
Seminar “Malware”
Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger
WS 2007/2008

Cohen and the
First Computer Virus

Author: Wolfgang Apolinarski
Date: 15.11.2007

Table of Contents

Short Biography of Fred Cohen...1

Virus – The Theoretical View...2

Between ideas and today's reality...5

Virus – Practical Experiments..7

List of References...8

Appendix..9

abstract:
Fred Cohen was one of the first computer virus researchers. He started with theoretical work in the
nineteen-eighties, did several proofs about the appearance and the behaviour of viruses. His
definition of computer virus is the first concrete definition about when to determinate, if a program
is a virus. Artificial viral life and virus prevention are other topics he thought about, with results
which are still important for today's virus research. He did the first virus experiments, against the
objections of security personnel and system administrators, with the help of self programmed
viruses. His findings encouraged computer scientists to think about establishing more security and
to encourage people to act more responsible in the work with unknown programs and secret
information.

Short Biography of Fred Cohen

Fred Cohen was a professor of Computer Science and Electrical Engineering at LeHigh University
from 1985 till 1987 and, from 1987 till 1988 a professor of Electrical and Computer Engineering at
the University of Cincinnati1. He is also a member of some well-known computer science orientated
organizations like ACM (Association for Computing Machinery), IACR (International Association
for Cryptologic Research) or IEEE (Institute of Electrical and Electronics Engineers).He was one of
the first virus researchers and wrote several paper about viruses. He also explained that the name
“virus” was invented by Len Adleman in 19832.
His research had to deal with several problems. Because there existed no real virus, he and his team
had to program their own viruses, to show what abilities a virus has. Also there were some
administrative problems. Since it was often not allowed to do some necessary experiments, he had
to persuade several administrators and security personnel, because they feared a virus could brake
down their expensive equipment. Cohen also was one of the first who did theoretical proofs of viral
behaviour. He was also aware of the consequences for the people who helped him programming or
setting up the experiments, so he only gave the first names in his paper, due to the “sensitive nature”
of his research.3

He currently works with his company “Fred Cohen & Associates” on security related topics. These
topics differ from his previous work on the universities and his previous theoretical research. He
developed one of the first honeypots, the “Deception Toolkit”, for tracing viral activities and to
detect an intrusion in security systems. Such honeypots are nowadays in wide use for intrusion
detection or to observe the threats, which a computer system is exposed to, e.g. in the internet.
Cohen now has a security consulting services for enterprises. He does business inspections and
employee security training. His company works out policies, e.g. for the right behaviour with
passwords and looks for holes in the current security concept. They also visit companies and check
there current equipment for weaknesses or develop a new security architecture. This work is
normally well-paid by the companies and shows that Cohen's engagement about virus research is
versatile. Today he also works with viruses and other security threats, but now from a more
practically point of view. So he uses his theoretic papers as basic principle for his practical virus
defender job he has today. Another part of his work is digital forensics, where he does data
reconstruction and sometimes is a consultant in a lawsuit.4

So he uses his theoretical knowledge to solve problems occurring in the real world. He changed
from being a mathematician/computer science researcher to a consultant of profit orientated
companies.

1 cf. [Coh89] p. 344
2 cf. [Coh87] p. 31
3 cf. [Coh87] p. 35
4 cf. [FCA07] http://all.net/forsale/Services.html

1

Virus – The Theoretical View

At first we introduce a definition made by Fred Cohen, which defines the term “computer virus”:
“We define a computer 'virus' as a program that can 'infect' other programs by modifying them to
include a possibly evolved copy of itself.”5

So it can easily be seen, that his definition has several different aspects on which we could have a
closer look. At first the virus program must have the 'infect' ability. It changes other programs, so
that they include a copy of the virus program. This copy simply could be a real copy of a virus
which is just prepended to a given program, so it is called before the original program is called and
this program is called afterwards. That means infection through modification of the original
program. Another point of this definition is the “evolved copy”. This is not a must, so a virus does
not need to evolve its copy, but it is possible. Today polymorphic viruses “evolve” with every copy
(after a specific algorithm, to complicate the detection from an anti virus scanner). But a real
evolution, like artificial life, does none of the current viruses have. So Cohen's definition of a
computer 'virus' also includes useful programs, e.g. a compiler who compiles another version of
itself. It includes an evolved copy of itself in another program. Nevertheless, such useful “viruses”
are not the perspective of current virus research, since a semantic decision about:”Is program A a
virus” is not easily done (I just remind me of somebody, who installed a trojan horse on one of his
PCs to remote control it from another room), neither is a syntactic, as some heuristics of current anti
virus programs proof (false positive). Also this definition could allow some thoughts about the
infection speed. Since every virus will infect at least one program, when it is called, one can be
sure, that, the infection spreads very fast, because every infected program also acts as a virus. This
leads to an exponential growth of viral infections. This growth will stop, when there are not enough
virus-free programs available to spread to. In big computer networks, like the internet, this could
need some time, but at a single workstation this is reached quite fast. So the exponential growth has
an upper bound, which is near the approx. half of infectable programs. Then the number of
infections still grows, but at a lower speed as before (because it is not as easy as before to find an
infected program). If the virus “must” infect a new program every time it is called, it will need an
amount of time, so an infection could be discovered very easy, but its infection speed will behave
different then described before, because every call really infects a new program, because this virus
could be easier discovered, I don't discuss this virus specifically.
Cohen also provided an example virus, which is
shown on the right6. This example virus introduces
two other features. It has a trigger and a damage
doing subroutine. If we look at the main-program, we
see, that this virus first infects a new random-
executable. It will loop around to find files which are
not infected (A file will be seen as infected, if it starts
with the digits “1234567”, this is the “label” of this
virus). If has found one, it will infect it, by
prepending itself to the file. Subsequently it looks if
the trigger was pulled (more details follow) and does
damage (see above). Then the original program,
which was infected, is called (this is the mark “next”
on the bottom of the image, after this mark the
normal program should follow, which is left out on the picture).
The trigger could be anything we think of. Maybe a concrete date. So we send out our virus and on
a specific date, this virus will start to do damage, perhaps delete all our Word-Documents. A virus is

5 [Coh87], p. 23
6 Image from [Coh87], p. 23

2

often firstly discovered, if it has done some damage. Then this is too late, because we possibly
spread our virus to the whole network and it would delete all important files at once (on the specific
date). This “trigger” was already used by many viruses such the “Michelangelo” virus or other
modern worms, who try to spread during the first part of the month and try to attack a computer if
the second part of the month has begun.
We now concentrate on another question of theoretical computer science:
“Is a virus detection possible?” We will see, that this question is undecidable:
Say there exists a decision procedure 'D', which decides if 'V' is a virus. So the current virus-'V' is
detected by 'D'. But if we now modify the 'V' to a new program 'CV' which invokes the decision
procedure 'D', we will see, that 'D' is contradicted. 'CV' will first invoke 'D' and if 'D' decides 'CV' is
not a virus, it will infect another program. If 'D' decides, that 'CV' is a virus, 'CV' will not infect
other programs (and so not act as a virus). So 'D' is not our desired decision function. But because
'D' was an arbitrary function, we could see, that such a function does not exists. So the
determination of is program 'P' a virus is undecidable7. But this is not new to users of current anti
virus software, they would recognize viruses by viral behaviour (and do not use such a decision
function). So the above shown example virus is easily detected, because of the “1234567” on the
beginning of every infected file. But not all potential viruses “detected” by anti virus are real
viruses (Think of the EICAR test virus or heuristics).
So we can't decide if a program is a virus or not. Cohen did also some other useful theoretical virus
research. Many of his proves use the so-called Turing Machines.
A Turing Machine has the following characteristics:

● A finite number of states
● A tape head

○ Which can move in different directions, to the left (-1), to the right(+1) or stay at the
current position (0).

● A semi-infinite tape (infinite long in one direction).

Normally the program of a Turing Machine is
given as a table. The table shown below is an
example table with detailed description.

S I N O D
Current State Input (current

position on the
tape)

Next State Will be written on
the tape (on the
current position)

Tape Head
Movement (+1;0;
-1)

Cohen uses three abbreviations to a normal Turing Machine table. These are also given as a table,
so they do not change the specifications of a Turing Machine. I will now give a short description of
these abbreviations, the tables are also shown below.
With L(X), the tape head moves in the left direction, until it reads the “X” on the tape (i.e. L(X or

7 cf. [Coh87], p. 28, 4.1

3

O) means, that the tape head moves left, until it reads “X” or “O” on the tape) and stopps at this
position. R(X) is the same as L(X), but for the opposite direction, so the tape head moves right,
until it reads the “X”. Another macro, C(X,Y,Z) has three arguments. It means change the “X”s to
“Y”s until you reach the “Z”8. So all “X”s on the tape are changed to “Y”s (the tape head moves
right, while doing this) and if there is a “Z” on the tape (Input “I” in the table above), than the
macro will stop. After one of the macros (L(X), R(X) or C(X,Y,Z)) ran, the next state in the table
will be executed.
R(X)9:

S I N O D
Sn X

else
Sn+1
Sn

X
else

0
+1

L(X)10:

S I N O D
Sn X

else
Sn+1
Sn

X
else

0
-1

C(X,Y,Z)11:

S I N O D
Sn Z

X
else

Sn+1
Sn
Sn

Z
Y
else

0
+1
+1

The Turing Machine program will now proof, that there are countable infinite many viruses. This
will be shown using a “polymorphic” virus “L0R”, which changes to “L00R” or “L000R”,
“L0...0R”, etc. The program table is in the appendix.

So this Turing Machine will change a “L0R” virus on the tape (starting with the tape head on the
“L”) to a “L0RL00R”. If the Turing Machine would not halt at the end of the table-program, the
virus would be written countable infinite often on the tape. Since our today's computers are Turing
equivalent (they don't have an infinite tape, but all the calculations done with a Turing Machine can
also be done with a modern computer (and backwards)), there exists countable infinite many
viruses. But because there also exist countable infinite many programs (not proved here), there
exists as many programs as viruses (the cardinality of viruses is equal to the cardinality of
programs).

8 cf. [Coh89], p. 335
9 from [Coh89], p. 335
10 from [Coh89], p. 335, but: Following state is always the state after the current state
11 from [Coh89], p. 335, but: Following state is always the state after the current state

4

Between ideas and today's reality

Cohen also thought about “Benevolent computer viruses”12. He did this, because of the
computational potential, that distributed computing has. A virus did “384 Billion operations per
second”13 and this would be really useful, if one could use this for a good case (and not for doing
damage/infecting other programs, as normal viruses do). One of his easier thoughts is a virus, which
compresses executables and prepends itself and a decompression program in front of the “infected”
program14. This virus would have been really useful in the nineteen-eighties, because the hard disc
space was very expensive and so every user only had little space to store his programs and
documents. He calculated, that this virus could save up to 50% of the disc space, which normally
was taken by executables. If we look what happened, we will discover, that today most programs
are already compressed by their manufacturer. So there might be no need for a special compression
virus anymore. But his thoughts go many further. He thought of viruses, which could be active
during the time the computer is idling. Many computers are the most time, that they are active, just
waiting for input of the user or they have a high performance which is not used most of the time,
especially if the user is only using his electronic office and does not play sophisticated modern
computer games. So this viruses would only use the computer, when the CPU is in idle mode, so a
user would not be disturbed and the computer is not a good looking heating. This sounds like a
distributed computer project like Seti@Home15 or like the Mersenne prime search project16. But
because he doesn't want to use normal clients, this is different. He wants a “virus”, which evolves
itself and not during manual software updates. He introduces a “bill collector” virus17 which evolves
during collecting bills. The new evolved version includes the collected bill and sets itself in sleeping
mode, after it made some flags in the scheduler table, when it should awake again. Because this
concept also uses “children” and a “gene pool”, Cohen's ideas also touch the field of Artificial Life.
A database could so be distributed through the whole network, which would not lead to a single
point of failure anymore. His ideas to maintenance viruses18 include viruses, that control each other
like a real ecosystem. So there are viruses which awake viruses, that slept to long and other viruses
can kill a virus process, if it hangs in a loop.

If we think about viral behaviour, we could also think of prevention mechanisms to prevent virus
spreading. Cohen did some basic work on this point. If it is allowed for users to share their data
files, than a virus can spread to every user who takes part at the sharing19. It can also spread to a
user, who does not take part at the sharing, but shares data with one of the user who takes part. So
the paths for virus spreading are transitive. If user A shares files with user B, and user B needs some
files from user C, also user A gets the virus, if user C is infected. Another point is, that if we don't
allow modifications of programs, a virus can not spread. Almost all computers allow modifications
in their random access memory, so a virus could spread using only this, but if the computer is
rebooted, the virus vanished (as every content of the RAM vanishes, if the computer does a reboot).
So, if we disallow modification of software (i.e. Data) or disallow sharing, we would not have virus
infections spreading through whole networks (except for temporary viruses, because of the RAM).
But disallowing modifications or sharing is unacceptable, because most work which should be done
with a computer needs modifications and sharing is necessary, especially, if teamwork is desired,
otherwise one only could work with self-programmed programs, which could be useful in a special

12 cf. [Coh91]
13 [Coh91] “Background”
14 cf. [Coh87], p. 24
15 http://setiathome.ssl.berkeley.edu
16 http://www.mersenne.org , GIMPS
17 cf. [Coh91], “The Viral Bill Collector” (here simplified)
18 cf. [Coh91], “Maintenance Viruses and the Birth/Death Process”
19 cf. [Coh87], p. 25

5

http://setiathome.ssl.berkeley.edu/
http://www.mersenne.org/

case, but normally isn't something we want to achieve.
But this “isolationism”20 does already exist in real computer system. E.g. the Game Boy and other
games consoles are isolated, because they have a game (read only memory) which is isolated. If the
game allows save games, than this normally is not a point where a virus could infect the games
console, because save games are not executed and only loaded. So sharing is limited, and virus
spreading for a games console is not something somebody ever heard about, but with the new more
computer like games console (Playstation 3 can run Linux), this could be a new thread, because it
would give up the isolation concept. Another computer system are firmwares for different devices.
Like a stand-alone DVD-player or a VCR, but many of these firmwares have a flashable ROM, so
one could think of a virus for a DVD-player, but because spreading on read-only memory (DVD-
ROM) is complicated, this is not a current threat. Only on personal computers, who could more
easily get infected, a DVD-Player could be harmed as side-effect of a computer virus.
So “isolationism” is not a solution, but we could think of other security policies. Modern file
systems, like ext3 or NTFS allow different read/write/execute access rights for files. So if one user
executes a virus, only his user-space is infected and only user who share with this user are at risk to
get infected, too. Only if the root (or another system administrator) gets infected, all users on the
system are also infected. But practical experiments have shown, that this policies do not prevent
virus spreading, but only slow down the virus infection (which could also be important, since it is
possible to analyse the virus and to create a counter strategy to prevent further spreading). Cohen
thought of a flow distance for every process and data file21. This is a special metric, that traces the
data flow. So it uses the formula: max(distance(process), distance(file))+1 for every new file,
that a running process on a machine wants to open. So if we have only peer-to-peer connections,
this could help to stop the spreading of the virus (at the cost of more computing power used for
maintaining the flow distance). So if user A has a connection to user B, and user B has a connection
to user C. Then every file from user A, which is used by a local process (distance 0) on the system
of user C has the distance 2. If now user V has a virus and is connected to user A, and all users
reject files, that are from the distance greater than 2, the virus could spread to user A (distance 1)
and user B (distance 2), but not to user C (distance 3). Even if it would write files to the computer
of user B, this is not possible, because all files written by user B with the help of a process or file of
user C would have a distance of 3 (So a local process from user C (distance 0) has to change its
state to distance 2, if it opens a file from user A). But because today many networks have direct
connections, so this would not help against virus spreading.
Another idea is to implement a “Flow list”22, which logs all users, that had access on a specific
file/object. So one could apply a policy that all files opened by a user first have to be touched by the
trusted user T. This could help to reduce the speed of a virus spreading efficiently. Also files of
distrusted users could be fully ignored. In current operating systems, some kind of this flow model
is implemented. Files that are downloaded from the network have to acknowledged from the user,
before they are executed, if they don't have a digital certificate (from a trusted authority). Also the
flow distance model is introduced, every file, that comes from a different computer (over the
network) is marked by the operating system and it is asked if you want to execute this file (so you
recognize that this file is from a foreign network).
So Cohen's ideas are partly realized, but especially the artificial life part is not ready for the market,
yet.

20 cf. [Coh87], p. 25
21 cf. [Coh87], p. 26 3.3 “Flow Models”
22 cf. [Coh87], p. 27

6

Virus – Practical Experiments

As already said in chapter 1, it is not easy to study the behaviour of a computer virus, if there does
not exist one (Except some “strange”, wrong behaving computer programs like the “Xerox
worm”23). Thus Cohen and his team had to write their own virus and it was presented on the 10th

November of 1983.24 It took eight hours of expert work to construct this virus, afterwards they
performed some experiments in Unix-like environment. The virus infected a unix program called
“vd”, where Unix structures are displayed graphically,25 and had no damage routine it only created
reports and made traces to detect the virus everywhere, to prevent uncontrolled spreading. Cohen
did five similar experiments take place, where some of the users were informed, that such a virus
experiment will take place. The result was, that the attacker virus got all system rights in an average
time of 30 minutes. Also the users who were informed, that a virus attack will take place got
infected. This short time the virus needed was very surprisingly to every observer of the
experiment. As result, the administrators did not allow any other virus experiments to take place.
This was very disappointing for Cohen and his working group, since they want to establish more
security even for a potential “new” viral attack. But the administrators wants to “stay” at the current
level of security, so if no virus exists, no anti-virus actions had to be done. Such behaviour is also
known from today, many administrators think, that they better protect their equipment (which was
really expensive in the nineteen-eighties), if they don't allow dangerous experiments. But security
can not improve, if nobody knows how a virus behaves. So Cohen planned more experiments and
his team wrote many viruses for different systems, they offered the security personnel to observer
all experiments, so they could learn from the behaviour of the virus, but after several months the
administrators decided to not allow this experiments. One of the security officers even refused to
read the proposals.26 But because a “real world” scenario can't take place in a sandbox and
simulators and virtual machines were not that powerful as they are today, Cohen did not give up and
his team wrote a virus which was designed to circumvent a security policy system. The Bell-
LaPadula system secures the information. Lower users are not allowed to read files of higher users
(no read-up). Higher users are not allowed to write in a lower users file (no write down). Such
systems are often in use by government agencies or other enterprises who need the security of
information. The virus was programmed by a programmer, who was not experienced with the
system, so the virus needed 20 seconds for the infection step (Reminder: copy yourself in front of
the infected file). They marooned the virus and 18 hours later, the first infection was performed. 8
hours later, they could present the virus to administrators and programmers. It could cross all
security boundaries, so write down and read up27. So the Bell-LaPadula system was compromised.
Afterwards Cohen made a review of his experiments. The outcome was, that a infection on a unix
system was slowly, until it reached the account of a system administrator, especially the “root”
account. Thus they proposed to separate the account of the system administrator from the normal
user account, i.e. a system administrator who also uses the system for his daily work should have a
separate user account28. This separation was very unusual, because there were no virus threats in
that time. Also they discovered, that one of the first users of a newly announced program was
always a system administrator. So virus spreading was made very easy.
On today's computers, this discussion applies also. Many unix-like environment separate the
accounts of the system administrator and the user. It is possible to change the simple user rights to
administrator rights, if it is needed via a system command. Also “Windows Vista” introduced a new

23 [Coh87], p. 22
24 cf. [Coh87], p. 31 “The First Virus”
25 cf. [Coh87], p. 31
26 cf. [Coh87], p. 32
27 cf. [Coh87], p. 32 “A Bell-LaPadula Based System”
28 cf. [Coh87], p. 33 “Summary and Conclusions”

7

feature, the User Account Control (UAC), so every administrator has only user rights. He has to
approve the use of his administrative rights on the “secure desktop”.29 So viral spreading is bound to
the user account and strongly slowed down. But real protection from the virus is only achievable
with isolation.
Cohen's ideas of anti-virus was different than current anti-virus programs. He thought of antibodies
which behave like a virus, but remove them. Again this is a reference to Artificial Life.

List of References
● [Coh87] F. Cohen: “Computer Viruses - Theory and Experiments”, 1987, Computers &

Security 6 page 22-35, Elsevier Science Publishers B.V. (North-Holland).
Also available in a slightly different version from 1984:
http://all.net/books/virus/index.html

● [Coh89] F. Cohen: “Computational Aspects of Computer Viruses”, 1989, Computers &
Security 8 page 325-344, Elsevier Science Publishers Ltd.

● [Coh91] F. Cohen: “A Case for Benevolent Viruses”, 1991, DPMA, IEEE, ACM Computer
Virus and Security Conference, March 1992
Online available at: http://www.all.net/books/integ/goodvcase.html

● [FCA07] Fred Cohen & Associates, http://all.net/forsale/Services.html (15.11.2007)
● [MST07] M. Russinovich: “Inside Windows Vista User Account Control”, June 2007,

TechNet Magazine
Online available at (in german, if the loc=en is exchanged with loc=de):
http://www.microsoft.com/technet/technetmag/issues/2007/06/uac/default.aspx?loc=en

29 [MST07], directly under “Figure 13 Elevation Flow”

8

http://all.net/forsale/Services.html
http://www.all.net/books/integ/goodvcase.html
http://all.net/books/virus/index.html

Appendix
Turing Machine which proves that there exist countable infinite viruses30.

30 from [Coh89], p. 337

9

0RS13S13

+10S13S12

R(X)S11

0XS5S10

+10S10XS9

R(X)S8

0
+1

L
0

S11

S8

L
X

S7

L(X or L)S6

L(R)S5

0XS5S4

+1LS4S3

+1RS3RS2

C(0,X,R)0S1

+1
0

L
X

S1

S0

L
else

S0

DONIS

