
Seminar ”Malware”
Dipl.-Inform.Daniel Loebenberger

Bonn-Aachen International Center for Information Technology Winter
2007/08

Equo ne credite: Trojans

Author: Daniel Rosenthal

Date: December 16, 2007

CONTENTS 0

Contents

1 Some examples of Trojan Horses and a little bit of history 2
1.1 Greek mythology . 2
1.2 Back Orifice . 2
1.3 InCommand . 2

2 Definition of a Trojan Horse 2
2.1 Characterization . 3

3 Trojan Horses in Compilers 4
3.1 Self reproducing by substitution 4
3.2 Conditional self reproducing . 4
3.3 Bootstrap Test . 5
3.4 Passing the Bootstrap Test . 6
3.5 Avoiding Trojan Horses in compilers 7

4 Hunting Trojan Horses 7
4.1 Harrier as part of HTH . 7

4.1.1 Abstraction levels . 7
4.1.2 Security policy . 8

5 Summary 8

CONTENTS 1

Abstract

Probably you already know this scenario: In your e-mail box is a mes-
sage from a friend with an attached greeting card. You open this greeting
card and it shows a nice picture of your friend in holiday. Some hours/-
days later, your computer starts to do courious things. The DVD-ROM
Drives opens or the screen gets blank, but you are sure you did nothing to
cause this. Perhaps you activated a Trojan Horse by opening the e-mail
attachment containing the greeting card from the friend mentioned before.
Hopefully he just wants to play a trick on you and did not do harmful
things to your computer or your personal data stored on the harddrive.
This paper deals with Trojan Horses, Malicious Software that can do
many harmful things to a computer, once executed. We will see some
examples of Trojan Horses to get a better understanding of what they are
doing and how they work and a kind of historical overview. After that, we
will formulate a precise defition and build up a characterisation of Trojan
Horses. Later on, we will see how Trojan Horses in binary compiler imple-
mentations can pass nearly every state of the art compiler test, without
beeing noticed. The last but one part will deal with a security framework
to detect new Trojan Horses online at runtime and have a detailed look
on the security monitor beeing used. The last part actually will sum up
this paper.

1 SOME EXAMPLES OF TROJAN HORSES AND A LITTLE BIT OF HISTORY2

1 Some examples of Trojan Horses and a little
bit of history

1.1 Greek mythology

The name Trojan Horse comes from the greek mythology. After ten years of siege
in the trojan war, the greek used a trick to win the battle against the Trojans,
because they can not break the walls of troy, nor the gates. The greek built a
huge wooden horse and inwhich their best soldiers were hidden. They said to
the Trojans : ”We can’t defeat you within ten years and leave the battlefield
now and give you this horse as a present.” The greek army left, but not so
far away they waited until the night. In between the Trojans pulled the horse
inside the city and made a big party and everyone got drunk. At night, when
no Trojan was awake, the hidden greek soldiers left the horse, opend the gate
for the rest of the arriving army and so the Greek entered Troy and defeated
the Trojans.

1.2 Back Orifice

This Remote Administration Trojan Horse (RAT) was developed by a group
called ”Cult of the dead cow” and published at DefCon 6 (a yearly conference
of hackers in Las Vegas) in 1998. It affects Windows 95 and 98 operating systems
and is a modularized system of plugins. So one can add a new functionality or
feature easily by adding a new plugin.
After executing this program by the unsuspected victim, it sends his machines
IP-adress and portnummer via ICQ or IRC to the attacker. Then the attacker is
able to build up a connection to the victims computer and send commands to the
Back Orifice Trojan Horse. These commands are executed and any information
requested by the attacker will be send. As an example he can copy the victims
entire harddrive or maybe even manipulate the data on this way. After doing
his malicious things the attacker can send a clean up command that will remove
all files and registry entries of Back Orifice, so that no one can decide whether
Back Orifice was ever installed to the computer or not.

1.3 InCommand

InCommand is (like Back Orifice) a RAT affecting windows operating systems,
containing a server part running on the victims machine and a client part,
running on the attackers computer. With this interface the attacker can for
example start an ftp server on the victims machine, or open his DVD-ROM
drive, or turn off his monitor. More options you can find on Figure 1.

2 Definition of a Trojan Horse

In the last section we have seen some examples for Trojan Horses and got an
understanding for what they are used for. Now we formulate a more precise
definition.

2 DEFINITION OF A TROJAN HORSE 3

Figure 1: InCommand

Definition 1 (Trojan Horse) ”An apparently useful and innocent program
containing additional hidden code which allows the unauthorized collection, ex-
ploitation, falsification, or destruction of data.”[6]

We see that in contrast to viruses Trojan Horses must not have a self repro-
duction method included. They must be run by the user, so the Trojan Horse
program has the same privileges as the user. With administrator or root rights,
there is no limit to the installation on a computer. You see, it is dangerous al-
ways to login as ”Administrator” on a Windows machine to do every day tasks
and maybe execute accidently a Trojan Horse.

2.1 Characterization

To distinguish different types of Trojan Horses we will now build up a charac-
terization. We distinguish between: [1]

• Propagation Methods P

• Activation A

• Placement H

• Effectiveness E

• Communication C

• Functions F

• Guarding Mechanisms G

This allows us to describe every Trojan Horse as a tupel

T = (P |G, A|G, H|G, E|G, C|G, F |G) (1)

where the Guarding Mechanism for every item can vary.

3 TROJAN HORSES IN COMPILERS 4

3 Trojan Horses in Compilers

Ken Thompson, the inventor of Unix, demonstrated on his Turing Award Lec-
ture in 1984, how Trojan Horses can settle down in binary compiler implemen-
tations without beeing noticed by every state of the art compiler validation.
For example like the Bootstrap Test, or any amount of source code inspection
and verification. Thompson’s Trojan Horse was a C compiler, where the Trojan
Horse was not visible in the compiler source code, but it was reproducing itself
(with Trojan Horse) applied to the compiler source code. Compiling login.c
intudes a backdoor into the Unix ”login” command. How is this possible? The
Trojan Horse is not in the source code! Actually, the Trojan Horse was not in
the source code what Thompson showed. We will now see how this is done.

3.1 Self reproducing by substitution

As a starter consider the following c program:

Listing 1: self reproducing program (by substitution) [3]
main (){

char ∗b = ”main (){
char ∗b = %c%s%c ;
p r i n t f (b , 3 4 , b , 3 4) ;
}” ;

p r i n t f (b , 3 4 , b , 3 4) ;
}

This program prints out it’s own source code. How is it done ? The %c means
replacing a single character and %s an entire string. 34 is the ASCII value of
”. The printf command prints out the string b and as additional parameters,
replaces the next %c by 34(”),%s by the string b itself and %c by 34 again.

3.2 Conditional self reproducing

Now we consider a program that only reproduces, if a special condition is full-
filled.

Listing 2: Conditional self reproducing[3]
// f i l e : reproduce . c
char ∗buf =”

// f i l e : reproduce . c
char ∗buf = %c%s%c ;
i n t main (i n t argc , char ∗argv []) {

i f (argv [1] && (strcmp (argv [1] , %c ident%c) == 0))
p r i n t f (buf , 3 4 , buf , 3 4 , 3 4 , 3 4 , 3 4 , 3 4 , 3 4 , 3 4) ;

e l s e i f ((argv [1] && (strcmp (argv [1] , %c l o g i n%c) == 0))
p r i n t f (%cOops%c) ;

e l s e
p r i n t f (argv [1]) ;

}
void cheat () {}

” ;

i n t main (i n t argc , char ∗argv []) {

3 TROJAN HORSES IN COMPILERS 5

i f (argv [1] && (strcmp (argv [1] , ” ident ”) == 0))
p r i n t f (buf , 3 4 , buf , 3 4 , 3 4 , 3 4 , 3 4 , 3 4 , 3 4 , 3 4) ;

e l s e i f ((argv [1] && (strcmp (argv [1] , ” l o g i n ”) == 0))
p r i n t f (”Oops ”) ;

e l s e
p r i n t f (argv [1]) ;

}
void cheat () {}

In this program, the same technique as in the above example is used, but only if
the argument is ”ident”. In case of ”login” it will cause a catastrophe (”Oops”)
and in any other case, it just prints out the argument.

3.3 Bootstrap Test

Compiler bootstrapping means compiling a compiler, where the source language
and the implementation language are the same. For example if you use an C++
compiler to compile a new version of it and the sourcecode for this is written in
C++, then you call it compiler bootstrapping.
Now Consider Figure 2.

Figure 2: Bootstrap Test

This shows the so called Bootstrap Test. Every T-shaped box is a compiler
program, getting it’s Input from the left hand side of the box, and outputs on
the right hand side. Compiling a compiler returns a compiler. If you repeat this
several times, you can play a domino game with these boxes.
CSL is the compiler source program, m̄ an existing compiler program and ML is
M’s machine language. Every compiler compiles an SL lanuage code into a TL
language. Suppose we use m̄ to generate an initial implementation m0 in TL
out of an SL code. If it works we take m0, input SL and generate m1. We don’t
trust m0, because it was generated by the unknown compiler m̄, but now m1

is a TL program generated according to CSL. Now we can use m1 to generate

3 TROJAN HORSES IN COMPILERS 6

m2. m2 and m1 will be equal, iff we did not change the CSL in between. With
these observations we can now formulate the following two Theorems:

Theorem 1 (Bootstrapping Theorem) ”If m0 and CSL are both correct, if
m0, applied to CSL, terminates with regular result m1, and if the underlying
hardware worked correctly, then m1 is correct.”[3]

Theorem 2 (Bootstrap Test Theorem) ”If m0 and CSL are both correct
and deterministic, if m0, applied to CSL, terminates with regular result m1, if
m1, applied to CSL, terminates with regular result m2, and if the underlying
hardware worked correctly, then m1 = m2.”[3]

3.4 Passing the Bootstrap Test

So, if we have an compiler, we can verify that it reproduces itself correctly and
we can have a look at the source code and see, that there is no Trojan Horse in
it. But how did Thompson’s modified C compiler pass this test ? Remeber the
conditional self reproducing program in listing 2. Thompson used this technique
and he used the fact that we are using compilers ! So consider the next listing:

Listing 3: Passing the Bootstrap Test [3]
// f i l e : compile−i n c o r r e c t . c
#inc lude <s t r i n g . h>
#inc lude <s t d i o . h>

char l o g i n [2 5 5] = ” void main () { p r i n t f \” Cheating Login (Oops) : \ ” ; } ” ;
char ∗buf = ” . . .
” ;
char cmdbuf [2 5 5] = ”make CC=gcc ’ basename ” ;
FILE∗ handle ;

void main (i n t argc , char ∗argv []) {
i f (argv [1] && (strcmp (argv [1] , ” compi le . c ”) == 0)) {

system (”mv compile . c . compi le . c . o r i g ”) ;
i f ((handle = fopen (” compi le . c ” , ”w+”))!= NULL {

f p r i n t (handle , buf , 34 , 92 , 34 , 92 , 34 , 34 , 34 , buf , 3 4 , 3 4 , . . . , 3 4) ;
f c l o s e (handle) ;
system (”make CC=gcc compile ”) ;
system (”mv . compi le . c . o r i g compi le . c ”) ;

} ;
}
e l s e i f (argv [1] && (strcmp (argv [1] , ” l o g i n . c ”) == 0)) {

system (”mv l o g i n . c . l o g i n . c . o r i g ”) ;
i f ((handle = fopen (” l o g i n . c ” , ”w+”))!= NULL {

f p r i n t (handle , l o g i n) ;
f c l o s e (handle) ;
system (”make CC=gcc l o g i n ”) ;
system (”mv . l o g i n . c . o r i g l o g i n . c ”) ;
} ;

}
e l s e {

s t r c a t (cmdbufm argv [1]) ; s t r c a t (cmdbuf , ” . c ’ ”) ;
}

}

4 HUNTING TROJAN HORSES 7

If you consider this program as an compiler, it compiles every source correct,
except ”login.c”, where it compiles a bug (the catastrophe) into and if you want
to compile ”it’s” source code ”compile.c” (the non-infected), then it will compile
the infected source code and restore the original non-infected source code. This
you can repeat as many times as you like and so it will pass the Bootstrap Test.

3.5 Avoiding Trojan Horses in compilers

As we have seen, source level verification and syntactical code inspection does
not work. What we need is also semantically correctness. This can we achieve
by introducing a semantical correct compiling relation CCSL,TL beween the
source and target language. Let CSL be a correct refinement of CCSL,TL. If m
is applied to CSL then CSL ∈ CCSL,TL. It follows that CSL is a correct imple-
mentation of CCSL,TL. That implies that m is a correct compiler executable
from SL to TL.

4 Hunting Trojan Horses

Zero Day attacks and new malicious code can go undetected by even the most
up-to-date antiviral software. Some Trojan Horses executes as plugins to other
programs or as DLL (Dynamic Link Library) and may have very little impact
on the system behavior. So it is very difficult for the user to detect and may be
undeteced for a long time, where the system is vulnerable.
The security framework Hunting Trojan Horses (for short HTH) is intendend
to be a complement to antiviral software and developed for detecting difficult
types of intrusions.[4]

4.1 Harrier as part of HTH

Harrier is an application security monitor and the heart of HTH. The runtime
monitor collects dynamically execution related data across different abstraction
levels. Harrier allows the identification of abnormal program behaviour and
enables defending againt harmful activities. It uses no source code analyzing,
but works with program binaries (only for Linux at this time). The monitoring
is restricted to only a few shared objects with a defined API, to handle this
huge flow of information and to be able to ”use” the computer at the same
time. Actually it slowed the system down roughly by a factor seven.

4.1.1 Abstraction levels

Harrier uses three abstraction levels to collect information about the program
semantics and the program information flow (see also Figure 3):

1. Architectural (ISA)

2. Operating System (API)

3. Library (API)

5 SUMMARY 8

Figure 3: Harrier events

4.1.2 Security policy

The rules beeing used as security policy are classified by three types: The
execution flow are rules that monitor execution and invocation of new processes
in order to detect malicious code being executed. There are also rules that
monitor the number of new processes and the rate of creation of these to track
resource abuse. The last set of rules enforce the Information flow between
different sources and targets for the different resource types (user input, file,
socket, binary, hardware).

5 Summary

Trojan Horses are programs containing additional hidden code that can be used
for unauthorized collection, exploitation, falsification, or destruction of data.
We have seen, that if a Trojan Horse is injected in an binary compiler imple-
mentation, that source level verification is not sufficient to guarantee compiler
corectness. What we need is binary compiler implementation verification.
Harrier within the Hunting Trojan Horse framework is a complement to antivi-
ral software. It’s a runtime security monitor analyzing program binaries. It
tracks the Architecture, the Operating System and selected library events to
detect Zero Day attacks and new malicious code.

REFERENCES 9

References

[1] Dr.-Ing. Claus Vielhauer, Dipl.-Inform.(FH) Andreas Lang:
Lecture slides: Sicherheit verteilter Systeme SS2007, FH
Brandenburg, 2007

[2] Paul A. Karger: Limiting the Damage Potential of Discre-
tionary Trojan Horses, in 1987 IEEE Symposium on Security
and Privacy, pp. 32-37, 1987

[3] Wolfgang Goerigk: On Trojan Horses in Compiler Implemen-
tations, in Proceedings of the Workshop Sicherheit und Zu-
verlssigkeit softwarebasierter Systeme, IsTec Report, IsTec-
A-367, Garching 1999

[4] M. Moffie, W. Cheng, D. Kaeli, Q. Zao: Hunting Trojan
Horses, AsiD’06: Proceedings of the 1st Workshop on Ar-
chitectural and System support for improving software de-
pendability, pp. 12-17, San Jose, California, 2006

[5] A. Brown, T. Cocks, K. Swampillai: Spyware and Trojan
horses, Seminar on Computer Security, 01-04 2004, University
of Birmingham

[6] Texas State Library and Archives Commission,
http://www.tsl.state.tx.us/ld/pubs/compsecurity/glossary.html,
last visited: 2007-12-11

