = x+ y”and”t2 = t1 + z. Both expressions will result in the same answer, yet they look very
di�erent. Here is an example of using garbage instructions.

6

8 Smart virus scanner
The Viruses are getting smarter and smarter,actually it is because the virus writers are always
at least one step ahead, and it makes the whole thing much di�cult. It is obvious that antiviral
programs should neccesserly get smarter. It is already very di�cult to detect the new gen-viruses,
it means the conventional methods are not very helpful in this case. There are some very aspects,
which can be used for better virus detection. Better virus detection tool:

� Analyze the program structure (instead of signature matching).

� Check for irrelevant instructions.

What are irrelevant instructions?

1. NOPs
2. Control �ow instructions that do not change the control �ow.
3. E.g. jump/branches to the next instructions.
4. Instruction that modify dead (are not in use) register.
5. Sequence of instructions which do not modify the architectural state, for instance.

add ebx, 1 sub ebx, 1

� Check whether viral properties are present in a program
E.g. program writes a executable.
E.g. program monitors as executables are loaded into memory and changes them.
E.g. program behaves just like virus xyz.

� Check if the program exhibits those properties.
If yes −→ is infected.

8.1 Heuristic virus detection

This is a generic method of virus detection. Anti-virus software makers develop a set
of rules to distinguish viruses from non-viruses. Abnormal program behavior plays a very
important role here.Viruses perform actions that are not typical of normal programs. Result
is there are several heuristics that can be used to detect them.

8.2 Abnormal program behavior

Abnormality of a program behavior can be an indicator for melicious attack. For example
interrupts.

7

8.3 Iterrupt

Application programs access operating system routines using software interrupts. E.g.
keystroke from the keyboard. The program places various parameters in CPU registers
and then execute a software interrupt instruction (interrupt handler). CPU (temporarily)
suspends the operation and look up the address of the operating system routine for that
interrupt in the interrupt vector table. It's a very e�ective way to modify the operating
system service routines to be more suspicious of the applications that call them. There is
a standard systems programming technique to add such functionality, it is called interrupt
patching. Interrupt patching has to major advantages:

1. can monitor the activities.
2. Know the data �ow, it is easier to distingiush a melicious activity from a normal one.

provided that, monitoring the activities is possible. Depends on the ISA of the machine it
is sometimes very di�cult or even impossible to use this method. There some other com-
plementation techniques wich can improve our defence mechanism against viral attacks.For
instance visualizing executable viruses using self-organizing maps. This is a very compli-
cated method and i'm going to mention it's functionality very brie�y. Each virus has it's
own character and can not hide it through SOMs. Like DNA , it's an unique generic code.
SOMs can �gure out the family without knowing it's signature, which is used by disposing
the virus.
Aim:
design the SOM in a way that neurons will �ag the presence of peculiar patterns in Win-
dows executable �les and that the position of the active neurons will re�ect the position of
potentially malicious content in the �le.

8.4 Actual state of a�airs

The main problem by scanners are that, Anti-virus software su�ers from more problems
than not being able to detect viruses. Many copies of anti-virus software are unable to
detect even old viruses, because end users frequently forget or simply don't update their
virus scanner's virus databases until it's too late. On-demand scans are rarely performed
because they're slow and hog resources while running, so dormant viruses tend to have
a rather long life. On-access scanners aren't free of troubles, either - some consume too
many resources, so many users are tempted to disable them if they're on a slower machine.
Finally, while anti-virus software may become extremely good at sensing virus activity,
there are always new security holes to exploit in operating system and networking software
that would give viruses another entry point that bypasses the anti-virus software. It means
an updated anti-virus software is not a 100% security against the viruses in the wild, but
it takes the bulk of responsibilty in the unfair �ght against the melicious software, which
lurk to do something awful.

8

9 References
1. Malicious cryptography exposing cryptovirology, Dr. Moti Yung, ISBN: 0-7645-4975-8

Published by wiley publishing, Inc., Indianapolis, Indiana.

2. http://www.f-secure.com, F-Secure Corporation

3. Virus Scanning as Model Checking, Mihai Christodorescu, University of Wisconsin, Madi-
son

4. Computer organization and design, the hardware/software interface. David A.

5. Patterson and John L. Hennessy. Second edition, Morgan Kaufmann Publishers. ISBN:
L-55860-428-b.

6. VisualizingWindows Executable Viruses Using Self-Organizing Maps, InSeon Yoo, Telecom-
munications, Networks and Security Research Group, Department of Informatics, Univer-
sity of Fribourg.

7. www.geot.com.

8. http://www.mirrors.wiretapped.net/security/info/text�les/DOJ/DoJ5−08.txt

9

