Seminar Malware Daniel Loebenberger B-IT Bonn-Aachen International Center WS 2007/08

Cohen and the First Computer Virus

From: Wolfgang Apolinarski

What do we want to discuss today?

Short biography of Fred Cohen
Virus – The theoretical view
Between ideas and reality
Virus – Practical experiments

Short biography of Fred Cohen

Short biography of Fred Cohen Virus – The theoretical view Between ideas and reality Virus – Practical experiments

Short biography of Fred Cohen

- Professor of Computer Science / Electrical Engineering
 - 1985 1988
- One of the first virus researcher
 - * Wrote several papers (1987, 1989...)
 - Did several proofs with Turing Machines
- Member of ACM, IACR, IEEE, etc.

Short biography of Fred Cohen Today's activities

- Deception Toolkit (Linux)
 Honeypot, created ~1998
- Security consulting service
 Business inspections
 Employee security training

Short biography of Fred Cohen Today's activities

Also does

- Digital forensics
- Digital crime scene reconstruction

Short biography of Fred Cohen

- Virus research was complicated
 - No "real" virus existed "in the wild"
 - Nobody wants to have
 - "dangerous" experiments in their PC-environment
 - Encourage students to program a virus

- In his theoretical paper, all the helpers are only given by their first names!
 - * "sensitive nature"

Short biography of Fred Cohen Virus – The theoretical view Between ideas and reality Virus – Practical experiments

Virus – The theoretical view Definition of "computer virus"

"We define a computer 'virus' as a program that can 'infect' other programs by modifying them to include a possibly evolved copy of itself."

> By F. Cohen, "Computer Viruses", 1987

- Infect -> spread through a computer or a network
- Every infected program also acts as virus
 - Exponential growth
 - > But infected programs can't be infected twice!
- Evolving ~ some kind of polymorphism
 - Virus detection is more complicated

An example virus

```
program virus :=
{1234567:
subroutine infect-executable :=
  {loop: file = random-executable;
  if first-line-of-file = 1234567
       then goto loop;
  prepend virus to file:
subroutine do-damage :=
  {whatever damage is desired}
subroutine trigger-pulled :=
  {return true on desired conditions}
main-program :=
  {infect-executable:
  if trigger-pulled then do-damage;
  goto next;
next: }
```

Is a virus detection possible?

- The determination of: Given a program P, "Is P a virus?" is undecidable.
- Say there exists a decision procedure 'D', which decides 'V' is a virus, if 'V' infects another program.
- So virus-'V' is detected by 'D'.

- But now we modify 'V' to 'CV'
- * 'CV' will not infect other programs, if 'D' decides, that 'CV' is a virus.
- If 'D' decides 'CV' is not a virus, than 'CV' will infect other programs.
- So 'D' is not the desired decision function
 - Because 'D' was an arbitrary function, this function does not exists.

So we can't decide if a program is a virus or not.

 Other proofs about viruses are done by Cohen using a Turing Machine.
 We will now see one example

Virus – The theoretical view Turing Machine

- A Turing Machine has the following characteristics:
 - *A finite number of states
 - A tape head
 - Moving is possible in different directions (-1;0;+1).
 - A semi-infinite tape (only in one direction)

We also use 'macros' here

- * So our turing machine table can be shorter
 - I only show a short description of these 'macros'.

■ C(0,1,2)

- Changes every occurrence of '0' on the tape to '1' until it reads the '2' on the tape.
 - Moves right while doing this, next state is the state before the current state

■ L(0)

- Moves left, until it reads the '0' on the tape
 - Movement (-1), next state after reading '0' is the state after the current state.
- R(0)
 - Moves right, until the '0' occurs in front of the tape head
 - Movement (+1), next state after reading '0' is the state after the current state.

Proof by demonstration.

S		Ν	0	D
S ₀	L	S ₁	L	+1
	else	S ₀	X	0
S ₁	0	C(0,x,R)		
S ₂	R	S ₃	R	+1
S ₃ S ₄		S ₄ S ₅	L	+1
S ₄		S ₅	X	0
S ₅	L(R)			
S ₆	L(X or L)			
S ₆ S ₇	L	S ₁₁	L	0
	Х	S ₁₁ S ₈	0	+1
S ₈	R(X)			
S ₉	Х	S ₁₀	0	+1
S ₁₀		S ₅	Х	0
S ₁₁	R(X)			
S ₁₂		S ₁₃	0	+1
	g Apolinarski	S ₁₃	R	0

So what does this Turing Machine do?

- So the LOR on the tape changed to LOOR So it is not a "simple" virus, it is polymorphic
- And we've shown another thing
 - If this virus would not have a halt state, but instead repeat his program, what would happen?

- It would write infinite often the L0..0R phrase to the tape
 - Exactly: Countable infinite often
- Conclusion: There exist countable infinite viruses.
- But there also exist countable infinite number of different programs on a TM

So there exist as many viruses as programs!

Virus – The theoretical view Summary

- A computer virus
 - Infects other programs
 - Can evolve (polymorphism)

There exist as many viruses as programs on a computer

Short biography of Fred Cohen Virus – The theoretical view Between ideas and reality Virus – Practical experiments

- Are there potential benefits of viruses? *Yes!
- A compression virus which compresses binary files after infection
 - Could save over 50% of space normally taken by executables
 - In the eighties hard disk space was expensive!

- This "virus" should ask the user for permission
 - So it is no Trojan horse, but a virus!
- Today many executable are already compressed
 - So no need for a compression virus?

Benevolent viruses?

Cohen did write a paper about this in 1991

Viruses for everything

- Maintenance tasks
- Garbage collection

etc.

If one virus would fail, another would take his place

- Man only needs to write a successor virus for a 'program update'
- Distributed calculations with viruses?
- Failsafe database with virus support
 A bill collector virus

- So the whole database is distributed along the network
- No regular "scanning" for a bill is necessary
 The viruses awake by themselves and 'learn' when they have to be active

ArtificialLie!

Between ideas and reality Prevention of viruses?

- If sharing is allowed, a virus can spread to every user who takes part at the sharing
 - Virus paths are transitive!
- If modification of software is allowed, than a virus can reach new programs.
- Disallowing one of these?
 - Unacceptable, especially if teamwork is desired

"Isolationism"

Gameboy, other games consoles

- Sharing is not allowed, but modification
 Save games!
- Non-updatable firmware
 - > DVD-Players, etc.

But most do have a flashable ROM!

- So "Isolationism" is not a solution
- Some complicated security policies?
 - Unix file systems / NTFS partitions
 - Only slow down virus distribution, because not all users are affected
- New Idea: "Flow distance"

Between ideas and reality Flow distance

- Special metric, that keeps tracks of the number of sharings, ie. the data flow
 - Max(distance(process),dist(file))+1
 - If it is greater than a threshold, access is denied
 - But if all users have direct connections, this doesn't help a lot.
- 'Flow list' lists all users that had effect on an object

Between ideas and reality Flow distance

- Access is only granted, if a 'trusted' user has touched the object
- A metric is also possible:
 - > Only access files where \leq 2 users were involved
- Files of a distrusted user can be fully ignored
- With this distance metrics a virus spread could be slowed down or stopped

Between ideas and reality Summary

Useful viruses

- Distributed computing, compression virus
- Artificial Life
- Prevention "Isolationism"
 Games console firmware
 Flow distance

Short biography of Fred Cohen Virus – The theoretical view Between ideas and reality Virus – Practical experiments

- How to study the behaviour of a computer virus?
 - No virus existed in 1983
 - So instead of using an existing virus, a new one was written
- On the 3rd of November 1983 conceived
 - On the 10th presented
 - In a seminar on computer security
 - *8 hours of (expert) work

Wolfgang Apolinarski

- The virus infected a unix program called "vd" and spread using the system bulletin board
 - No damage routine, only creates reports
 - Traces to detect the virus everywhere

Five experiments took place

- The attacker got all system rights in an average of 30 minutes!
 - Everybody was surprised about the short time, the virus had "success"
- As result the administrators did not allow any other virus experiments to take place

- So it was not intended to establish more security, but to "stay" at the current level
 - If no virus exists, no anti-virus actions had to be taken
- Other experiments were planned and viruses for different systems written
 - After several months the administration decided to not allow this experiments
 - The security officer even refused to read the proposals

So it was not allowed to add traces to the system, to discover a potential virus attack

This reactions were typically for this time

- Computer system were expensive so buying equipment only for virus testing was quite unrealistic
- A "real world" scenario can't take place in a sandbox

- In 1984 a virus on a system which used the Bell-LaPadula security policies was developed
 - Bell-LaPadula allows a lower user not to read the higher users file. A higher user is not allowed to write in a lower users file
 - Security of information
 - System was in use by the US Air Force

- The virus needed 20 seconds for each infection!
- After 18 hours the first infection was performed
- After 26 hours the virus was shown to administrators and programmers
 - It could cross all security boundaries, write down and read up...

- On an unix system the infection was slowly, until it reaches a system administrator account
 - Especially "root"

Virus – Practical experiments Results / Countermeasures

- Seperate system administrator accounts and the normal user account
 - This seperation was never really thought of.
 - If a user announces a new program, one of the first users always was a system administrator...
 - Virus spreading is made very easy...

- This discussion also applies to today's computers
 - Windows Vista's new behaviour

Benutzerkontensteuerung	
🕖 Zur Fortsetzung des Programms ist Ihre Zustimmung erforderlich	
Klicken Sie auf "Fortsetzen", falls Sie dieses Programm gestartet haben.	
Script Debugger V1.0a Microsoft Corporation	
D etails	<u>Fortsetzen</u> Abbrechen
Die Benutzerkontensteuerung trägt dazu bei, dass nicht autorisierte Änderungen an dem Computer verhindert werden.	

Wolfgang Apolinarski

- He thought of developing an antibody for a virus
 - Which also evolves by itself, in addition to human development
- He never used the term "Anti-Virus"

Virus – Practical experiments Summary

- How to study virus behaviour?
 - Write an own virus
 - Study its behaviour
- Administrators & security personnel might not be helpful
 - Threats are everywhere ;-)
- Viruses spread very fast, if a computer user uses his normal administrator account only