Equo ne credite: Trojans

Bonn-Aachen International Center
for Information Technology

Seminar Malware

03. December 2007

Daniel Rosenthal

+

Contents

Some expamples

Definition of a Trojan Horse

Trojans in compilers

Harrier as part of HTH framework

Summary

References

I Daniel Rosenthal - Seminar Malware @ b-it

Contents

Some expamples

Definition of a Trojan Horse

Trojans in compilers

Harrier as part of HTH framework

Summary

References

I Daniel Rosenthal - Seminar Malware @ b-it

Expamles of Trojan Horses (1/6) ! '

= Greek mythology
« Trojan war *
« After 10 years of siege, the Greek built a wooden
horse, inside some soldiers and left the battlefield
+ Trojans expected the horse to be a present and
carried it into the city
« At night, the hidden soldiers opend the gates, the

greek army entered Troy and defeated the
TrOJans o

Daniel Rosenthal - Seminar Malware @ b-it

Expamles of Trojan Horses (2/6)

= Back Orifice (~1998)

+ developed by the “Cult of the Dead Cow*
+ released at DefCon 6 in 1998

- affects Windows 95 and 98

+ modular system of plugins

v authentication and encryption possible

Trojan Horse

>
Infection
stage
- |ICQ/ |«
Altacker |5 5ot IRC IP, Port

Connection
Daniel Rosenthal - Seminar Malware @ b-it 5

Expamles of Trojan Horses (3/6)

= Back Orifice

Command

>

Connection

> Execution

Attacker Request for Information sta ge

Information

| Daniel Rosenthal - Seminar Malware @ b-it

Expamles of Trojan Horses (4/6)

= Back Orifice

Removal stage

Attacker Cleanup Command

>

| Daniel Rosenthal - Seminar Malware @ b-it

Expamles of Trojan Horses (5/6)

= [nCommand (~July 2002) by Stoner and Bogart

InCommand 1.7 [Edit serer]

ICO IRC Matify

1CE MHatify
” il:: li. | |:: |._-.! #1

Uze [T notify [Erable bAulti notify

IRC Matify

IF-:E' fy for action. ..

Files: editserver.exe, icon.dll, serverl7-b2.exe, incsrv.exe in Windows\

Daniel Rosenthal - Seminar Malware @ b-it

Expamles of Trojan Horses (6/6)

= Captcha-Breaker (29.10.2007)

Melissa strip i x|

Ok, lets skart baby! Lets see if wou can skrip me @),
Put the word that wou see on bottom, if its correct Il
kake off 1 af my o)

W2y (e

| | Enter

» Captcha = Completely Automated Public Turing test to
tell Computers and Humans Apart
 Spammers should be avoided

| Daniel Rosenthal - Seminar Malware @ b-it

Contents

Some expamples

Definition of a Trojan Horse

Trojans in compilers

Harrier as part of HTH framework

Summary

References

I Daniel Rosenthal - Seminar Malware @ b-it

10

Definition: What is a trojan horse ?

“An apparently useful and Iinnocent program
containing additional hidden code which allows
the unauthorized collection, exploitation,
falsification, or destruction of data.”

from: Texas State Library and Archives Commission
http://www.tsl.state.tx.us/ld/pubs/compsecurity/glossary.htm|

* no self reproduction
e user must run the trojan horse program

I Daniel Rosenthal - Seminar Malware @ b-it

11

A little more history (1/2)

= Trojan horses known since joint use of mainframe
computers
+ pay per CPU time
v« sniff username/ password by faked login
screen
v use account of someone else
= |nternet Service Provider: AOL
+ sniffed accounts
= Mostly Microsoft DOS and Windows systems harmed
« huge distribution, low security standards

I Daniel Rosenthal - Seminar Malware @ b-it

12

A little more history (2/2)

= Nowadays:

+

L 4

capturing private/confidential data
« online banking

manipulation/ deletion of data and/or services
v even within a (local area) network

remote access to machines
v« Sub7even, Back Orifice

mostly sended as email attachments

Daniel Rosenthal - Seminar Malware @ b-it

13

Characteristics

Propagation Methods
Activation

Placement
Effectiveness
Communication
Functions

Guarding Mechanisms

OTMOMI>P>O

= Describtion of a trojan horse as a tupel:
T = (P|G, A|G, H|G, E|G, C|G, F|G)

I Daniel Rosenthal - Seminar Malware @ b-it

14

Propagation Methods P

« p,:Executables

+ P, ,;: Email attachment

+ Pp,,: Instant messaging

+ P, 5: File sharing

. p,,: FTP/HTTP

+ P, 5 Wireless communication

+ P, Data mediums (Floppies, USB-Sticks, ...)
p,:Social Engineering
p,:Exploits

p,:Malformed data objects
p.:Physical access to computer

I Daniel Rosenthal - Seminar Malware @ b-it

15

Activation A

= a,: startup of operating system

+ Starting scripts / programs
+ Entries of registry (Windows)
+ Kernel module

= a,: running a program (unintentionally)
« Modified programs

« Using mix-ups (unix ,cp* <===p windows ,,copy”)
« Execution of programs treated by social engineering

I Daniel Rosenthal - Seminar Malware @ b-it

16

Placement H

h,: as file somewhere on the mediums

h,: indepentent of the file system on the harddisk

+ marked as bad clusters
+ using free space in used clusters
+ outside of the partition in free space of harddisk

h,: in modules / memory of any hardware (RAM,

Flash, USB-Stick, ...)
h,: distributed in several files

I Daniel Rosenthal - Seminar Malware @ b-it

17

Effectiveness E

: DLL-Injection (dynamic link library)

: process injection / code injection

: modifications to configurations

: loading of program modules (puzzle trojan horse)

|
™ M M @D

I Daniel Rosenthal - Seminar Malware @ b-it

18

Communication C

- active communication

+ open port (waiting / polling server)
+ closed port (port knocking)
+ stealth method (sniffer)

: passive communication
: email, IRC, ICQ, http
: tunneling (ICMP, DNS, HTTP)

I Daniel Rosenthal - Seminar Malware @ b-it

19

Functions F

f,: file manager
f,: process manager
f,: keylogger
f,: update function
f.: registry
f.: gathering informations
« .1 spying
f,: starting / providing services
f,: portscanner
f ,: attacks to other systems
f,,: destroying hardware
f,,: adware

I Daniel Rosenthal - Seminar Malware @ b-it

20

Guarding Mechanisms G

= g,: hone
= g,: armoring

= g,: polymorphism

= g,: stealth

= g.: stenography

= g,: encryption

= g,: manipulation of (antiviral) software

I Daniel Rosenthal - Seminar Malware @ b-it

21

Application of the tuple specification

Example:
T=({p,,, {a,,:a;}, h,, {}, ¢, {}} 9%

email attachment (p, ,)

Activation through executing files (a,) using a
registy entry (a, ,)

stored in the filesystem (h,)

communication over an open TCP port (c, ,)

Unspecified self protection method for all tuple
elements (g*)

Daniel Rosenthal - Seminar Malware @ b-it

22

Contents

Some expamples

Definition of a Trojan Horse

Trojans in compilers

Harrier as part of HTH framework

Summary

References

I Daniel Rosenthal - Seminar Malware @ b-it

23

Trojans in compilers

= Demonstration by Ken Thompson (inventor of Unix)

In Turing Award lecture 1984

= Trojan Horse in C compiler binary inplementation

L 4

L 2

not visible in compiler source code,

but reproducing itself when source code is
recompiled in a bootstrapping process
Intruding back-door into the Unix ,login“
command

= will pass nearly every test

2

v

state of the art compiler validation and
verification

bootstrap test

any amount of source code inspection and
verification

might cause a catastrophe

Daniel Rosenthal - Seminar Malware @ b-it

24

Trojans in compilers — How is this possible ? (1/2)

= Example: self reproducing progam (by substitution)

malin () {

char *b = “main () {

char *b = 3c3s5cC; $Cc : replace character
printf (b, 34,b,34); ;z Eﬁeplaxestrum;
PR

printf (b, 34,b,34);
}

I Daniel Rosenthal - Seminar Malware @ b-it

25

Trojans in compilers — How is this possible ? (2/2)

= Example: conditional self reproducing

//file: reproduce.c
char *buf ="
//file: reproduce.c
char *buf = %c%s%c;
int main(int argc, char *argv([]) {
if (argv[l] && (strcmp(argv[l], %cident%c) == 0))
printf (buf,34,buf,34,34,34,34,34,34,34);

else if ((argv[l] && (strcmp(argv([1l], %clogin%c) == 0))
printf ($cOopssc) ;
else

printf (argv([1l]);

t
void cheat () {}

W,
’

int main (int argc, char *argv([]) {
if (argv([l] && (stremp(argv[l], “ident™) == 0))
printf (buf,34,buf,34,34,34,34,34,34,34);
else if ((argv[l] && (strecmp(argv[l], “login"“) == 0))
printf (“Oops™) ;
else
printf (argv[1l]);
}void cheat () {}

Daniel Rosenthal - Seminar Malware @ b-it

26

Compiler Bootstrapping

= Compiling a compiler where
+ source language and
+ Implementation language are the same
= Example:
+ C++ compiler used to compile a new version of it
« where source code for the new version is written
In C++

I Daniel Rosenthal - Seminar Malware @ b-it

27

Bootstrap Test

R

—_ -

s.. Cs.. TL | SL

s, Cst. TL SL. Mo TL

[

s.. M1 7L | TL

sL Cs, TL | SL|SL ™o TL| TL

_______________ '
I i - II :
 SL: SL m TL | TL — :}_
ML |
| M |

From W.Goerigk: ,,On Trojan Horses in Compiler Implementations “

C,, : compiler source program
m: compiler program
ML: M's machine language

Daniel Rosenthal - Seminar Malware @ b-it

28

Bootstrapping Theorem

If m, and C_, are both correct, if m,, applied
to C,,, terminates with reqular result m,, and if

the underlying hardware worked correctly,
then m, is correct.

I Daniel Rosenthal - Seminar Malware @ b-it

29

Bootstrap Test Theorem

If m, and C_ are both correct and deterministic, if
m,, applied to C ., terminates with regular result m, if
m,, applied to C_, terminates with regular result m,,

and If the underlying hardware worked correctly, then
m, = m..

I Daniel Rosenthal - Seminar Malware @ b-it

30

Passing the Bootstrap Test (1/3)

» Now consider m, to be an compiler implementation

including a Trojan Horse

- reproducing m, if applied to C_

+ Compiling a bug to login.c if applied to this

- Working correctly as m, (unmodified compiler) for any

other case

I Daniel Rosenthal - Seminar Malware @ b-it

31

Passing the Bootstrap Test (2/3)

//file: compile-incorrect.c
#include<string.h>
#include<stdio.h>

char login[255] = ,void main() {printf\“Cheating Login (Oops) :\“;}"“;

char *buf = “...

A\

4
A\Y

char cmdbuf[255] = “make CC=gcc 'basename “;
FILE* handle;

void main (int argc, char *argv[]) {
if (argv[l] && (strcmp(argv[l],“compile.cY) == 0)) {

system (“mv compile.c .compile.c.origh);

if ((handle = fopen (“compile.c“, “w+%))!= NULL {
fprint (handle, buf,

34,92,34,92,34,34,34,buf,34,34,...,34);

fclose (handle) ;
system (Ymake CC=gcc compilel) ;
system (“mv .compile.c.orig compile.c“);

i
}
else if (argv([l] && (strcmp(argv([l],“login.c“) == 0)) {
system (“mv login.c .login.c.origh);
if ((handle = fopen(“login.c“, “w+"“))!= NULL ({
fprint (handle, login) ;
fclose (handle) ;
system (“make CC=gcc login");
system (“mv .login.c.orig login.ch);

~ o~ o~ —~

¥

else {
strcat (cmdbufm argv[l]); strcat (cmdbuf,“ .c'"Y);

Daniel Rosenthal - Seminar Malware @ b-it

32

Passing the Bootstrap Test (3/3)

gL, CsL

—

SL

L | o’ o*
i 1| sL ST s o 1L
SL (st TL | SL | SL o TL | TL
TL | SL | SL ﬂ TL | TL _(:j
SL o TL | TL ¢)

it —

+

Daniel Rosenthal - Seminar Malware @ b-it

33

Avoiding Trojan Horses in compilers

= Seen: Source level verification does not work

= Sufficient: Syntactical Code Inspection
- Let CC, ,, be a semantically correct compiling relation

between source and target language
- C is correct refinement of CC_

- If m applied to C it is element of CC
- ==pm is correct implementation of CC,
- ==Pp m |S a correct compiler executable from SL to TL

I Daniel Rosenthal - Seminar Malware @ b-it

34

Contents

Some expamples

Definition of a Trojan Horse

Trojans in compilers

Harrier as part of HTH framework

Summary

References

I Daniel Rosenthal - Seminar Malware @ b-it

35

Hunting Trojan Horses (HTH)

= |S a security framework
= developed for detecting diffucult types of intrusions
= Intended to be a complement to antiviral software
= zero day attacks and new malicious code can go
undetected by even most up-to-date anti-virus-
program
= some trojan horses executes as plugins or DLL
= many have little impact on system behaviour
- difficult for the user to detect
+ being undetected for a long time
« providing attacker vulnerability for this time

I Daniel Rosenthal - Seminar Malware @ b-it

36

Harrier as part of HTH (1/2)

= Heart of HTH

= Application security monitoring program

= Runtime monitor collecting dynamically execution
related data

= Collecting information across different abstraction
layers

Architectural events

System calls

Library (API) routines

3 - 4 times faster than other available products

*

*

*

*

I Daniel Rosenthal - Seminar Malware @ b-it

37

Harrier as part of HTH (2/2)

= allows identification of abnormal program behaviour

= good detection rate with low rate of false positives

= enables defending against harmful activities

= Nno source code analyzing

= works with program binaries
+ Linux

= restricted monitoring to shared objects with a
defined API

I Daniel Rosenthal - Seminar Malware @ b-it

38

HTH software architecture

@« N

Program Monitoring &
Tracking Mechanism

. 4

Program Behaviour

v

-~

Analysis &

~

Policy Implementation

\

%

I Daniel Rosenthal - Seminar Malware @ b-it

39

Harrier: Data sources

= Divided into 5 resource types

+

Resource Type

Description

User Input data is retrieved via user interaction

File data is read from a file

Socket data is retrieved from a socket interface
Binary data is part of the program binary image
Hardware data originated from hardware (e.g. cpuid)

Daniel Rosenthal - Seminar Malware @ b-it

40

Harrier: Abstraction levels

= Architectural (ISA)

= Operating System (APIl)

= Library (API)

+

+ |Instructions executed

+ system calls
+ (clone, execve, open,

close, read, write) Collect information about

> e program semantics

. Library routines * program information flow

+ (only small set of
library API functions
monitored) /

Daniel Rosenthal - Seminar Malware @ b-it

41

Harrier: Events collected

Library Calls

Load

Library

E Harrier }
Data
Flow

Y y

Daniel Rosenthal - Seminar Malware @ b-it

I E ISA (Industrial Standard Architecture)]

42

Harrier: Security policy

= Execution flow
« Target: detecting malicious code being executed
= Resource abuse
+ monitor number of new processes and rate of
creation of these
= |Information flow
- enforce flow between different sources and
targets for the different resource types

I Daniel Rosenthal - Seminar Malware @ b-it

43

Contents

Some expamples

Definition of a Trojan Horse

Trojans in compilers

Harrier as part of HTH framework

Summary
References

| Daniel Rosenthal - Seminar Malware @ b-it

44

Summary

= Trojan Horse
« program containing additional hidden code
« unauthorized collection, exploitation, falsification, or
destruction of data

= Trojans in compilers
+ source level verification not sufficient to guarantee compiler
correctnes
+ binary compiler implementation verification needed

= Harrier within the HTH framework
+ complement to anti-virus software
+ runtime security monitor analyzing program binaries
« tracks ISA, OS and selected library events

I Daniel Rosenthal - Seminar Malware @ b-it

45

References

= Dr.-Ing. Claus Vielhauer, Dipl.-Inform.(FH) Andreas Lang: , Lecture slides:
Sicherheit verteilter Systeme S52007“ FH Brandenburg, 2007

= Paul A. Karger: ,,Limiting the Damage Potential of Discretionary Trojan Horses”,
in 1987 IEEE Symposium on Security and Privacy, pp. 32-37, 1987

= Wolfgang Goerigk: ,,On Trojan Horses in Compiler Implementations”, in
Proceedings of the Workshop Sicherheit und Zuverlassigkeit softwarebasierter
Systeme, IsTec Report, IsTec-A-367, Garching 1999

= M. Moffie, W. Cheng, D. Kaeli, Q. Zao: ,Hunting Trojan Horses*, AsiD'06:
Proceedings of the 1% Workshop on Architectural and System support for
improving software dependability, pp. 12-17, San Jose, California, 2006

= A. Brown, T. Cocks, K. Swampillai: ,,Spyware and Trojan horses*, Seminar on
Computer Security, 01-04 2004, University of Birmingham

Daniel Rosenthal - Seminar Malware @ b-it 46

What Questions do you have ???

Thanks for your attention !

Joke: Trojan Horse - The Chaser

I Daniel Rosenthal - Seminar Malware @ b-it

47

http://www.youtube.com/watch?v=Xs3SfNANtig

