
Equo ne credite: TrojansEquo ne credite: Trojans

Bonn-Aachen International CenterBonn-Aachen International Center
for Information Technologyfor Information Technology

Seminar MalwareSeminar Malware

03. December 200703. December 2007

Daniel RosenthalDaniel Rosenthal

Daniel Rosenthal - Seminar Malware @ b-it 2

ContentsContents

 Some expamplesSome expamples

 Definition of a Trojan HorseDefinition of a Trojan Horse

 Trojans in compilersTrojans in compilers

 Harrier as part of HTH frameworkHarrier as part of HTH framework

 SummarySummary

 ReferencesReferences

Daniel Rosenthal - Seminar Malware @ b-it 3

ContentsContents

 Some expamplesSome expamples

 Definition of a Trojan HorseDefinition of a Trojan Horse

 Trojans in compilersTrojans in compilers

 Harrier as part of HTH frameworkHarrier as part of HTH framework

 SummarySummary

 ReferencesReferences

Daniel Rosenthal - Seminar Malware @ b-it 4

Expamles of Trojan Horses (1/6)Expamles of Trojan Horses (1/6)

 Greek mythologyGreek mythology
 Trojan warTrojan war
 After 10 years of siege, the Greek built a wooden After 10 years of siege, the Greek built a wooden

horse, inside some soldiers and left the battlefieldhorse, inside some soldiers and left the battlefield
 Trojans expected the horse to be a present and Trojans expected the horse to be a present and

carried it into the citycarried it into the city
 At night, the hidden soldiers opend the gates, the At night, the hidden soldiers opend the gates, the

greek army entered Troy and defeated the greek army entered Troy and defeated the
Trojans Trojans

Daniel Rosenthal - Seminar Malware @ b-it 5

Expamles of Trojan Horses (2/6)Expamles of Trojan Horses (2/6)

 Back Orifice (~1998)Back Orifice (~1998)
 developed by the “Cult of the Dead Cow“developed by the “Cult of the Dead Cow“
 released at DefCon 6 in 1998released at DefCon 6 in 1998
 affects Windows 95 and 98affects Windows 95 and 98
 modular system of pluginsmodular system of plugins

✔ authentication and encryption possibleauthentication and encryption possible

Attacker Victim

Trojan Horse

IP, Port

ICQ /
IRC

IP, Port

Connection

Infection
stage

Daniel Rosenthal - Seminar Malware @ b-it 6

Expamles of Trojan Horses (3/6)Expamles of Trojan Horses (3/6)

 Back OrificeBack Orifice

Attacker Victim

Command

Connection

Request for Information

Information

Execution
stage

Daniel Rosenthal - Seminar Malware @ b-it 7

Expamles of Trojan Horses (4/6)Expamles of Trojan Horses (4/6)

 Back OrificeBack Orifice

Removal stage

Attacker VictimCleanup Command

Daniel Rosenthal - Seminar Malware @ b-it 8

Expamles of Trojan Horses (5/6)Expamles of Trojan Horses (5/6)

 InCommand (~July 2002) by Stoner and BogartInCommand (~July 2002) by Stoner and Bogart

Files: editserver.exe, icon.dll, server17-b2.exe, incsrv.exe in Windows\

Daniel Rosenthal - Seminar Malware @ b-it 9

Expamles of Trojan Horses (6/6)Expamles of Trojan Horses (6/6)

 Captcha-Breaker (29.10.2007)Captcha-Breaker (29.10.2007)

● Captcha = Completely Automated Public Turing test to
tell Computers and Humans Apart
● Spammers should be avoided

Daniel Rosenthal - Seminar Malware @ b-it 10

ContentsContents

 Some expamplesSome expamples

 Definition of a Trojan HorseDefinition of a Trojan Horse

 Trojans in compilersTrojans in compilers

 Harrier as part of HTH frameworkHarrier as part of HTH framework

 SummarySummary

 ReferencesReferences

Daniel Rosenthal - Seminar Malware @ b-it 11

Definition: What is a trojan horse ?Definition: What is a trojan horse ?

““An apparently useful and innocent An apparently useful and innocent programprogram
containing additional hidden codecontaining additional hidden code which allows which allows
the unauthorized collection, exploitation, the unauthorized collection, exploitation,
falsification, or destruction of data.“falsification, or destruction of data.“

from: Texas State Library and Archives Commissionfrom: Texas State Library and Archives Commission
http://www.tsl.state.tx.us/ld/pubs/compsecurity/glossary.htmhttp://www.tsl.state.tx.us/ld/pubs/compsecurity/glossary.htmll

● no self reproduction
● user must run the trojan horse program

Daniel Rosenthal - Seminar Malware @ b-it 12

A little more history (1/2)A little more history (1/2)

 Trojan horses known since joint use of mainframe Trojan horses known since joint use of mainframe
computerscomputers
 pay per CPU timepay per CPU time

✔ sniff username/ password by faked login sniff username/ password by faked login
screenscreen

✔ use account of someone elseuse account of someone else
 Internet Service Provider: AOLInternet Service Provider: AOL

 sniffed accountssniffed accounts
 Mostly Microsoft DOS and Windows systems harmedMostly Microsoft DOS and Windows systems harmed

 huge distribution, low security standardshuge distribution, low security standards

Daniel Rosenthal - Seminar Malware @ b-it 13

A little more history (2/2)A little more history (2/2)

 Nowadays: Nowadays:
 capturing private/confidential datacapturing private/confidential data

✔ online bankingonline banking
 manipulation/ deletion of data and/or servicesmanipulation/ deletion of data and/or services

✔ even within a (local area) networkeven within a (local area) network
 remote access to machinesremote access to machines

✔ Sub7even, Back OrificeSub7even, Back Orifice
 mostly sended as email attachmentsmostly sended as email attachments

Daniel Rosenthal - Seminar Malware @ b-it 14

CharacteristicsCharacteristics

 Propagation Methods Propagation Methods PP
 ActivationActivation AA
 PlacementPlacement HH
 EffectivenessEffectiveness EE
 CommunicationCommunication CC
 FunctionsFunctions FF
 Guarding MechanismsGuarding Mechanisms GG

 Describtion of a trojan horse as a tupel:Describtion of a trojan horse as a tupel:
 T = (T = (PP||GG, , AA||GG, , HH||GG, , EE||GG, , CC||GG, , FF||GG))

Daniel Rosenthal - Seminar Malware @ b-it 15

Propagation Methods Propagation Methods PP

 pp11:Executables:Executables
 pp1,11,1: Email attachment: Email attachment
 pp1,21,2: Instant messaging: Instant messaging
 pp1,31,3: : File sharingFile sharing
 pp1,41,4: : FTP / HTTPFTP / HTTP
 pp1,51,5:: Wireless communication Wireless communication
 pp1,61,6: Data mediums (Floppies, USB-Sticks, ...): Data mediums (Floppies, USB-Sticks, ...)

 pp22:Social Engineering:Social Engineering
 pp33:Exploits:Exploits
 pp44:Malformed data objects:Malformed data objects
 pp55:Physical access to computer:Physical access to computer

Daniel Rosenthal - Seminar Malware @ b-it 16

Activation Activation AA

 aa11: startup of operating system: startup of operating system
 Starting scripts / programsStarting scripts / programs
 Entries of registry (Windows)Entries of registry (Windows)
 Kernel moduleKernel module

 aa22: running a program (unintentionally): running a program (unintentionally)
 Modified programsModified programs
 Using mix-ups (unix „cp“ windows „copy“)Using mix-ups (unix „cp“ windows „copy“)
 Execution of programs treated by social engineeringExecution of programs treated by social engineering

Daniel Rosenthal - Seminar Malware @ b-it 17

Placement Placement HH

 hh11: as file somewhere on the mediums: as file somewhere on the mediums
 hh22: indepentent of the file system on the harddisk: indepentent of the file system on the harddisk

 marked as bad clustersmarked as bad clusters
 using free space in used clustersusing free space in used clusters
 outside of the partition in free space of harddiskoutside of the partition in free space of harddisk

 hh33: in modules / memory of any hardware (RAM, : in modules / memory of any hardware (RAM,
Flash, USB-Stick, ...) Flash, USB-Stick, ...)

 hh44: distributed in several files: distributed in several files

Daniel Rosenthal - Seminar Malware @ b-it 18

Effectiveness Effectiveness EE

 ee11: DLL-injection (dynamic link library): DLL-injection (dynamic link library)
 ee22: process injection / code injection: process injection / code injection
 ee33: modifications to configurations: modifications to configurations
 ee44: loading of program modules (puzzle trojan horse) : loading of program modules (puzzle trojan horse)

Daniel Rosenthal - Seminar Malware @ b-it 19

Communication Communication CC

 cc11: active communication: active communication
 open port (waiting / polling server)open port (waiting / polling server)
 closed port (port knocking)closed port (port knocking)
 stealth method (sniffer)stealth method (sniffer)

 cc22: passive communication: passive communication
 cc33: email, IRC, ICQ, http: email, IRC, ICQ, http
 cc44: tunneling (ICMP, DNS, HTTP): tunneling (ICMP, DNS, HTTP)

Daniel Rosenthal - Seminar Malware @ b-it 20

Functions Functions FF

 ff11: file manager: file manager
 ff22: process manager: process manager
 ff33: keylogger: keylogger
 ff44: update function: update function
 ff55: registry: registry
 ff66: gathering informations: gathering informations
 ff77: spying: spying
 ff88: starting / providing services: starting / providing services
 ff99: portscanner: portscanner
 ff1010: attacks to other systems: attacks to other systems
 ff1111: destroying hardware: destroying hardware
 ff1212: adware: adware

Daniel Rosenthal - Seminar Malware @ b-it 21

Guarding Mechanisms Guarding Mechanisms GG

 gg11: none: none
 gg22: armoring: armoring
 gg33: polymorphism: polymorphism
 gg44: stealth: stealth
 gg55: stenography: stenography
 gg66: encryption: encryption
 gg77: manipulation of (antiviral) software: manipulation of (antiviral) software

Daniel Rosenthal - Seminar Malware @ b-it 22

Application of the tuple specificationApplication of the tuple specification

 Example: Example:
 T = ({pT = ({p

1,11,1, {a, {a
1,21,2,a,a33}, h}, h

11, {}, c, {}, c
1,11,1, {}}| g*), {}}| g*)

 email attachment (pemail attachment (p
1,11,1))

 Activation through executing files (aActivation through executing files (a
33) using a) using a

registy entry (aregisty entry (a
1,21,2))

 stored in the filesystem (hstored in the filesystem (h
11))

 communication over an open TCP port (ccommunication over an open TCP port (c
1,11,1))

 Unspecified self protection method for all tuple Unspecified self protection method for all tuple
elements (g*)elements (g*)

Daniel Rosenthal - Seminar Malware @ b-it 23

ContentsContents

 Some expamplesSome expamples

 Definition of a Trojan HorseDefinition of a Trojan Horse

 Trojans in compilersTrojans in compilers

 Harrier as part of HTH frameworkHarrier as part of HTH framework

 SummarySummary

 ReferencesReferences

Daniel Rosenthal - Seminar Malware @ b-it 24

Trojans in compilersTrojans in compilers

 Demonstration by Ken Thompson (inventor of Unix) Demonstration by Ken Thompson (inventor of Unix)
in Turing Award lecture 1984in Turing Award lecture 1984

 Trojan Horse in C compiler binary inplementationTrojan Horse in C compiler binary inplementation
 not visible in compiler source code,not visible in compiler source code,
 but reproducing itself when source code is but reproducing itself when source code is

recompiled in a bootstrapping processrecompiled in a bootstrapping process
 intruding back-door into the Unix „login“ intruding back-door into the Unix „login“

commandcommand
 will pass nearly every testwill pass nearly every test

 state of the art compiler validation and state of the art compiler validation and
verificationverification

 bootstrap testbootstrap test
 any amount of source code inspection and any amount of source code inspection and

verificationverification
 might cause a catastrophemight cause a catastrophe

Daniel Rosenthal - Seminar Malware @ b-it 25

Trojans in compilers – How is this possible ? (1/2)Trojans in compilers – How is this possible ? (1/2)

 Example: self reproducing progam (by substitution)Example: self reproducing progam (by substitution)

main(){
char *b = “main(){
char *b = %c%s%c;
printf(b,34,b,34);
}“;
printf(b,34,b,34);
}

%c : replace character
%s : replace string
34 : “

Daniel Rosenthal - Seminar Malware @ b-it 26

Trojans in compilers – How is this possible ? (2/2)Trojans in compilers – How is this possible ? (2/2)

 Example: conditional self reproducingExample: conditional self reproducing
//file: reproduce.c
char *buf =“
//file: reproduce.c
char *buf = %c%s%c;
int main(int argc, char *argv[]){

if (argv[1] && (strcmp(argv[1], %cident%c) == 0))
printf(buf,34,buf,34,34,34,34,34,34,34);

else if ((argv[1] && (strcmp(argv[1], %clogin%c) == 0))
printf(%cOops%c);

else
printf(argv[1]);

}
void cheat () {}
“;

int main(int argc, char *argv[]){
if (argv[1] && (strcmp(argv[1], “ident“) == 0))

printf(buf,34,buf,34,34,34,34,34,34,34);
else if ((argv[1] && (strcmp(argv[1], “login“) == 0))

printf(“Oops“);
else

printf(argv[1]);
}void cheat () {}

Daniel Rosenthal - Seminar Malware @ b-it 27

Compiler BootstrappingCompiler Bootstrapping

 Compiling a compiler whereCompiling a compiler where
 source language andsource language and
 implementation language are the sameimplementation language are the same

 Example:Example:
 C++ compiler used to compile a new version of itC++ compiler used to compile a new version of it
 where source code for the new version is written where source code for the new version is written

in C++in C++

Daniel Rosenthal - Seminar Malware @ b-it 28

Bootstrap TestBootstrap Test

CSL: compiler source program
m: compiler program
ML: M's machine language

From W.Goerigk: „On Trojan Horses in Compiler Implementations“

Daniel Rosenthal - Seminar Malware @ b-it 29

Bootstrapping TheoremBootstrapping Theorem

If mIf m
00 and C and C

SLSL are both correct, if m are both correct, if m
00, applied , applied

to Cto C
SLSL, terminates with regular result m, terminates with regular result m

11, and if , and if
the underlying hardware worked correctly, the underlying hardware worked correctly,
then mthen m

11 is correct. is correct.

Daniel Rosenthal - Seminar Malware @ b-it 30

Bootstrap Test TheoremBootstrap Test Theorem

If mIf m
00 and C and C

SLSL are both correct and deterministic, if are both correct and deterministic, if
mm00, applied to C, applied to C

SLSL, terminates with regular result m, terminates with regular result m
11, if , if

mm11, applied to C, applied to C
SLSL, terminates with regular result m, terminates with regular result m

22, ,
and if the underlying hardware worked correctly, then and if the underlying hardware worked correctly, then
mm11 = m = m

22..

Daniel Rosenthal - Seminar Malware @ b-it 31

Passing the Bootstrap Test (1/3)Passing the Bootstrap Test (1/3)

 Now consider mNow consider m
00 to be an compiler implementation to be an compiler implementation

including a Trojan Horseincluding a Trojan Horse
 reproducing mreproducing m

0 0 if applied to Cif applied to C
SLSL

 Compiling a bug to login.c if applied to thisCompiling a bug to login.c if applied to this
 Working correctly as mWorking correctly as m

00 (unmodified compiler) for any (unmodified compiler) for any
other caseother case

Daniel Rosenthal - Seminar Malware @ b-it 32

Passing the Bootstrap Test (2/3)Passing the Bootstrap Test (2/3)
//file: compile-incorrect.c
#include<string.h>
#include<stdio.h>

char login[255] = „void main() {printf\“Cheating Login (Oops):\“;}“;
char *buf = “...
“;
char cmdbuf[255] = “make CC=gcc 'basename “;
FILE* handle;

void main (int argc, char *argv[]) {
if (argv[1] && (strcmp(argv[1],“compile.c“) == 0)) {

system(“mv compile.c .compile.c.orig“);
if ((handle = fopen(“compile.c“, “w+“))!= NULL {

fprint(handle,buf,
34,92,34,92,34,34,34,buf,34,34,...,34);

fclose(handle);
system(“make CC=gcc compile“);
system(“mv .compile.c.orig compile.c“);

};
}
else if (argv[1] && (strcmp(argv[1],“login.c“) == 0)) {

system(“mv login.c .login.c.orig“);
if ((handle = fopen(“login.c“, “w+“))!= NULL {

fprint(handle,login);
fclose(handle);
system(“make CC=gcc login“);
system(“mv .login.c.orig login.c“);

};
}
else {

strcat(cmdbufm argv[1]); strcat(cmdbuf,“ .c'“);
}

}

Daniel Rosenthal - Seminar Malware @ b-it 33

Passing the Bootstrap Test (3/3)Passing the Bootstrap Test (3/3)

Daniel Rosenthal - Seminar Malware @ b-it 34

Avoiding Trojan Horses in compilersAvoiding Trojan Horses in compilers

 Seen: Source level verification does not workSeen: Source level verification does not work
 Sufficient: Syntactical Code InspectionSufficient: Syntactical Code Inspection

 Let CCLet CC
SL,TLSL,TL be a semantically correct compiling relation be a semantically correct compiling relation

between source and target languagebetween source and target language
 CCSLSL is correct refinement of CC is correct refinement of CC

SL,TLSL,TL
 If m applied to CIf m applied to C

SLSL it is element of CC it is element of CC
SL,TLSL,TL

 m is correct implementation of CCm is correct implementation of CC
SL,TLSL,TL

 m is a correct compiler executable from SL to TLm is a correct compiler executable from SL to TL

Daniel Rosenthal - Seminar Malware @ b-it 35

ContentsContents

 Some expamplesSome expamples

 Definition of a Trojan HorseDefinition of a Trojan Horse

 Trojans in compilersTrojans in compilers

 Harrier as part of HTH frameworkHarrier as part of HTH framework

 SummarySummary

 ReferencesReferences

Daniel Rosenthal - Seminar Malware @ b-it 36

Hunting Trojan Horses (HTH)Hunting Trojan Horses (HTH)

 is a security frameworkis a security framework
 developed for detecting diffucult types of intrusionsdeveloped for detecting diffucult types of intrusions
 intended to be a complement to antiviral softwareintended to be a complement to antiviral software
 zero day attacks and new malicious code can go zero day attacks and new malicious code can go

undetected by even most up-to-date anti-virus-undetected by even most up-to-date anti-virus-
programprogram

 some trojan horses executes as plugins or DLLsome trojan horses executes as plugins or DLL
 many have little impact on system behaviourmany have little impact on system behaviour

 difficult for the user to detectdifficult for the user to detect
 being undetected for a long timebeing undetected for a long time
 providing attacker vulnerability for this timeproviding attacker vulnerability for this time

Daniel Rosenthal - Seminar Malware @ b-it 37

Harrier as part of HTH (1/2)Harrier as part of HTH (1/2)

 Heart of HTHHeart of HTH
 Application security monitoring programApplication security monitoring program
 Runtime monitor collecting dynamically execution Runtime monitor collecting dynamically execution

related datarelated data
 Collecting information across different abstraction Collecting information across different abstraction

layerslayers
 Architectural eventsArchitectural events
 System callsSystem calls
 Library (API) routinesLibrary (API) routines
 3 – 4 times faster than other available products3 – 4 times faster than other available products

Daniel Rosenthal - Seminar Malware @ b-it 38

Harrier as part of HTH (2/2)Harrier as part of HTH (2/2)

 allows identification of abnormal program behaviourallows identification of abnormal program behaviour
 good detection rate with low rate of false positivesgood detection rate with low rate of false positives
 enables defending against harmful activitiesenables defending against harmful activities
 no source code analyzingno source code analyzing
 works with program binariesworks with program binaries

 LinuxLinux
 restricted monitoring to shared objects with a restricted monitoring to shared objects with a

defined APIdefined API

Daniel Rosenthal - Seminar Malware @ b-it 39

HTH software architectureHTH software architecture

Program Monitoring &
Tracking Mechanism

Analysis &
Policy Implementation

Program Behaviour

Analysis Feedback

Daniel Rosenthal - Seminar Malware @ b-it 40

Harrier: Data sourcesHarrier: Data sources

 Divided into 5 resource typesDivided into 5 resource types

Resource Type Description
User Input data is retrieved via user interaction
File data is read from a file
Socket data is retrieved from a socket interface
Binary data is part of the program binary image
Hardware data originated from hardware (e.g. cpuid)

Daniel Rosenthal - Seminar Malware @ b-it 41

Harrier: Abstraction levelsHarrier: Abstraction levels

 Architectural (ISA)Architectural (ISA)
 Instructions executedInstructions executed

 Operating System (API)Operating System (API)
 system callssystem calls
 (clone, execve, open, (clone, execve, open,

close, read, write)close, read, write)
 Library (API)Library (API)

 Library routinesLibrary routines
 (only small set of (only small set of

library API functions library API functions
monitored)monitored)

Collect information aboutCollect information about
● program semantics program semantics
● program information flowprogram information flow

Daniel Rosenthal - Seminar Malware @ b-it 42

Harrier: Events collectedHarrier: Events collected

Application

Libraries

Harrier

Operating System

ISA (Industrial Standard Architecture)

Load
Library

Library Calls

Data
Flow

Daniel Rosenthal - Seminar Malware @ b-it 43

Harrier: Security policyHarrier: Security policy

 Execution flowExecution flow
 Target: detecting malicious code being executedTarget: detecting malicious code being executed

 Resource abuseResource abuse
 monitor number of new processes and rate of monitor number of new processes and rate of

creation of thesecreation of these
 Information flowInformation flow

 enforce flow between different sources and enforce flow between different sources and
targets for the different resource typestargets for the different resource types

Daniel Rosenthal - Seminar Malware @ b-it 44

ContentsContents

 Some expamplesSome expamples

 Definition of a Trojan HorseDefinition of a Trojan Horse

 Trojans in compilersTrojans in compilers

 Harrier as part of HTH frameworkHarrier as part of HTH framework

 SummarySummary

 ReferencesReferences

Daniel Rosenthal - Seminar Malware @ b-it 45

SummarySummary

 Trojan HorseTrojan Horse
 program containing additional hidden codeprogram containing additional hidden code
 unauthorized collection, exploitation, falsification, or unauthorized collection, exploitation, falsification, or

destruction of datadestruction of data

 TrojanTrojans in compilerss in compilers
 source level verification not sufficient to guarantee compiler source level verification not sufficient to guarantee compiler

correctnescorrectnes
 binary compiler implementation verification neededbinary compiler implementation verification needed

 Harrier within the HTH frameworkHarrier within the HTH framework
 complement to anti-virus softwarecomplement to anti-virus software
 runtime security monitor analyzing program binariesruntime security monitor analyzing program binaries
 tracks ISA, OS and selected library eventstracks ISA, OS and selected library events

Daniel Rosenthal - Seminar Malware @ b-it 46

ReferencesReferences

 Dr.-Ing. Claus Vielhauer, Dipl.-Inform.(FH) Andreas Lang: Dr.-Ing. Claus Vielhauer, Dipl.-Inform.(FH) Andreas Lang: „Lecture slides: „Lecture slides:
Sicherheit verteilter Systeme SS2007“Sicherheit verteilter Systeme SS2007“ FH Brandenburg, 2007 FH Brandenburg, 2007

 Paul A. Karger: Paul A. Karger: „Limiting the Damage Potential of Discretionary Trojan Horses“„Limiting the Damage Potential of Discretionary Trojan Horses“, ,
in 1987 IEEE Symposium on Security and Privacy, pp. 32-37, 1987in 1987 IEEE Symposium on Security and Privacy, pp. 32-37, 1987

 Wolfgang Goerigk: Wolfgang Goerigk: „On Trojan Horses in Compiler Implementations“„On Trojan Horses in Compiler Implementations“, in , in
Proceedings of the Workshop Sicherheit und Zuverlässigkeit softwarebasierter Proceedings of the Workshop Sicherheit und Zuverlässigkeit softwarebasierter
Systeme, IsTec Report, IsTec-A-367, Garching 1999Systeme, IsTec Report, IsTec-A-367, Garching 1999

 M. Moffie, W. Cheng, D. Kaeli, Q. Zao: M. Moffie, W. Cheng, D. Kaeli, Q. Zao: „Hunting Trojan Horses“„Hunting Trojan Horses“, AsiD'06: , AsiD'06:
Proceedings of the 1Proceedings of the 1stst Workshop on Architectural and System support for Workshop on Architectural and System support for
improving software dependability, pp. 12-17, San Jose, California, 2006improving software dependability, pp. 12-17, San Jose, California, 2006

 A. Brown, T. Cocks, K. Swampillai: „Spyware and Trojan horses“, Seminar on A. Brown, T. Cocks, K. Swampillai: „Spyware and Trojan horses“, Seminar on
Computer Security, 01-04 2004, University of BirminghamComputer Security, 01-04 2004, University of Birmingham

Daniel Rosenthal - Seminar Malware @ b-it 47

What Questions do you have ???What Questions do you have ???

Thanks for your attention !

Joke: Trojan Horse - The Chaser

http://www.youtube.com/watch?v=Xs3SfNANtig

