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Ferguson (1994)

This system is based on the difficulty of RSA and a discrete logarithm problem but it
also uses some hash functions at sensitive places to (hopefully) increase the security.
Further, polynomial secret sharing is used in order to decrease the coin size without
loss of security. The important part here is Martin’s challenge size, it must be large
enough to prevent repetitions. The challenge size in Chaumet al. (1989) wask/2
bits, so the size of the coin grows linearly with the wanted challenge size. Here
the challenge size depends only on the chosen group and is thus typically not much
larger than with, say,k = 4. But let us first explain the polynomial secret sharing
and the system.

1. Polynomial secret sharing

Suppose there is some secretx that we want to give to a group of people. Yet, the
secret is very valuable and we do not trust a single person farenough to give him
the secret. Think of the access code of the central safe of a bank or the start code
of nuclear weapons. The solution is to distribute the secret: each person only gets
part of the secret. Now, we know that to determine a polynomial f of degree less
thank over some fieldF we need to knowk pairs(x, f(x)). By interpolation we
can then recoverf , in particular, say,f(0). If we give one point(x, f(x)), x 6= 0,
to each person then at leastk of them must come together to recover the secretf(0)
and thus to be able to open the safe or to start the missile. Figure 1 shows a picture
of a line overF257. Any two points determine the secret. But if we only know one
point then any secret could complete the picture. In Figure 2we see a line overF256,
the elements ofF256 have been numbered in some systematical way for that purpose.
Again any two points determine the line, one point could go with any secret. Figure 3
shows cubic curves. Only if we know at least four of its non-zero points then we can
recover the secret.

2. The system

Following the description of the author we also first describe the payment thus spec-
ifying the form of the coins. For the payment process we then have to find a way
of getting the appropriate blind signatures from the bank. The basic setup contains
an RSA signature key pair of the bank with public key(N, v). Additionally to the
standard assumptions we require thatv is a sufficiently large prime and thatϕ(N)
contains at least one large prime factor. Further some elementsg1, g2, g3 ∈ Z

×

N of
large order (minimal repetition length) are fixed. To be ableto find them the bank
should construct her primesp, q such that she knows large prime factors ofp − 1
and q − 1. Next we need a suitable primet such thatN | t − 1 and elements
h2, h3 ∈ F

×

t of orderN . Finally, the bank chooses hash functionsf1 : Z
×

N → N<v,
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Figure 1: The linef : F257 → F257, T 7→ 128 T + 42 over the fieldF257 carries
the secretf(0) =̂ 42 and passes through zero atT =̂ 84. The elements ofF257 are
represented as integers modulo257 (which is prime!).
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Figure 2: The linef : F256 → F256, T 7→ (x7 + x3 + x2 + 1) T + (x5 + x3 + x)
over the fieldF256 carries the secretf(0) = x5 + x3 + x =̂ 25 + 23 + 2 = 42 and
passes through zero atT =̂ 84. The elements ofF256 are represented as polynomials
in x of degree less than8 overF2 = Z2 modulox8 + x4 + x3 + x + 1 and identified
with integers by ‘evaluating’ such a polynomial over the integers atx = 2.
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Figure 3: The cubic curvef : F256 → F256, T 7→ (x7 + x6 + x5 + x4 + x3 + x +
1) T 3 + (x7 + x5 + x + 1) T 2 + (x4 + x2 + x + 1) T + (x 5 + x3 + x) overF256 on
the left hand side andf : F257 → F257, T 7→ 20 T 3 + 42 T 2 + (−60) T + 42 over
F257 on the right hand side each carry the secretf(0) =̂ 42. For our untrained eyes
the nice structure of this curve is not visible but still: anyfour points determine the
entire polynomial and thus the secret.

f2, f3 : F
×

t → N<v, andf4 : N<v ×N<v → Z
×

N . The bank publishes the data

(N, v, g1, g2, g3, t, h2, h3, f1, f2, f3, f4).

Further Alice’ identity is coded in a valueU ∈ N<v.

PROTOCOL 1. Bank setup.

1. The bank chooses an RSA key pair: Findp, q primes such thatN = p · q has,
say, 1024 bits. ComputeL = (p − 1)(q − 1) and choose a suitably large, say
128 bit, primev ∈ N<L coprime toL. Calculate(1/v) = v−1 modL.

2. Find elementsg1, g2, g3 ∈ Z
×

N of large order. This might be a problem since
the bank must know the factorization ofL to determine the order of a randomly
chosen element. Butp andq can be constructed such that at least a large prime
factorP of p − 1 andQ of q − 1 is known. Thenx

L
PQ is an element of order

1, P , Q, or PQ for any x ∈ Z
×

N and elements of orderPQ can be found by
repeating this some times.

3. Find a primet with t ≡N 1. (Since the size oft needs only be of the same order
asN , she might simply choose the smallest prime of the formxN + 1.)

4. Find elementsh2, h3 ∈ F
×

t of orderN . Again this is easy by testing the order
of x

t−1

N for randomly chosenx ∈ F
×

t which can be only1, p, q, or N = pq.
5. Fix hash functionsf1 : Z

×

N → N<v, f2, f3 : F
×

t → N<v, andf4 : N<v × N<v →
N<v.

6. Publish
(N, v, g1, g2, g3, h2, h3, f1, f2, f3, f4).

The only extra information the bank needs is its secret exponent(1/v).
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Note that we will do a lot of calculations in the RSA domainZ
×

N but some calcula-
tions also will take place in the fieldFt.

The coin consists of randomly chosen valuesa, b, c ∈ Z
×

N from which anybody

can computeA = ag
f1(a)
1 , B = bg

f2(hb
2
)

2 , C = cg
f3(hc

3
)

3 . Further a random parameter
k ∈ N<v and signaturesS1 = (ACk)(1/v) andS2 = (BCU)(1/v) are part of the coin.

PROTOCOL2. Payment.

1. Alice hands over(a, b, c) to Martin. (a, b, c)
−−−−−−−−−−→

2. Martin chooses a random challengex ∈ N<v. x
←−−−−−−−−−−

3. Alice computesr + r̂v ← kx + U with r ∈ N<v and a signatureR
to AxBCr by R ← Sx

1S2C
−r̂ = (AxBCr)(1/v). She sends(r,R) to

Martin. (r, R)
−−−−−−−−−−→

4. Martin verifies that the signature is valid: all transmitted data are in the
required domains and

Rv ?
= AxBCr.

Note that he can do that.

Depositing the coin is easy, too:

PROTOCOL3. Deposit.

1. Martin sends the entire transcript of the payment Protocol 1 to the bank. (a, b, c, x, r, R)
−−−−−−−−−−→

2. She then looks up the signature in her database.

◦ If she does not find it, Martin gets his money put on his account
and a receipt.

◦ Otherwise, the bank detects a double spending just as in the other
systems:

– If the challengesx andx′ are also equal then Martin has tried
to redeposit a coin.

– Otherwise the bank tries to reveal Alice’ identity. For now
the bank knowsr ≡v kx + U andr′ ≡v kx′ + U modulov

which is just a linear system of equations fork andU . Now
she can take Alice to court for double spending.

There are several points to be taken into account for the withdrawal process. Of
course the first requirement is that the bank cannot link the withdrawal and the de-
posit of a coin (unless a double spending occurs). Further, it shall be guaranteed that
the parametersa, b, c andk are chosen randomly. Both parties, in particular the bank
in our case, have to be sure that these parameters are not ‘made up’. To do so Alice
and the bank each choose a part, saya′ anda′′ of these parameters and at the end
they take the producta = a′a′′. Only both must make their choice independently
whereas we have no way of guaranteeing a parallel transmission of the respective
shares. (Actually, this seems very similar to ‘Coin flippingby phone’, Blum 1982.)



Workshop ee 5

To achieve this, Alice first choosesa′ and then transmits some informatioñA which
binds her to this value ofa′. Then the bank choosesa′′ and sends it to Alice. Actu-
ally, in our case the product must only be known to Alice. To make sure that Alice
continues as desired, Alice sends something which requiresthat she uses the bank’s
a′′ in order to give her the desired meaningful signature. Or thebank’s answer de-
pends on the informatioñA that binds Alice. Then the answer is only useful to Alice
if she sticks to her previously chosen valuea′.

3. Randomized blind signatures

First we consider how to get arandomized blind signature. Randomized means that
the bank will be sure that the used parameter was indeed chosen at random. Blind
means, as usual, that the bank cannot link the final signatureto the transcript of
the signature protocol. And of course Alice should not be able to generate such
a signature on her own (this makes it a signature). Thus this scheme will be well
suited for our needs. Ferguson attributes it to Chaum (1992). Additionally we use a
one-way hash functionf : Z

×

N → N<v.

PROTOCOL4. Randomized blind signature.

1. Alice randomly choosesa′, α ∈ Z
×

N and σ ∈ N<v. She computes
Ã← αva′gσ and sends that to the bank. Ã

−−−−−−−−−−→
2. The bank randomly choosesa′′ ∈ Z

×

N and sends it to Alice. a′′

←−−−−−−−−−−
3. Alice computesa ← a′a′′ ∈ Z

×

N and an adjusting exponente + êv ←
f(a)− σ with e ∈ N<v and sendse to the bank. e

−−−−−−−−−−→
4. The bank computesA ← Ã · a′′ge and sends Alice a signaturẽS ←

A
(1/v)

of it. S̃
←−−−−−−−−−−

5. Alice unblinds the signature to obtainS ← S̃α−1gê. Now she has a
signature pair(a, S) satisfying

(5) Sv ?
= agf(a).

Before we discuss attacks let us have a short glance at the correctness. There
is one complication that we did not mention in advance. Actually, Alice must hand
overe ∈ N<v instead ofe+ êv in order to keep her secrets protected. Unfortunately,
it is not allowed to calculate modulov (or any other number Alice knows of) in the
exponent ofg. She only knows thatg has large order but she has no idea which one.
Thus she will obtain av-th root ofagf(a)−êv instead of av-th root ofagf(a). Luckily
this is correctable since the deviation is av-th power of a known value. Indeed, we
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have

Sv = S̃vα−vgêv

= Aα−vgêv

= Ã · a′′geα−vgêv

= αva′gσ · a′′α−vgf(a)−σ

= agf(a).

First, note the relations between the values in the transcript: Clearly, Step 4 in
Protocol 3 implies

(6) S̃v = Ã · a′′ge.

Everything else in the transcript is independent, as we willsee shortly. Indeed, even
if Alice follows the protocol any combination of̃A, a′′ ande can occur: First choose
any value fora, then solvee + êv = f(a)− σ for σ ∈ N<v andê, a = a′a′′ for a′′,
andÃ = αva′gσ for α. (We do not care for efficiency here!) Thus (5) is the only
relation. Each protocol transcript even occurs with the same probability. The only
choice is the choice ofa, all other solutions are unique. Thus in order to obtain a
valid signature from the protocol Alice can chooseÃ ande but must then go along
with a′′ andS̃ as given by the bank. Though Alice can chooseÃ as av-th power of
something she knows, her major problem is that she does not know thev-th root of
a′′ and thus cannot correct this factor to her needs without breaking RSA.

What if the bank tries to trace Alice? Can she get any information on the pair
(a, S) that is Alice’ signature at the end? No, she cannot. Indeed, each such pair
occurs with the same probability from the view of the bank. The bank knowsÃ,
a′′, e andS̃. Suppose Alice gets(a, S). Then there is exactly one choice for Alice
that can have produced this outcome:σ ∈ N<v and ê are uniquely determined by
e+ êv = f(a)−σ, α by S = S̃α−1gê, anda′ by a = a′a′′. The equatioñA = αva′gσ

is implied by (5):Ã = S̃v · (a′′)−1g−e = αvSvgσ−f(a)/a′′ = αvagf(a)gσ−f(a)/a′′ =
αva′gσ.

Let us see what happens if Alice tries to cheat. Clearly, she cannot solve (4) after
fixing a unless she breaks the bank’s signature which is assumed to beinfeasible. But
can she use the signature generation with a more or less prescribeda? As already
stated only (5) binds the values of the transcript. Suppose she wants to get along
with a prescribeda. What would she have to do in order to get a signature for
it? To satisfy (5) she must solveagf(a) = Ã · a′′ge for e. She can choosẽA in a
clever way, yet only before she knowsa′′. Writing e + êv = f(a)− σ the equation
a = Ã · a′′g−σ−êv must be solved forσ. Actually no matter how she has chosen
Ã the task is to compute a discrete logarithm. But of course theparameters will be
adjusted such that computing a discrete logarithm with baseg is not feasible. By
trying severalσ at random she might get control of some bits ofa but no more. Thus
there seems at least to be no obvious way for Alice to cheat.



Workshop ee 7

If Alice tries to use some more of the structure she might try to use some multiple
of a power of (5) to obtain a valid signature on some expression agf(a):

DS̃Ev = DÃE(a′′)E · geE

First note thatD can only help if Alice knows av-th root but that does not lead her
far. To be helpful she might try to adjust this such that

(Ãa′′)E = agt,

t + eE = f(a)

with somet ∈ N<v. Alice can use the first equation only after she knowsa′′, when
Ã is already fixed. So the obvious way to solve these equations is to chooseE and
t and determinea by the first equation. The control overa she can obtain this way
depends on her ability of computing discrete logarithms with respect tog or Ãa′′.
Finally, the second equation determinese. However, that means thatA, E and t
must be chosen beforee is transmitted.

Note that computing a discrete logarithm with baseÃa′′ might be feasible! If
the order ofÃa′′ is smooth and can be determined efficiently then we can compute
discrete logarithms efficiently and thus find a ‘good’E. So we choosea, compute
E ande. The order of the groupZ×

N however is unknown to Alice and infeasible
to find (unless she breaks RSA). The bank could adjusta′′ a little to avoid very low
order elements. Yet, this affects the distribution ofa′′ and might not be desirable.
Probably, it is true anyway that most elements ofZ

×

N are difficult discrete logarithm
bases providedϕ(N) contains large prime factors.

A way to stop Alice from even trying the just described manipulation is to change
the scheme a little. In the previous ‘attack’, it was essential that Alice can compute
(a′′)E. If we replacea′′ by ha′′

then Alice cannot simply compute the corresponding
h((a′′)E) from ha′′

. Since we computea = a′a′′ in ZN the order ofh must divide
N . But we are not bound to the domains already in use and simply choose a prime
t such thath ∈ Ft of orderN exists, that ist = ρN + 1 for someρ ∈ N. Oncet
is found any elementx ∈ F

×

t raised to the powert−1
N

gives an elementh = x
t−1

N of
order1, p, q, or N . The bank can easily exclude the first three cases by checking
h 6= 1, hp 6= 1 andhq 6= 1. A drawback of this is that Alice cannot verify that. She
is only able to checkhN = 1 andh 6= 1. But this is not really severe because it is in
the bank’s interest to have an element of highest possible order there. Of course we
now have to modify the definition of the hash function, we needf : F

×

t → N<v. In
total we have the following

PROTOCOL7. Randomized blind signature without exponential attack.

1. Alice randomly choosesa′, α ∈ Z
∗

N and σ ∈ N<v. She computes
Ã← αva′gσ and sends that to the bank. Ã

−−−−−−−−−−→
2. The bank randomly choosesa′′ ∈ Z

×

N , computes̃h← ha′′

and sends it
to Alice. h̃

←−−−−−−−−−−
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3. Alice computes an adjusting exponente + êv ← f(h̃a′

) − σ with e ∈
N<v and sends it to the bank. e

−−−−−−−−−−→
4. The bank computesA ← Ã · a′′ge and sends Alice a signaturẽS ←

A
(1/v)

of it along witha′′. a′′, S̃
←−−−−−−−−−−

5. Alice calculatesa ← a′a′′ and unblinds the signature to obtainS ←
S̃α−1gê. Now she has a signature pair(a, S) satisfying

(8) Sv ?
= agf(ha).

OPEN QUESTION 9. Could Alice in either variant obtain more signatures than the
number of times she executes the protocol?

4. Withdrawal

For the withdrawal process we will use the previous signature scheme three times
in parallel. Actually, for signinga we use the simple version and for signingb and
c we use the one which is protected against the exponential attack. The first will
be protected by an additional factor derived from the other two. As in the above
protocols, Alice and the bank will each choose a share of the three values. Yet,a
will be furthermore linked to the other two. This procedure would hand over three
signatures to Alice. As we already saw in Protocol 1 which defined the payment
from Alice to Martin, Alice needs signatures ofABk andACU . Since we are using
the RSA scheme to compute signatures these two are merely combinations of the
three signatures toA, B andC.

The bank must be sure thatU is used as specified since this is the identity coded
into the coin. It will enable the bank to trace Alice in case ofa double spending.
This will be guaranteed since the bank puts together the second signature as one for
ACU .

It is in Alice’ interest thatk is randomly chosen and only known to herself since
this parameter protects her identity! If it were known to anyone else then after only
one paymentU could be computed. But also the bank shall be sure that this para-
meter is chosen at random because otherwise Alice could try to fit this parameter
according to her needs. Thus the bank will only hand over a signature toA1/k′

Ck′′

without any knowledge ofk′ but with almighty power overk′′. UsingA1/k′

(implic-
itly) is made possible by choosinga as ak′-th power. Alice can later raise the result
to thek′-th power and thus giving her a signature ofACk′k′′

as desired.
One problem arises again several times: Alice has to correctthe exponents that

shall be dealt with only modulov. For example, this happens tok′k′′. The final
exponent to be used must bek = (k′k′′) remv. Since the difference is a multiple of
v in some exponent Alice can correct that even in thev-th root. As can be verified
in the protocol the correctionŝe2 andê3 are either0 or−1. But the correctionŝ1, ê1,
andk̂ use the entire rangeN<v.
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PROTOCOL10. Withdrawal.
1. Alice chooses random sharesa′, b′, c′ ∈R Z

×

N , random blind-
ing basesα, β, γ ∈R Z×

N , and random blinding exponents
σ, τ, ϕ ∈R N<v. She computes the blinded candidatesÃ ←
αva′ · gσ

1 , B̃ ← βvb′ · gτ
2 , C̃ ← γvc′ · gϕ

3 and sends them to the
bank. Ã, B̃, C̃

−−−−−−−−−−−−−−−−→
2. The bank chooses her random sharesa′′, b′′, c′′ ∈R Z

×

N and

sendsa′′, h̃2 ← hb′′
2 , h̃3 ← hc′′

3 to Alice. a′′, h̃2, h̃3
←−−−−−−−−−−−−−−−−

3. Alice computes

e2 + ê2v ← f2(h̃2
b′

)− τ with e2 ∈ N<v,

e3 + ê3v ← f3(h̃3
c′

)− ϕ with e3 ∈ N<v.

and choosesk′ ∈R N
×

<v. After computinga ← (a′a′′ ·
f4(e2, e3))

k′

andk− ∈ N<v, 1̂ ∈ N such thatk′k− = 1 + 1̂v,
she computes

e1 + ê1v ← k−f1(a)− σ with e1 ∈ N<v.

Then she sends the exponents(e1, e2, e3) to the bank. e1, e2, e3
−−−−−−−−−−−−−−−−→

4. The bank computesA ← Ãa′′f4(e2, e3)g
e1

1 , B ← B̃b′′ge2

2 ,
C ← C̃c′′ge3

3 . Then the bank chooses her sharek′′ ∈R N
×

<v of

k. She then computes the signaturesS̃1 ← (AC
k′′

)(1/v) and

S̃2 ← (B C
U
)(1/v) and sends them to Alice. b′′, c′′, k′′, S̃1, S̃2

←−−−−−−−−−−−−−−−−
5. Alice puts everything together: she computesb ← b′b′′, c ←

c′c′′ in Z
×

N , andk + k̂v ← k′k′′ with k ∈ N<v. Now she can
compute

A← ag
f1(a)
1 , B ← bg

f2(hb
2
)

2 , C ← cg
f3(hc

3
)

3

and unblind the signatures S1 ←(
S̃1

(
α−1gê1

1

)(
γ−1gê3

3

)k′′
)k′

g
−f1(a)1̂
1 C−k̂ and S2 ← S̃2

(
β−1gê2

2

)(
γ−1gê3

3

)U
. She now has a coin(a, b, c, k, S1, S2)

with the property

(11) Sv
1 = ACk, Sv

2 = BCU .

First we verify that this indeed fulfills the claimed equations (10). What the bank
obtains actually is

A
k′

= A ·

((
αg−ê1

1

)k′

g
f1(a)1̂
1

)v

,

B = B · (βg−ê2

2 )v,

C = C · (γg−ê3

3 )v.
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With this information we can exploit the definitions:

Sv
1 =

((
S̃1

(
α−1gê1

1

)(
γ−1gê3

3

)k′′
)k′

g
−f1(a)1̂
1 C−k̂

)v

= A
k′

((
α−1gê1

1

)k′

g
−f1(a)1̂
1

)v (
C
(
γ−1gê3

3

)v)k′k′′

C−k̂v

= ACk′k′′
−k̂v = ACk

and similarly

Sv
2 =

(
S̃2

(
β−1gê2

2

)(
γ−1gê3

3

)U
)v

= B
(
β−1gê2

2

)v (
C
(
γ−1gê3

3

)v)U

= BCU .

Thus the key equations (10) hold.
In order to prevent the bank from framing an innocent Alice for double spending

at some time Alice must provide a signature for this identityU . If this is not the
case not only Alice will not trust the system but also the bankwill not be able to
prosecute Alice for a potential double spending. No court would blame Alice if she
can be framed by the bank. Yet, we must somehow guarantee this in the withdrawal
process, see below. The first thought how to implement this isto makeU a signed
version of Alice’ identity. But then the bank cannot directly control thatU has the
correct form and thus Ferguson suggests a different approach.

5. Summary

Ferguson (1994) uses polynomial secret sharing to allow many possible queries. To
embed a polynomialkx + U into the system we proceed like this: Three numbers
a, b, c are chosen at random by the bank and Alice. For the mutual security it is
important that each partner is sure that these figures are indeed random. This is done
by something similar to ‘coin flipping by phone’. Alice and the bank each choose a
part of each number and the actual number then is composed of these two parts. Yet
only Alice will know the outcome of the random number. This makes the system
anonymous. From these numbers are derived three numbersA, B, C with the help
of some one-way functions. This ensures that Alice has almost no influence on the
specific values of these three numbers. In the withdrawal process the bank sends
Alice RSA signatures forACk andBCU . Here alsok must be a random quantity
and again both must be sure of it.
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To answer a queryx by Martin Alice shows a signatureR to (ACk)x(BCU) =
AxBCkx+U . She can produce this new signature from the two she knows. Clearly,
she must also hand overr = kx + U since Martin cannot compute this quantity.
If the bank gets two such answers the bank can solve fork andU and thus reveal
Alice’ identity coded inU .

That is a very brief sketch of the system. There are some complications in the
way the numbersa, b, c andk are chosen and some technical details that are used to
prevent certain kinds of attacks.
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