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2 Michael Nüsken

Distinguish money vs. cash: Cash is a form of money, but not the only one. . .
For the implementation of electronic money and electronic cash there are a lot of things to under-

stand. From top to bottom, we find that we need

◦ Protocols, that is, formalized chats, to make the system exchange the desired information at
the right place and the right time.

◦ Signatures (and authentication) to mimic essential properties of real money as unforgeability
(of a reasonable strength).

◦ Number theory to implement these things.

◦ A programming language to bring everything to life.

All these items are of course only the technical side of the story. The social and economical aspects
form an additional field. The reason for enterprises like DigiCash going bankrupt were not bad
technical solutions.

1. Properties of e (cash) and ee (electronic cash)

There are various properties that can be asked of electronicmoney. A problem is that there are often
no standard names, so you find two or three different words forthe same thing.

unforgeable This is a basic part of security: it should not be possible to forge a coin.

double spending protectedThis is a basic part of security: it should not be possible to spend a coin
twice, or at least it must be guaranteed that double spendinghas serious consequences.

Online vs. offline vs. with observer This refers to the payment protocol in an electronic payment
system. Some systems require an interaction with the bank atthis point, they are calledonline.
For example, if you pay with your bank card at the supermarketand enter your PIN then the
bank is called for clearance. Other system do not need this, they are offline. Apart from these
two extremes there is a further solution: typically the customer gets a card from the bank
anyway. So if this card can do some active computation we may use it to carry a further secret
such that the card can acknowledge transactions by a signature. Such a card then is called an
observer. Though the bank is not directly contacted during this kind of payment, I think that
the observer has to be considered as part of the bank and thus it is somehow online. Yet, with
respect to scalability the system behaves like an offline system, there is no central server that
has to deal with every payment.

untraceable, anonymous, privacy protected vs. fairAn electronic payment system that does not
allow the bank to trace who paid whom which amount is calledanonymousor untraceable,
sometimes this property comes along under the headingprivacy. Bank transfers arenotanony-
mous. As we will see later unconditional anonymity might actually not be wanted. Using a
trustee, possibly split, one can build systems that allow totrace coins when a court decides
that this is necessary. Still, the bank shall not be able to trace a coin unless a double spending
occurs.

One might also consider privacy protection with respect to the merchant as a possible tracer
but in any case the merchant must know where to send his goods to.

atomic It must be clear to all participants when a coin is transferred. A partial completion of the
payment protocol should not cause conflicts.

reusable, transferable This means that a customer can hand over coins to another customer and so
on. The coin must only be transferred to the bank after a certain maximal number of transfers.
This is similar to the ordinary life of a physical coin.

divisible It might be nice to have coins that can be divided into smallerones as needed.
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account-free vs. -basedElectronic money is always account-free, most electronic payment system
are account-based.

acceptable Which bank takes your coins?

reliable The system should always work when it is needed.

independent The system should not depend on any physical location. The money can be transferred
through computer networks.

2. Public key cryptography

Key words: RSA and its security, simple attacks. Signing with RSA. Group based cryptography,
examples, simple attacks. Authentication. (Zero knowledge?)

2.1. Rivest, Shamir & Adleman (1978). Public key cryptography was developed in the seventies.
Only when, shortly after the key exchange protocol by Diffie &Hellman (1976), Rivest, Shamir &
Adleman (1978) published the first publicly known asymmetric cryptosystem, now named RSA after
their inventors, the raise of public key cryptography began. Before that it was commonly thought
to be impossible that two previously unknown parties could exchange secrets in the presence of
eavesdroppers. Only symmetric key systems were used until then. The following decades brought
more and more electronic means, in particular the Internet.There was and is an increasing need of
confidentiality and security.

Curiously, the British secret service discovered public key cryptography already about five years
earlier and astonishingly the two schemes they came up with were RSA and the Diffie Hellman key
exchange. See Ellis (1987) for an historical account, the original papers are Cocks (1973); Ellis
(1970); Williamson (1974, 1976).

RSA is fairly simple. For a start you need two prime numbersp andq. Form their multipleN =
p·q. If you calculate moduloN then there are only finitely many possible results. Thus if you repeat a
specific operation, say multiplying by a fixed numberx, the sequence of results(1, x, x2, x3, x4, . . . )
must become periodic at some point. ActuallyL = (p − 1)(q − 1) is a repetition length (Later,
we will prove this!) and the period starts almost immediately: x = x1+L = x1+2L = . . . . Thus if
ed = 1 in ZL thenxed = x1 in ZN . As we will see it is easy to calculate such a pair(e, d) provided
one knows the repetition lengthL.

Suppose Alice has computedN = p · q and two numberse andd as above. Now if she wants to
obtain a message from Bob, she sends him her public key(N, e). Bob translates the messages into
a numberx ∈ ZN (for example by writing it using ASCII characters and concatenating the bits to
a long integer) and calculatesy ← xe in N. (This is also very easy, as we will see.) When Alice
getsy she computesz ← yd in ZN . Now, z = yd = (xe)d = xed = x in ZN and so Alice can read
the message. Eve, listening to the entire conversation including the explanations about the system,
cannot decode the message: She knowsN , e andy. Though this identifies the message, she needs
to solve the equationxe = y in ZN . This is considered to be a difficult problem, even if Eve would
content herself with guessing a single bit ofx.

There are several important questions:

◦ Correctness: Does the protocol fulfill its demands? (And why? Note that the ‘why’ is impor-
tant! It enables us to look for generalizations as well as forattacks.)

◦ Efficiency: How fast can the necessary operations be performed?

◦ Security: How fast can the best possible attack break the system? Or more modestly: How fast
are the best known attacks?

2.1.1. Correctness. We have already seen thatz = yd = xed = x in ZN sinceed = 1 in ZL.
However, the value for the repetition length still has to be proved. We postpone that to Section 3.
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2.1.2. Efficiency. To answer the question about the timing we have to consider the operations to
be performed. They are

◦ Finding primesp andq. This splits into the subtasks

– Choose a randomn/2-bit number.

– Test whether it is prime.

– Repeat until you find a prime.

Choosing random numbers may be costly depending on the desired security. If an attacker
can guess the results of the random number generation she will know all we do. Even partial
attacks are dangerous.

Testing primality can be performed in deterministic polynomial time. This is known only since
Agrawal, Kayal & Saxena (2003) (mostly cited as AKS). Heuristically this algorithm runs
in time O∼(n6) after embedding several enhancements. In practice, this ismuch too slow.
But fast probabilistic algorithms run in timeO∼(kn2) with fast andO(kn3) with classical
arithmetic and return a wrong answer with probability at most 2−k. This is only by a factorkn
slower than the time to multiply two numbers of similar size.

This has to be repeated until a prime is found. The probability that ann-bit number is a prime
is about 1

n ln 2 . Thus an expected number ofO∼(n) repetitions leads to a prime number. (Here,
some care is necessary, in particular, if the prime test is only a probabilistic one.)

Of course, we have to do all this twice but we ignore constant factors anyway.

◦ ComputeN = p · q andL = (p− 1)(q − 1). Multiplying n-bit numbers can be performed in
timeO(n2) with classical arithmetic or in timeO(n log n loglog n) by Schönhage & Strassen
(1971). The simple and practical Karatsuba algorithm achievesO(nlog2 3). More information
about the arithmetic of integers can be found in von zur Gathen & Gerhard (2003).

◦ Finde andd. This splits into the subtasks

– Choose a randomn-bit numbere.

– Decide whetherd exists and compute it.

– Repeat untild is found.

The first task is as above. The two aspects of the second can be done at once by the Extended
Euclidean Algorithm. It needsO(n2) operations with classical arithmetic. A clever fast im-
plementation achieves the desired result (but not the entire EEA!) withO(n log2 n loglog n)
operations.

◦ Computexe in ZN . This is actually the simplest thing: Just start with1 and multiply byx in
ZN until you reachxe. Of course, the multiplication should be performed inZN in order to
keep the memory requirements small. This only takese multiplications ofn-bit numbers. . . .
— Sorry, I was kidding:e itself is ann-bit number, too, and doing2n multiplications may
take longer than we live even with the best of all computers that we can imagine. OK, how to
do better? The answer isrepeated squaring: for example, computingx256 is easy by simply
squaring eight times. We only need 8 instead of 256 multiplications. To compute any power
of x write e in binary, for example, ife = 10111012 we computex, x10, x100, x101, x1010,
x1011, x10110, x10111, x101110, x1011100, x1011101. In other words: either we square the last
result which attaches a zero to the end of the binary representation of the reached exponent or
we multiply the last result byx which adds1 to the exponent. This we use in order to build up
the desired exponent. That takes at most2(n − 1) multiplications. We needn − 1 squarings
and one multiplication for each1 in the binary representation fore. Slight improvements are
possible but you will never get along with less thann − 1 squarings. Now, the time here is:
O(n3) with classical andO∼(n2) with fast arithmetic.
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For short, all operations can be performed in polynomial time. In practice, choosing random
numbers and verifying primality are the most time consumingparts. Luckily, these occur only in the
key generation procedure.

To understand all this properly we need some knowledge aboutmodular arithmetic and its imple-
mentation. In particular, multiplication of large integers, division with remainder and, most promi-
nently, the Extended Euclidean Algorithm.

There are some possibilities to speed up things, in particular with specially tailored hardware:

◦ Using a speciale, which is small and has only few ones in its binary representation, can make
exponentiation slightly faster. But be aware of possible new attacks!
◦ Using the Chinese Remainder Theorem 3.1 can speed up the decryption by usingN = p · q.

Yet, this may be a bad idea if the calculations are performed in a, say, stolen smart card since
it involves more secret data than necessary.

2.1.3. Security. Let’s consider this in more detail: Eve knowsN , e andy. She would like to know
the plain textx or anything that gives her knowledge about it. To break the system completely she
could try to

(A) factor the modulusN and findN = p · q.

(B) find the repetition lengthL.

(C) find the decryption exponentd such that(xe)d = x for all x ∈ ZN .

(D) find the plain textx such thaty = xe in ZN .

Clearly, (A) is equivalent to (B) and implies (C) which in turn implies (D). [Note that(x−p)(x−
q) = x2 − (N + 1 − L)x + N , so givenL computingp andq simply amounts to solve a known
quadratic equation.] Though one can obtain (A) from a suitable form of (C), it is an open problem
whether a form of (D) implies one of the other items. After all, not only these complete breakings are
threats to RSA. If an attacker would be able to guess a bit ofx with probability significantly larger
than 50%, then this is already considered to be a breaking.

There are many attacks on RSA, or better, false usage of RSA.

1. Chosen cipher text attacks.

Suppose Alice uses the same RSA key pair for encryption and signing. (Signing with RSA is
done as follows: The signer decrypts the message or its hash value. This serves as a signature.
It can be generated only with the knowledge of the secret key,so only the signer can produce
it. It can be easily verified using the public key.)

◦ Eve collects a messagey = xe in ZN for Alice. To decode it Eve computesy′ = rey
with some randomr ∈ Z

×
N and makes Alice signy′: she getsz′ = redyd = ryd = rx.

Now she can easily divide byr and obtainx = z′/r.

Trent is a public computer notary. He signs any document given to him to grant its existence at
the usage period during the present key life time.

◦ Mallory wants Trent to sign a criminal documentx. Mallory makes Trent signx′ = xre

instead and obtainsy′ = xdred = xdr from which he easily obtains the signaturey =
y′/r = xd to x.

◦ Mallory can also writex = x1x2 and make Trent sign both factors:yi = xd
i . Then the

wanted signature isxd = xd
1x

d
2.

There are further attacks on encrypting and signing with thesame RSA key pair. See Schneier
(1996), section 19.3, page 473.
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2. Common modulus attacks.

For broadcasting purposes Bob and Carol have the public keys(N, e1) and(N, e2). To broad-
castx Alice computesxe1 andxe2 in ZN and sends them. Eve now simply findss andt such
that1 = se1 + te2 and computesx = x1 = (xe1 )s(xe2 )t.

3. Low encryption exponent,e less than number of recipients.

If, for a broadcast say, you encrypt the same messagesx with the samee and e different
values forN then an attacker can recoverx easily. Namely, if you knowxe moduloN1, N2,
. . . , Ne then by the Chinese Remainder Theorem 3.1 you also knowxe modulo the product
M :=

∏
1≤i≤e Ni of all these moduli. SinceM is larger thanxe, we have the integerxe and

extracting itse-th root is simple. This attack can be generalized to linearly dependent (instead
of equal) messages.

4. Low decryption exponent,d < N1/4.

There is an attack by Michael Wiener that recovers such a small d by approximating the rational
numberkd = e

L − 1
dL with the known fractione

N . Using continued fractions we can recoverd
provided it is small enough.

3. Number theory

In this section we deal with basics on modular arithmetic, group theory and finite fields. It should
cover:

◦ modulo calculations,ZN ,

◦ the Chinese Remainder Theorem 3.1,

◦ EEA,

◦ inverting elements modulo some integer,Z
×
N ,

◦ the Euler totient function,

◦ finite groups, Abelian,

◦ Lagrange’s Theorem 3.4, Euler’s Theorem 3.5, Fermat’s Little Theorem 3.6,

◦* element order, cyclic, group generator,

◦ repeated squaring,

◦* element order test,

◦ discrete logarithms,

◦* finite fields, in particular their multiplicative group,

◦* an additional example: elliptic curves. (An overview is inKou (2003), section 2.4.3, page
20-22.)

Not all of these topics are worked out in detail.
As promised, we are going to prove that RSA works, that isxed = x for x ∈ ZN if ed = 1 in

ZL. To do so we first need to clarify where our numbers live and howthey behave.
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3.1. The ring ZN of integers moduloN . We introduce the ringZN , called integers moduloN ,
as a set ofN elements with an addition and a multiplication, a zero element and a one element.
Typically, the implementation uses the setN<N of non-negative integers less thanN as a set and
the addition and multiplication are simply the addition andmultiplication of integers with results
reduced moduloN . (Alternatively a symmetrical set is often used,

{
x ∈ Z − N

2 ≤ x < N
2

}
.) It

can be understood as a class in an object oriented language, so 4 · 5 = 6 in Z7 is immediately clear,
the multiplication is performed as the class demands (and not as for integers). ThatZN is a ring
means (don’t PANIC, PAN, D):

P+,P· It is properly defined, that is, it consists of a setS, a zero0 ∈ S, an addition+: S × S → S,
a one1 ∈ S and a multiplication· : S × S → S.

A+,A· Both operations areassociative,(a + b) + c = a + (b + c), (ab)c = a(bc).

N+,N· Both operations have aneutral element,a + 0 = a = 0 + a, a · 1 = a = 1 · a.

I+ The addition hasinverses:a+x = 0 = x+a is always solvable. (And thus uniquely: ifa+x = 0
andy + a = 0 thenx = 0 + x = (y + a) + x = y + (a + x) = y + 0 = y. You may also
implement the operationa 7→ x as−.)

C+ The addition iscommutative:a + b = b + a.

D Addition distributes over multiplication:(a + b)c = ac + bc, a(b + c) = ab + ac.

A lot of rings, including our example, are called commutative. That means:

C· The multiplication iscommutative:a · b = b · a.

If additionally the multiplication has inverses for all non-zero elements, I·, then the ring is even a
field. Actually, in casep is a prime thenZp is a field as we will see shortly. Still, if not all non-zero
elements do have a multiplicative inverse, some may have. Inany case the question arises how to
compute them in our ringZN . Actually, for RSA we will need that for computingd ∈ ZL. But we
are still on the way to prove that RSA works, so keep that question in mind for later.

3.2. The Chinese Remainder Theorem. Coming from RSA, we want to prove thatL is a repe-
tition length for the multiplication withx ∈ ZN , that is,x1+L = x for all x ∈ ZN . The nice way
to prove that is to split the problem into two halves, one for each factor ofN = p · q. This is done
by the famous Chinese Remainder Theorem 3.1. It claims that instances of the teacher’s problem are
always solvable:

A teacher has a number of pupils. Arranging them in rows of twoshows that one pupil
remains. With rows of five three remain. With rows of three again one pupil remains.
Given that the class is of a standard size, how many pupils arethere?

Mathematically we write that as follows. Denote byx the number of pupils. We know that

x ≡2 1, x ≡5 3, x ≡3 1.

The notation explains itself from the teacher’s problem. (We read ‘x is congruent to1 modulo2’ and
so on. Most people writex ≡ 1 mod 2 instead, but I don’t like that.) Clearly, ifx is a solution then
alsox + 2 · 3 · 5 = x + 30 is a solution and vice versa.

CHINESE REMAINDER THEOREM 3.1. SupposeN = N1N2 with gcd(N1, N2) = 1. Then the
(canonical) map

ZN −→ ZN1
× ZN2

,
a modN 7−→ (a modN1, a modN2)

is well defined, structure preserving, injective (1-1) and surjective. In other words: it is an isomor-
phism.
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Here, we understand ‘modN ’ to be the canonical mapZ → ZN , a 7→ a modN whatever imple-
mentation ofZN you have chosen. This map respects0, 1, addition and multiplication and it mapsN
to 0. Since the map in the theorem is not defined usinga modN for describing the image buta, we
need to prove that everything is well defined. Namely, ifa modN = a′ modN then the description
of the image must not depend on whether we usea or a′ to compute it,(a modN1, a modN2) =
(a′ modN1, a

′ modN2).
A more classical formulation of the theorem states that for any a1, a2 ∈ Z there is somex ∈ Z

such thatx ≡N1
a1 andx ≡N2

a2. That is exactly the surjectivity in the above version whichis
actually the most tricky part. So let’s try to prove that.

PROOF. It is easy to check that the map is well defined, structure preserving and injective. To see
that it is surjective take somea, b ∈ Z. We need to find some integerx ∈ Z such thatx modN maps
to (a modN1, b modN2). Since the map respects addition and scalar multiplicationit is enough to
consider the special casesa = 1, b = 0 anda = 0, b = 1. For if x1 maps to(1, 0) andx2 maps
to (0, 1) thenx = ax1 + bx2 maps toa(1, 0) + b(0, 1) = (a modN1, b modN2) as desired. By
symmetry we only consider the casea = 1, b = 0.

So our task is to solvex = 1 − k1N1 andx = 0 + k2N2 simultaneously forx, k1, k2 ∈ Z. In
particular, we need to solve

(3.2) 1 = k1N1 + k2N2.

Such an equation is the result of the extended euclidean algorithm applied to(N1, N2) provided their
greatest common divisor is1 as requested in the theorem, see Section 3.3. �

Actually, if the greatest common divisor ofN1 andN2 is different from1 then there is no solution to
(3.2).

Further, we observe that

k2N2 ≡N1
1, k1N1 ≡N1

0,

k2N2 ≡N2
0, k1N1 ≡N2

1.

Thus we can computex = ak2N2 + bk1N1. This is called the Chinese Remainder Algorithm. Of
course, we can generalize that to more than two moduli.

3.3. The extended Euclidean Algorithm. We do not consider the euclidean algorithm in detail.
We simply perform an example. All calculations are displayed in a simple table. We are given two
integers, saya = 66 013, b = 46 199. The aim is to compute their greatest common divisorg. At
the same time we would like to represent it as a linear combination g = sa + tb. We have a pair
(a, b) with a certain, still unknown greatest common divisor. We ask how we can change this pair
such that the greatest common divisor of the new pair is stillthe same. First answer:(b, a − b)
can be the next pair. Better answer:(b, a remb). Any common divisor of the old pair divides also
r2 := a remb = a − q1b. Any common divisor of the new pair divides alsoa = q1b + r2. So we
perform a division with remainder to make the pair ‘smaller’. Finally, the greatest common divisor
shall be represented as a linear combination ofa and b. It is easy to representa and b as such:
a = 1 · a + 0 · b, b = 0 · a + 1 · b. And from that we easily get a representation ofr2 = a − q1b as
s2 = s0 − q1s1, t2 = t0 − q1t1. So we have this:

i ri qi si ti Comment
0 66 013 − 1 0
1 46 199 1 0 1
2 19 814 1 −1 66 013 = 1 · 46 199 + 19 814
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We have putr0 = a andr1 = b. For each line we haveri = sia + tib. Continuing this yields:

i ri qi si ti Comment
0 66 013 − 1 0
1 46 199 1 0 1
2 19 814 2 1 −1 66 013 = 1 · 46 199 + 19 814
3 6 571 3 −2 3 46 199 = 2 · 19 814 + 6 571
4 101 65 7 −10 19 814 = 3 · 6 571 + 101
5 6 16 −457 653 6 571 = 65 · 101 + 6
6 5 1 7 319 −10 458 101 = 16 · 6 + 5
7 1 5 −7776 11111 6 = 1 · 5 + 1
8 0 − 46 199 −66 013 5 = 5 · 1 + 0

Since the greatest common divisor of the last pair(r7, r8) = (1, 0) is 1, this is the greatest common
divisor of (a, b) = (66 013, 46 199). In general, the last pair is(g, 0) whose greatest common divisor
is g. Since for each lineri is represented bysi andti we can read off:

(3.3) 1 = −7 776 · 66 013 + 11 111 · 46 199.

The extra line provides a simple crosscheck:0 = 46 199 ·66 013−66 013 ·46 199which is obviously
true.

For the Chinese Remainder problem this gives us the two base solutions:

−7 776 · 66 013 ≡66 013 0, 11 111 · 46 199 ≡66 013 1,

−7 776 · 66 013 ≡46 199 1, 11 111 · 46 199 ≡46 199 0.

3.4. The unit group Z
×
N . Looking at an earlier question we see that the extended euclidean algo-

rithm also solves the question how to calculate inverses inZN . Reading (3.3) modulo66 013 we
find:

46 199 · 11 111 = 1 in Z66 013.

Thus46 199−1 = 11 111 in Z66 013. Let us give a name to the set of invertible elements, also known
as units, of ZN : We call it theunit group Z

×
N of ZN . It always contains1 but never0. Since

1 + 1 + · · ·+ 1 = 0, the set of invertible elements is not closed under addition. But it is closed under
multiplication! We can easily verify this by only using the axioms. Supposea, b ∈ ZN both have an
inverse. Say,ax = 1 andby = 1. Then clearly,(ab)(yx) = 1. Thusab has an inverse, namelyyx.
Further witha also its inversex has an inverse, namelya. ThusZ

×
N is, don’t PANIC, acommutative

group:

◦ It is properly defined: there is a setZ
×
N with a multiplicationZ

×
N ×Z

×
N → Z

×
N , (a, b) 7→ ab, a

neutral element1 ∈ Z
×
N , and an inversion mapZ×

N → Z
×
N , a 7→ a−1. (By abuse of notation,

we use the same symbol for the set and for the group! In an object oriented programming
language that would cause problems. . . )
◦ The multiplication isassociative.
◦ 1 is aneutral element.
◦ Each element isinvertible.
◦ The multiplication iscommutative.

There are also groups that are not commutative. The smallestnon-commutative group is the group of
permutations on three points with only six elements. Rotations in space also form a non-commutative
group, the operation is concatenation. Getting back toZN , the extended euclidean algorithm allows
us to compute an inverse wheneverx = (a modN) and gcd(a, N) = 1. Namely, then it yields
an equation1 = sa + tN and thus1 = (s modN)x in ZN . Vice versa, if1 = yx and y =
b modN then1 = ba + tN for somet ∈ Z. This implies thata andN have no non-trivial common
divisors, since any common divisor ofa andN divides1 = ba + tN . That is, gcd(a, N) = 1.
Concluding: the setZ×

N consists exactly of those elements that come from integers coprime toN ;
Z
×
N = {a modN a ∈ Z, gcd(a, N) = 1}.
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3.5. Repetition lengths in finite groups. Still, we have not found whyx1+L = x in ZN as we
need for RSA. But by the Chinese Remainder Theorem 3.1 we onlyneed to provex1+L = x in Zp,
and similarly inZq. That might be easier sincep andq are prime. And it actually is. For observe:
For x = 0 the claimed equality is trivial. And all other elements inZp are invertible and thus in
Z
×
p ! (Indeed, given0 ≤ a < p, we havea modp invertible iff a is coprime top, that is,a 6= 0.)

That means, that we can work in a group instead of a domain where multiplication is only nice with
respect to some but not all elements. That all elements but0 have a multiplicative inverse is of course
the same as saying thatZp is a field. Recall that we announced to prove that at the beginning of
Section 3.

We already observed that repeating a fixed operation, as multiplication by a fixed elementx in
Z
×
p , must lead to a finally periodic sequence(1, x, x2, x3, . . . ). Now, the number of elements inZ×

p

is p − 1. Thus the repetition length is at mostp − 1. Now, something miraculous happens: for any
elementx in the groupZ×

p its size (also known asorder) #Z
×
p = p−1 is a repetition length. In most

generality this is

LAGRANGE’ S THEOREM 3.4. SupposeG is a (multiplicatively written) finite group andx ∈ G any
element. Then

x#G = 1.

PROOF. We first give a proof only for commutative groups. Consider alist

g1, g2, g3, . . . , g#G

of all group elements without any repetitions. Now, multiply all its elements byx and obtain the new
list

xg1, xg2, xg3, . . . , xg#G.

We claim that this also is a list of all group elements withoutrepetitions.
First argument: no two elements on the new list are equal. Otherwise,xga = xgb for some

indicesa 6= b and thus, being in a group,ga = gb after multiplying by the inverse ofx. Thusa = b,
contradiction.

Second argument: the second list is complete. Take some group elementga. Thenx−1ga = gb

for some indexb since the first list is complete. But thenxgb = ga and soga is somewhere on the
second list.

Since both lists are finite either of the preceding argumentswould have been enough to prove that
the lists are equal apart from their order. Now multiply all elements on each list. This yields

g1 · g2 · · · · · g#G = (xg1) · (xg2) · · · · · (xg#G)

= x#Gg1 · g2 · · · · · g#G.

Multiplying with the inverse of the left hand side now gives1 = x#G. �

PROOF*. For the general result we must consider subgroups and cosets.

CLAIM . SupposeH is a subgroup ofG, that is, any subset ofG closed under the group operations.
Then#H divides#G.

First let us prove the claim. To this end we consider theleft cosetsxH = {xh h ∈ H}.
Cosets are either equal or disjoint. Indeed, supposea ∈ xH ∩ yH . Thena = xh′ = yh′′ and

thusx = yh′′(h′)−1 andxh = yh′′(h′)−1h provingxH ⊂ yH . By symmetry thenxH = yH .
All cosets are equal in size. Indeed, the mapH → xH, h 7→ xh is bijective sincex has an

inverse inG. Thus#(xH) = #H .
Any group element is in a coset. Indeed,x ∈ xH since1 ∈ H becauseH is a subgroup.
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ThusG is a disjoint union of cosets, each of which has size#H . Thus#H divides#G. This
proves the claim.

Now we finish the proof using the claim. Consider the subgroupof G generated byx, that is,
H = 〈x〉 :=

{
. . . , x−2, x−1, 1, x, x2, . . .

}
. Clearly,H is a group again. Further, the size ofH is

precisely the smallest repetition lengthL of x, also known asorderord(x) of x:

CLAIM . # 〈x〉 = ord(x).

Indeed, sincexL = 1 we may reduce exponents moduloL and we haveH ⊂
{
1, x, x2, . . . , xL−1

}

and#H ≤ L. And the smallest repetition lengthL of x can be at most#H of course. Thus they are
equal.

By the first claim#H = L divides#G, that is,#G = k · L for somek ∈ N. Now, xk·L =
(xL)k = 1k = 1 proving the theorem. �

Consider the unit groupZ×
N again. Its size is denoted byϕ(N) andϕ is called theEuler totient

function. Applying Lagrange’s Theorem 3.4 to this group yields

EULER’ S THEOREM 3.5. SupposeN is any positive integer andx ∈ Z
×
N . Then

xϕ(N) = 1.

In other notation, ifa ∈ Z is coprime toN we haveaϕ(N) ≡N 1. �

Specializing to primes gives

FERMAT’ S L ITTLE THEOREM 3.6. Supposep is a prime andx ∈ Z
×
p . Then

xp−1 = 1.

In other notation, ifx ∈ Z is no multiple ofp then we havexp−1 ≡p 1.

From this very last result, we now deduce the

COROLLARY 3.7. Supposep is prime andk ∈ N. Thenx1+k(p−1) = x for x ∈ Zp.

PROOF. The claim is true forx = 0. Otherwisex ∈ Z
×
p and thus by Fermat’s Little Theorem 3.6

we havexp−1 = 1 and thusx1+k(p−1) = x(xp−1)k = x · 1 = x. �

Now, finally we can give the desired nice proof of the RSA correctness:

THEOREM 3.8. RSA is correct, that is, for anyx ∈ ZN we havexed = x.

PROOF. Sinceed = 1 in ZL we haveěď = 1 + tL for somet ∈ N. (Here, the conditions
e = ě modL and0 ≤ ě < L defines a structureless mapping:̌ ZL → Z.) By the Chinese Remainder
Theorem 3.1 and symmetry we only need to provexed = x for x ∈ Zp. SinceL = (q − 1)(p − 1)
usingk = t(q − 1) in the previous result givesxed = x1+t(q−1)(p−1) = x in Zp. Togetherxed = x
in ZN . �

Generalizing this a little we can calculate the values of theEuler totient function from a factor-
ization of its argument:
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THEOREM 3.9. SupposeN =
∏

i<t pei

i is given as a product of prime powers with different primes
pi. Then

ϕ(N) =
∏

i<t

pei−1
i (pi − 1) = N

∏

p|N,
p prime

(1− 1

p
).

PROOF. Based on the Chinese Remainder Theorem 3.1 and Fermat’s Little Theorem 3.6 we can
give a short proof:

In caseN = p is prime, the only non-invertible element ofZ
×
p is0, all others have a trivial greatest

common divisor withp and thus by the EEA an inverse moduloN . Consequently,ϕ(p) = p−1 then.
In caseN is a prime power, sayN = pe, inspection shows thatϕ(pe) = pe−1(p − 1). (Do this

as an exercise, we do not need that in this course.)
If N = N1N2 with N1 andN2 coprime then the Chinese Remainder Theorem 3.1 tells us that

ZN is isomorphic toZN1
×ZN2

. In particular, invertible elements correspond to invertible elements.
In other words,Z×

N ' Z
×
N1
× Z

×
N2

and so their size is equal:ϕ(N) = ϕ(N1) · ϕ(N2).
By induction the previous statements prove the theorem. �

In the following we will encounter cryptographic systems that use some unspecified group gen-
erated by an elementx. The system needs to know its order, its minimal repetition length. Actually,
since the security might be based on it, we should at least have a way to check the order. Here it goes:

THEOREM 3.10. SupposeG is a group,x is an element ofG andL is some number. Then the
minimal repetition length ofx is L if and only if

◦ xL = 1 and
◦ for each prime divisorp of L we havex

L
p 6= 1.

PROOF. You can do this as an exercise. �

This turns into an order test provided you know all the prime divisors ofL. (Computing them might
be difficult!)

3.6. Discrete logarithms. The security of RSA is somehow based on the difficulty of factoring
large integers. There is another very prominent problem from number theory that has similar proper-
ties. We already noted in Section 2.1.2 that the exponentiation map

Z#G −→ G,
e 7−→ xe

is easy to evaluate via repeated squaring (aka. repeat and multiply). Its inverse map is called the
discrete logarithm: dlogx y = e means thaty = xe. The discrete logarithm problem in a groupG
is the problem to compute the discrete logarithme from x andy. For many groups it is difficult to
compute discrete logarithms.

For example, ifp is a large prime such that we have a large prime factorq of p − 1 then the
discrete logarithm problem in the subgroupG of Z

×
p generated by some element of orderq is probably

difficult. On the one hand side, there is a particularly fast method for computing discrete logarithms
in Z

×
p : the index calculus. (Index is another common name for a discrete logarithm.) The prime

p must be large enough to prevent this. On the other hand side, there are several known generic
algorithms.Genericmeans, laxly spoken, that the algorithm works in any group and does not use
special features. The primeq must be large enough to protect against them. There is no (publicly)
known way to use the special properties ofZp for a small subgroupG.

Another example are elliptic curves. An elliptic curve is the set of solutions of a cubic equation,
as for exampley2 = x3 + ax + b with given coefficientsa and b, plus one point, calledO, at
infinity. We can consider this kind over any field, not only over the reals or the complex numbers.
For cryptography we choose a finite fieldFq. (To any prime powerq there exists an essentially unique
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Figure 3.1: The elliptic curvey2 = x3 − x overR and overF7

finite field withq elements. It is denoted byFq or GF(q), for Galois field.) A lot of things are known
about elliptic curves. The number of solutions to the cubic equation can be at most2q since for each
x ∈ Fq there are at most two possible valuesy. Actually, on average there is approximately one,
the Hasse bound states that|#E − (q + 1)| ≤ 2

√
q. The most miraculous property however is that

these curves carry a group structure! To add two pointsP andQ simply ‘draw’ the line through
them. Since the curve is the solution of a cubic equation there will be a third pointR on this line.
If you reflect this point at thex-axis you obtain a pointP + Q, the sum ofP andQ.1 (Sorry for
the inconvenience: Due to various reasons the operation on elliptic curves is called addition and not
multiplication. So instead of multiplying we add, instead of taking thee-th power we compute the
scalar multiple bye. Just remind yourself, that everything we do with a group is formulated using
the group operation, regardless of its name.) There are sometechnical problems, for example, what
happens whenP = Q or P = −Q, but they can all be solved. This turns the mere set into a group!
And there is no known algorithm for computing discrete logarithms on most elliptic curves that is
essentially faster than the generic algorithms. For that reason, the number of bits required forq is
only between160 and240 rather than1024 needed to store a group element in the previous example.

PS: There are groups where discrete logarithms are easy. In the additive groupZ+
p of the ring

Zp with a primep, for example, computing a discrete logarithm is simply a multiplication with the
inverse of the basis.

4. Signatures

Keywords: RSA signatures, ElGamal signatures, Schnorr signatures and refinements. Security.
Let us first ask what usual signatures are made for. A classical handwritten signature certifies

that the signer accepts the statement he signs. For example,she agrees to some purchase contract or
she states a final will. Later, anybody should — at least in principle — be able to verify whether the
signature is valid. And the signature is thought to mean thatactually the signer acknowledged the
document’s contents. Note that this can in some case turn against a signer. She can not deny that she
signed and must comply to the statement made in the signed statement. In any case, the signature
links a person, the signer, to the document. In practice, thesignature is just the intermediary between
person and document. Actually, the same will be true for electronic signatures. The signature a

1Consequently,P + Q + R = O is the neutral element.
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priori only establishes a link between some document and some secret information. By other means,
namely non-cryptographic ones, it must be guaranteed that the secret information is only accessible
to a given person.

This last point is particularly problematic in case the person claims that she ‘lost’ this very secret
information or that somebody has stolen it. But the non-electronic world already deals with this prob-
lem in connection with, say, credit cards or bank cards. The legal holder is simply made responsible
for his secret information. In case of a theft or loss he has toannounce this in time. Transactions or in
our case signatures made in the mean time are (at least partially) attributed to the holder. By this the
legal holder is forced to be careful and cannot simply deny that he gave a certain signature. Clearly,
there is no cryptographic solution to this problem.

The cryptographic problem that we are facing is how to link secret information to a given — of
course electronic — document.

Section 2.5.1 in Kou (2003), page 25ff, gives a short overview over signatures:

◦ RSA signature scheme (Use decoding to sign),
◦ Rabin public key signature scheme (square roots modp · q; complete break equivalent to fac-

toring; butcompletely brokenby chosen-message attack),
◦ DSA (Schnorr signatures),
◦ ECDSA,
◦ blind digital signatures,
◦* undeniable signatures,
◦* fail-stop signatures,
◦* group signatures,
◦* proxy signatures.

4.1. RSA signatures. In RSA Alice chooses a key pair(N, e) and(N, d) such thatxed = x for
everyx ∈ ZN . Anybody can compute the encryptiony = xe of some (number encoding a) message
x ∈ ZN . But only Alice can compute the decryption of some numbery ∈ ZN . Moreover, the order
of encryption and decryption does not matter. Thus the signature could work as follows.

◦ Decrypt the documentx ∈ ZN . Now (x, xd) is the signed document. (Actually, thex is
superfluous since it can be computed fromxd.)

◦ To verify a signed document(x, y) ∈ Z
2
N simply use the encryption and test whetherx = ye.

Actually, we can easily produce a document that is seeminglysigned by Alice:(ye, y). However, we
only have very little control on the documentx = ye then. This seems not to be a really great threat
but still: If Mallory chooses some number (more or less at random)r ∈ ZN and makes Alice sign
re · x, he obtainsy = redxd. From that he can easily extractxd sincered = r and thus he has a
signature of a document Alice has never seen.

Further problems occur in connection with signing encrypted documents.
A countermeasure is to introduce a hash functionh : {0, 1}∗ → ZN . Instead of signingx itself

we sign its hash valueh(x). This also makes the signature typically much smaller sincemost hash
values use only 160 to 320 bits regardless of the size of the document:

◦ In order to signx Alice decrypts the document’s hash valueh(x) ∈ ZN . Now (x, h(x)d) is the
signed document.

◦ To verify a signed document(x, y) ∈ Z
2
N simply use the encryption and test whetherh(x) =

ye.

Now, a forger must solve the equation

(4.1) h(x) = ye in ZN

where he may use a signature for a different documentx′.
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One way of forging breaks the hash function and computesx for a giveny. To prevent forging
a signature we must now require that it is difficult to findx with a given hash valueye. Actually, it
must even be impossible to find two documentsx 6= x′ with the same hash valueh(x) = h(x′). If
we are able to do the latter and maybe large parts ofx andx′ even coincide, then we could let Alice
sign the innocuous documentx′ obtainingy = h(x)d and later we present(x, y) where Alice, now
president, admits that she forged the latest president elections.

Another way of forging of course still consists in breaking RSA. Yet, we assume that this is
difficult. It does not really help us to use a random factor to blur the message, since (hopefully) the
hash function is not multiplicative.

There may be other ways to solve (4.1). It would be nice if we could prove that any way of doing
so involves either breaking the hash functionh or the RSA encryption. But no such proof is known
or even suspected.

4.2. *Rabin signatures. Rabin signatures are very similar to RSA signatures. But they usee = 2
and thus a correspondingd does not exist. Sometimes however there are ways to extract square roots
modulo some numberN . For example, ifN = p · q and bothp andq are congruent to3 modulo4.
Theny = x

p+1

4 is a square root ofx ∈ Zp if one exists. [The square ofy is x
p+1

2 . Now suppose that
x = z2. Theny2 = zp+1 = z2 = x. Actually, we have eithery = z or y = −z.] Thus by Chinese
Remainder Theorem 3.1 you can extract square roots moduloN provided you do knowp andq.

This system is nice since one can prove that forging a signature is equally difficult as computing
the factorization ofN . But at the same time this featurecompletely breaksthe system by the following
chosen message attack: Suppose Mallory chooses some messagex2 and obtains a signatures. Then
x2 = s2. By the Chinese Remainder Theorem 3.1 there are four square roots ofx2. And there is a
fifty percent chance that neitherx = s nor x = −s. Then Mallory knowsN |(x − s)(x + s) but N
divides none of the factors. Thus gcd(N, x− s) must be a proper factor ofN .

EXERCISE 4.2 (Chosen-message attacks for Rabin signatures).The evil grand vizier Jaffar wants to
find out the signature of the enchanting princess Jasmin! Sheuses Rabin’s signature scheme and
gladly gives autographs to honest-looking strangers. Naturally Jaffar is only satisfied if he finds out
the prime factorsp andq of Jasmin’s numberN . Jaffar chooses a random numberx, computesx2

and asks Jasmin to sign the messagex2 for him.

(i) Suppose we havex, s ∈ Z with x2 ≡N s2 andx 6≡N ±s. Show thatN dividesx2 − s2 but
neitherx− s norx + s.

(ii) Deduce thatgcd(N, x− s) is a proper factor ofN , that is, a factor that is neither1 norN .

(iii) Compute the probability that he can find out the prime factorsp andq this way.

Hint: Chinese Remainder Theorem.

(iv) How large is the probability that Jaffar finds out the prime factorsp andq afterk iterations of
this strategy?

(v) Deduce:

THEOREM. Rabin’s signature scheme is completely broken by a chosen-message attack.

Alas, Genie will have to come to the rescue of princess Jasmin. Or maybe Aladdin can help . . .

4.3. General ElGamal signatures. The much too nice properties of RSA ask for different signa-
ture schemes that do not allow for splitting off random factors as above. The following system gives
a different signature scheme.

◦ We fix some (cyclic) groupG and a generatorg where the discrete logarithm problem is diffi-
cult. LetL be the order ofg. Further fix an arbitrary mapG→ ZL, a 7→ ã. (For example, read
the bit representation of the group element as the bit representation of an integer and reduce
that moduloL.)
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◦ Alice chooses a secret keyx ∈ ZL and computesy = gx ∈ G as a public key.

◦ Sign an elementm ∈ ZL, say an encoded message or a (cryptographically secure) hash value
of such:

Choosek ∈ Z
×
L and computea = gk ∈ G. Now it is easy for Alice to findb ∈ ZL such that

(4.3) yãab = gm ∈ G,

since this is equivalent to the equationxã + kb = m ∈ ZL and the only real task is to invertk
in ZL. Now, (a, b) is the signature form.

◦ Verify a signed document(m, a, b):

Verify the equation (4.3). Note that all necessary information to do that is publicly available!

Correctness: clear. Efficiency: fast. Security: Solving (4.3) is probably difficult. All proposed
algorithms require finding some discrete logarithm. The size of the signature is quite large: An
element inG and an element inZL need almost twice as much space as the signed elementm. If you
chooseG as a subgroup of160-bit prime order ofZ×

p with 1 024-bit primep then the signature needs
1 184 bits for a160-bit element.

4.4. General Schnorr signatures. Schnorr invented a variation of the ElGamal signatures that
produces even smaller signatures.

PROTOCOL 4.4. General Schnorr signature scheme.

1. Fix a primep so large that discrete logarithms are difficult inZp and a prime factorq of p− 1 so
large that a birthday attack (Pollard rho) is infeasible. Choose an elementg of orderq. (Choose

h ∈ Z
×
p arbitrary, letg beh

p−1

q . If this turns out to be1 then retry.) LetQ : Zp → Zq map an
element ofZp to its smallest non-negative representative reduced modulo q. (This map has no
nice structure, it is neither additive nor multiplicative.)
More generally, fix a groupH (instead ofZ×

p ) and a generatorg of prime orderq. The discrete
logarithm problem in the groupH must be difficult, in particular the orderq must be large enough
to prevent a birthday attack (Pollard rho). Note that nowZq is the exponent group ofG = 〈g〉.
Further fix a mapG→ Zq, h 7→ Q(h).

2. Alice chooses a secret keyx ∈ Zq and computesy = gx ∈ G as a public key.

Sign an elementm ∈ Zq:

3. Choosek ∈ Zq, let r beQ(gk) and solve

(4.5) Q(gms−1

yrs−1

) = r.

This is possible since (4.5) is implied bym + xr = ks in Zq. (If Q : G → Zq is injective
[one-to-one], the two equations are even equivalent.) Now,(r, s) is the signature form.

Verify a signed document(m, r, s):

4. Verify the equation (4.5). Note that all necessary information to do that is publicly available!

For the digital signature scheme (DSS),H = Zp, p is a 512- to1 024-bit prime, q is a 160-
bit prime andQ is simply taking the smallest non-negative representativemoduloq. Further, the
digital signature algorithm (DSA) always signs the secure hash algorithm (SHA) hash valuem =
SHA1(message) of the message.

To prevent some weak moduli the primes for DSS must be generated by a given algorithm. There
is an algorithm, involving SHA again, that takes a random 160-bit sequenceS and outputsq, a certain
counterC andp satisfying the requirements above or it fails. Repeat it until it succeeds and retain
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S andC as a prove that the primes were generated as required. (See Schneier (1996), section 20.1,
page 489, for a complete description.)

Correctness: clear. Efficiency: fast. Space: 320 bits for a 160 bit hash value. Security: Solving
(4.5) is probably difficult. All obvious algorithms requiresolving some discrete logarithm problem
in H .

EXAMPLE 4.6. For DSA first you have to fix a primeq (160 bit or so), sayq = 11. Then you need
another primep such thatq|(p − 1) (1024 bit or so), sayp = 67. Further we need an element of
order11 in Z

×
67: take some random element, sayh = 2 theng = 266/11 = 26 = 64 = −3 is an

element of order (minimal repetition length)11. Finally, we need some mapQ which maps powers
of g to elements ofZ11, this will be just taking the minimal non-negative representative inN<67 and
reducing it modulo11. For exampleQ(−3 mod67) = 64 mod11 = −2 mod11. This is the general
setup, so we have

p = 67, q = 11, g = −3.

Then Alice needs a key pair, say she choosesx = 4, theny = g4 = (−3)4 = 14.
To sign the messagem = 3 Alice chooses at randomk = 5 and computesr = Q(gk) =

Q((−3)5) = Q(−42) = Q(25) = 25 mod11 = 3. Now she must solve the key equation

Q(gms−1

yrs−1

) = r

for s. To do so she solvesm + xr = ks in Z11, that is,3 + 4 · 3 = 5 · s. The result iss = 3. Thus
the signed document is(m, r, s) = (3, 3, 3).

Bob verifies the key equation:s−1 = 4 (in Z11!), ms−1 = 1, rs−1 = 1, g1y1 = (−3) · 14 =
−42 = 25, Q(25) = 3, and this isr so everything is fine. ♦

4.5. Attacks against the randomization (k). Each signature requires a new value ofk. If Eve
ever recovers ak that Alice used for signing, perhaps by exploiting some properties of the pseudo
random number generator, then she can compute Alice’ private keyx. Actually this secret key is only
protected by the secrecy of the second unknown in the equation m + xr = ks which implies (4.5).
If Eve ever gets two messages signed using the samek then she can recoverx. [The two equations
m1 + xr = ks1 andm2 + xr = ks2 are a2 × 2 linear equation system overZq with respect to the
indeterminatesx andk.]

4.6. *Subliminal channels. A signature is not supposed to carry any additional information. It
only links the given document to a certain secret. But there are ways of abusing signatures to send
information secretly. For example, a malicious agent may distribute a program environment that
allows you to sign documents with your secret key but at the same time with each signature leaks
some bits of your secret key. Actually, you will not be able todetect that in the signatures, even if
you suspect such a fraud. The only way to prove this attack would be to disassemble the program’s
code (provided it has not deleted its bad parts after completing its perfidious task). An agent might
also use this channel to send secret messages when nobody thinks he is distributing information at
all. This kind of trick is called a subliminal channel.

Schneier (1996) lists several:

◦ Any signature scheme with a random value allows to embed a fewbits in the signature by
choosing the random value until the signature has prescribed bits with the wanted values.
◦ ElGamal: Alice to anybody knowing her secret key.
◦ DSA: Alice to anybody knowing her secret key.
◦ DSA: A single bit. Or some bits.

Using the secretk the signer can embed secret messages in her signatures. Say,she has fixed
some additional primet different fromp andq. With DSA, for example, she can choosek such that
r is a quadratic residue modulot or not (that is,r ≡t s2 for somes ∈ N<t or for no s ∈ N<t,
respectively) depending on whether she wants to transmit a1 or a0. By using several different such
extra primes even several bits (say up to ten or so) can be embedded. Similarly, Alice’ signature
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smart card could choosek randomly until some bits ofr equal some given values. The embedded
bits could be one-time pad encoded bits of her secret key. Only the card issuer would know of this
and could extract Alice’ key bits, it would not even be possible to detect this leak. Since the card can
precalculatek this would not even be noticeable by longer signing times.

If Alice conspires with Bob she can even transfer as many bitsas the signature through such a
channel. With ElGamal, for example, she shares her secret key with Bob and simply uses the secret
valuek as the subliminal message. Knowing the secret key Bob can recover the message. Nobody
else will even doubt that a message was sent to Bob.

All these subliminal channels can be foiled by restricting the choice of the random parameters.

5. Solutions for electronic money

Chaum. Brands. Further systems for additional properties like divisibility or smart card ‘agencies’.

5.1. Chaum’s system. See Schneier (1996), section 6.4, pages 139ff.

PROTOCOL 5.1. Chaum’s electronic cash.

1. Alice prepares 100 anonymous money orders for1 000e each with a uniqueness string (that is,
a serial number). On each order she adds a list of 73 pairs of identity bit strings, so that xoring
a pair gives Alice’ identity information, her name and account number, say. Alice commits to
each of these 146 bit strings. Alice blinds each order and hands them to the bank.

2. The bank asks Alice to open all but one including all the identity string pairs and checks whether
all data are as required. If so it signs the remaining order blindly.

3. Now Alice has a valid coin.

4. For spending it to the merchant Martin, she hands him the coin.
5. Martin verifies the bank’s signature. If it is wrong he refuses to accept and calls the Police.
6. Then he chooses 73 random bits and asks Alice to open the left or right half of the identity pairs

accordingly.
7. Alice does so.

8. Martin takes the money to the bank.
9. The bank verifies all constraints:

◦ its signature,

◦ the uniqueness string,

◦ the identity strings.

If the signature is wrong the bank refuses and calls the Police.
If the uniqueness string is registered and the identity strings are opened as in the earlier coin,
Martin tries to cheat.
If the uniqueness string is registered and the identity strings are differently opened, the bank
reconstructs Alice’ identity information and calls the Police.

This system isanonymous: the bank cannot identify Alice by the information she gets from the
merchant. And it isoffline: It does not require an interaction with the bank during the payment.
There is a protection againstdouble spending: If Alice spends a coin twice she is caught by the
identifier. If the bank detects a double spending it can distinguish whether Martin or Alice tried to
cheat: If the bank receives a coin with the same uniqueness string but different identity strings then
Alice tried to cheat. If also the identity strings are equal then Martin has to be blamed. Also Alice
cannot frame Martin since she cannot control how Martin chooses his challenge. Only an alliance of
Alice and Mallory, another merchant, may achieve this: if Mallory simply asks the same challenge as
Martin and he is faster to be at the bank then . . . To prevent this last kind of fraud the merchant can
be forced to use special challenges that depend on his account number and the present date and time.
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5.2. Chaum, Fiat & Naor (1989). Chaum’s original cut-and-choose variant has the major dis-
advantage that the probability of cheating by using a faked envelope is still 1

n if n envelopes are
used. Further, the last section does not yet tell us how to hide the identity information in a practical
implementation such that Alice is really bound to it.

The following set of protocols gives an answer to these questions. We assume that the bank has
published its public RSA key(N, 3) and a security parameterk (specifying the number of ‘envelopes’
and ‘identity splits’ to use). For simplicity, letk be a multiple of4. And the bank has fixed two
collision-resistant functionsf, g : ZN × ZN → ZN and such thatg with any fixed first argument
gives a one-to-one (bijective) map. Further, Alice has opened the account numberu and obtained a
counterv that has to be advanced in every withdrawal.

PROTOCOL5.2.

1. Alice choosesai, bi, ci, di, ri ∈R ZN for i ∈ N<k at random under condition that

(5.3) ai ⊕ bi = u||(v + i).

Herex ⊕ y means the binary XOR of the binary representations of the smallest non-

negative integers that reduce tox or y. (Writex =
(∑

j∈N<dlog2 Ne
xj2

j
)

modN with

xj ∈ {0, 1} such that the integer
∑

j∈N<dlog2 Ne
xj2

j is less thanN . Then usexj⊕yj to

definex⊕ y =
∑

j∈N<dlog2 Ne
(xj ⊕ yj)2

j . To avoid difficulties with the allowed range

we might require that the topmost bit (the highest significant bit of N ) of ai, bi andu
is always zero.) Withu||(v + i) we mean the number with the binary representation
u · 232 + (v + i) supposing that we need32 bits for the counter. Alice computes

(5.4)

xi := g(ai, ci),

yi := g(bi, di),

Bi := r3
i f(xi, yi)

for eachi and sends the envelope vector(Bi) to the bank. (Bi)i∈N<k
−−−−−−−−−−−→

2. Now the bank chooses a random subsetR of k/2 indices inN<k and sendsR to Alice. R
←−−−−−−−−−−−

3. Alice opens the envelopes chosen byR by sending(ai, bi, ci, di, ri)i∈R to the bank. (ai, . . . )i∈R
−−−−−−−−−−−→

4. The bank tests (5.3) and (5.4) fori ∈ R. If this turns out well she computes

s :=
∏

i/∈R

B
(1/3)
i

and sendss to Alice. The bank charges Alice’s account 100e and increments the
counterv by k. s

←−−−−−−−−−−−
5. Alice can then easily unblind this signature and obtainsC = s/

∏
i/∈R ri. She re-

indexes the identity pairs(ai, bi, ci, di) to the indices0, . . . , k/2−1 such thaťf(x0, y0) <
f̌(x1, y1) < · · · < f̌(xk/2−1, yk/2−1). Finally, Alice increments her copy ofv by k.
Now she has a coin (

(ai, bi, ci, di)i∈N<k/2
, C
)

which fulfills the condition that

(5.5)

ai ⊕ bi = u||V (i),

xi = g(ai, ci),

yi = g(bi, di),

C3 =
∏

i∈N<k/2

f(xi, yi).

To withdraw a coin with invalid identity information Alice would have to send some wrongBi

to the bank. But if she does so in onlyε of all her envelopes then the chance of not being caught is(k(1−ε)
k/2

)
/
(

k
k/2

)
, which is at most(1−ε)k/2 ≤ e−

1
2
εk. On the other hand to hide her identity in double

spending she must get a pair of challenges that differs only on thatε proportion, thus the chance of
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getting a challenge that allows her to re-spend a coin is at most
(

1
2

)(1/2−ε)k
. With k = 128 we get

the following probabilities:

ε Chance of forgery Chance for successful double spending
0 1 2−64

1/8 2−17.54... 2−48

1/4 2−39.55... 2−32

1/2 2−124.17... 1

To forge a coin without cheating the bank Alice would have to produce such a set of information
fulfilling (5.5). If Alice can forge bank signatures that is no problem, she just computes a validC.
Otherwise she must adapt the right hand side to give a cube with a known root. Say, as a particular
case, she chooses all buta0, b0, c0, d0 in advance. Then the remaining task is to find these to give a
particular value forf(g(a0, c0), g(b0, d0)). But that means that Alice has an efficient way to compute
preimages of that combination off andg and therefore off . That would mean thatf is not one-way
and thus not collision-resistant.

A third possibility would be to withdraw a valid coin but later use different values for the coin
values that do not reveal the true identity but some garbage.Alice could do that if she knew collisions
for g. Supposeg(x, y) = g(x′, y′) with x 6= x′ is one such collision. Then she usesa0 = x, c0 = y
with the bank but when she spends the coin she usesa0 = x′, c0 = y′. Yet, finding collisions forg
is supposed to be difficult. Of course, Alice has more room forvariations but no variation seems to
help her circumvent breakingg, f or RSA. Yet, we cannot prove that rigorously!

Now, let us see how to pay Martin:

PROTOCOL5.6.

1. Alice sends the coin signatureC to Martin. C
−−−−−−−−→

2. Martin chooses some random bit stringz ∈ {0, 1}k/2 and sends it to Alice. z
←−−−−−−−−

3. Alice computes her answerZ by revealing a half of each identity pair:

Zi =

{
(ai, ci, yi) if zi = 1,

(xi, bi, di) if zi = 0.

She sendsZ to Martin. Z
−−−−−−−−→

4. Martin computesxi = g(ai, ci) or yi = g(bi, di) according to the value ofzi. He then
checks the signatureC3 =

∏
i∈N<k/2

f(xi, yi) according to (5.5). If everything is OK, he

accepts the payment.

The protocol already guarantees that the equations (5.5) must be valid. Otherwise Martin does
not accept the coin. Of course, Martin wants to deposit the coin at the bank which is simply done as
follows:

PROTOCOL 5.7.

1. Martin sends the entire payment transcript(C, z, Z) to the bank.
2. The bank verifies that the coin is valid and then checks whether the coin has already been de-

posited by searching for a coin with the sameC in her database. If she does not find the coin she
puts 100e on Martin’s account and sends him a receipt.
If, however, she finds a coin(C, z′, Z ′) she detects a double spending. There are two cases:

◦ If z = z′ andZ = Z ′ then Martin tries to redeposit an already deposited coin.
◦ If z 6= z′ then alsoZ 6= Z ′ and the bank knows a complete quadruple(ai, bi, ci, di) and

ai ⊕ bi = u||v′ reveals Alice’ identity. The bank calls the police.

The casez = z′ andZ 6= Z ′ is highly improbable. If transmission errors can be excluded this
can only happen if Alice knows a collision forg.
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There are various possible scenarios of trying to cheat. Onepossible problem is that Alice coop-
erates with Mallory, another merchant. She tells him to use Martin’s challenge and then Mallory goes
to the bank with the very same transcript as Martin. The bank knows that either Mallory or Martin
is lying but she cannot tell which one. And also she has no way to catch Alice. But this is no new
story to us: it can be prevented by using a pseudo-random challengez that depends on the merchant’s
account and date and time of the transaction. Then Mallory cannot simply use the same challenge for
he would be easily spotted as the misbehaving merchant and sued.

One further problem is that so far the bank can easily frame Alice for double spending. She can
simply perform all of Alice’ and Martin’s actions. This means that the scheme cannot have any legal
significance and thus no bank will use the system as it was presented. To prevent that Alice simply
signs her identity inu. Instead of (5.3) Alice uses

ai ⊕ ci = u|| sigA(u, si)||(v + i).

Note that Alice must use a new random valuesi for each signature to prevent the bank from simply
copying her signed identity.

5.3. Brands (1999). The solution described in Brands (1999) is a system that usesa different sup-
posedly hard problem as the basis of an ee system. Brands has described several variants of this
system with different focuses. Apart from a system with similar properties than the previous one
there are also solutions that incorporate a smart card as an extended arm of the bank. The smart card
has to be asked upon any payment and can prevent double spending a priori. But even if the smart
card’s secret is revealed to a malicious Alice she still has to face double spending detection as in the
previous system.

The basis for Brands’ system is a generalization of the so-called discrete logarithm problem.
If you work in a group then exponentiation is easy to calculate. However, finding an exponente
satisfyingxe = y in the group may be difficult. An example for groups with supposedly difficult
discrete logarithm problem are the subgroups ofZ

×
p generated by an element of orderq where bothp

andq are prime and large enough. For example, takingp as a 1024-bit prime andq as a 160-bit prime
was considered to be safe a few years ago. Other groups with difficult discrete logarithm problem are
elliptic curves of appropriate size. (The number of bits fora point should be 160 to 240 bits.) The
generalization used here is called therepresentation problem.

Suppose you are given several generatorsg1, . . . ,gr and somex ∈ G.

Finde1, . . . , er ∈ N<#G with

x = ge1

1 ge2

2 . . . ger
r .

In caser = 1 this is simply the discrete logarithm problem, so we only user ≥ 2 here. Clearly, if we
can solve the discrete logarithm problem inG then we can solve this problem. The inverse is only
partially true. So assuming that this problem is difficult isa little more than assuming that finding
discrete logarithms is difficult.

If you want to know more about the details then read section 4 in Brands (1999). The basic
reasonings about how to detect double spending or to preventframing Alice or . . . are similar than
the one before.

In view of the next system let us emphasize one more point. This system does not use cut-and-
choose to give the bank the necessary conviction that the final coin has Alice’ identity embedded.
Instead a clever use of exponents and generators guaranteesthat.

5.4. Ferguson (1994b). This system is based on the difficulty of RSA and a discrete logarithm
problem but it also uses some hash functions at sensitive places to (hopefully) increase the security.
Further, polynomial secret sharing is used in order to decrease the coin size without loss of security.
The important part here is Martin’s challenge size, it must be large enough to prevent repetitions.
The challenge size in Chaumet al. (1989) wask/2 bits, so the size of the coin grows linearly with
the wanted challenge size. Here the challenge size depends only on the chosen group and is thus
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typically not much larger than with, say,k = 4. But let us first explain the polynomial secret sharing
and the system.

5.4.1. Polynomial secret sharing. Suppose there is some secretx that we want to give to a group
of people. Yet, the secret is very valuable and we do not trusta single person far enough to give
him the secret. Think of the access code of the central safe ofa bank or the start code of nuclear
weapons. The solution is to distribute the secret: each person only gets part of the secret. Now, we
know that to determine a polynomialf of degree less thank over some fieldF we need to knowk
pairs(x, f(x)). By interpolation we can then recoverf , in particular, say,f(0). If we give one point
(x, f(x)), x 6= 0, to each person then at leastk of them must come together to recover the secret
f(0) and thus to be able to open the safe or to start the missile. Figure 5.1 shows a picture of a line
overF257. Any two points determine the secret. But if we only know one point then any secret could
complete the picture. In Figure 5.2 we see a line overF256, the elements ofF256 have been numbered
in some systematical way for that purpose. Again any two points determine the line, one point could
go with any secret. Figure 5.3 shows cubic curves. Only if we know at least four of its non-zero
points then we can recover the secret.

5.4.2. The system. Following the description of the author we also first describe the payment thus
specifying the form of the coins. For the payment process we then have to find a way of getting
the appropriate blind signatures from the bank. The basic setup contains an RSA signature key pair
of the bank with public key(N, v). Additionally to the standard assumptions we require thatv is a
sufficiently large prime and thatϕ(N) contains at least one large prime factor. Further some elements
g1, g2, g3 ∈ Z

×
N of large order (minimal repetition length) are fixed. To be able to find them the bank

should construct her primesp, q such that she knows large prime factors ofp− 1 andq− 1. Next we
need a suitable primet such thatN | t − 1 and elementsh2, h3 ∈ F

×
t of orderN . Finally, the bank

chooses hash functionsf1 : Z
×
N → N<v, f2, f3 : F

×
t → N<v, andf4 : N<v ×N<v → Z

×
N . The bank

publishes the data

(N, v, g1, g2, g3, t, h2, h3, f1, f2, f3, f4).

Further Alice’ identity is coded in a valueU ∈ N<v. Note that we will do a lot of calculations in the
RSA domainZ×

N but some calculations also will take place in the fieldFt.
The coin consists of randomly chosen valuesa, b, c ∈ Z

×
N from which anybody can compute

A = ag
f1(a)
1 , B = bg

f2(hb
2)

2 , C = cg
f3(hc

3)
3 . Further a random parameterk ∈ N<v and signatures

S1 = (ACk)(1/v) andS2 = (BCU )(1/v) are part of the coin.

PROTOCOL5.8. Payment.

1. Alice hands over(a, b, c) to Martin. (a, b, c)
−−−−−−−−−−−→

2. Martin chooses a random challengex ∈ N<v. x
←−−−−−−−−−−−

3. Alice computesr + r̂v ← kx + U with r ∈ N<v and a signatureR to AxBCr by
R← Sx

1 S2C
−r̂ = (AxBCr)(1/v). She sends(r,R) to Martin. (r, R)

−−−−−−−−−−−→
4. Martin verifies that the signature is valid: all transmitted data are in the required domains

and
Rv ?

= AxBCr.

Note that he can do that.
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Figure 5.1: The linef : F257 → F257, T 7→ 128 T + 42 over the fieldF257 carries the secret
f(0) =̂ 42 and passes through zero atT =̂ 84. The elements ofF257 are represented as integers
modulo257 (which is prime!).
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Figure 5.2: The linef : F256 → F256, T 7→
(
x7 + x3 + x2 + 1

)
T +

(
x5 + x3 + x

)
over the field

F256 carries the secretf(0) = x5 + x3 + x =̂ 25 + 23 + 2 = 42 and passes through zero atT =̂ 84.
The elements ofF256 are represented as polynomials inx of degree less than8 overF2 = Z2 modulo
x8 +x4 +x3 +x+1 and identified with integers by ‘evaluating’ such a polynomial over the integers
atx = 2.



24 Michael Nüsken

0 20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150

200

250

T

f(T)

0 20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150

200

250

T

f(T)

Figure 5.3: The cubic curvef : F256 → F256, T 7→ (x7 + x6 + x5 + x4 + x3 + x + 1)T 3 +
(x7 + x5 + x + 1)T 2 + (x4 + x2 + x + 1)T + (x 5 + x3 + x) overF256 on the left hand side and
f : F257 → F257, T 7→ 20 T 3 + 42 T 2 + (−60)T + 42 overF257 on the right hand side each carry
the secretf(0) =̂ 42. For our untrained eyes the nice structure of this curve is not visible but still:
any four points determine the entire polynomial and thus thesecret.

Depositing the coin is easy, too:

PROTOCOL 5.9. Deposit.

1. Martin sends the entire transcript of the payment Protocol 5.8 to the bank.
2. She then looks up the signature in her database.

◦ If she does not find it, Martin gets his money put on his accountand a receipt.

◦ Otherwise, the bank detects a double spending just as in the other systems:

– If the challengesx andx′ are also equal then Martin has tried to redeposit a coin.
– Otherwise the bank tries to reveal Alice’ identity. For now the bank knowsr ≡v kx+U

andr′ ≡v kx′ + U modulov which is just a linear system of equations fork andU .
Now she can take Alice to court for double spending.

There are several points to be taken into account for the withdrawal process. Of course the first
requirement is that the bank cannot link the withdrawal and the deposit of a coin (unless a double
spending occurs). Further, it shall be guaranteed that the parametersa, b, c andk are chosen randomly.
Both parties, in particular the bank in our case, have to be sure that these parameters are not ‘made
up’. To do so Alice and the bank each choose a part, saya′ anda′′ of these parameters and at the
end they take the producta = a′a′′. Only both must make their choice independently whereas we
have no way of guaranteeing a parallel transmission of the respective shares. (Actually, this seems
very similar to ‘Coin flipping by phone’, Blum 1982.) To achieve this, Alice first choosesa′ and then
transmits some informatioñA which binds her to this value ofa′. Then the bank choosesa′′ and
sends it to Alice. Actually, in our case the product must onlybe known to Alice. To make sure that
Alice continues as desired, Alice sends something which requires that she uses the bank’sa′′ in order
to give her the desired meaningful signature. Or the bank’s answer depends on the informatioñA that
binds Alice. Then the answer is only useful to Alice if she sticks to her previously chosen valuea′.

5.4.3. Randomized blind signatures. First we consider how to get arandomized blind signature.
Randomized means that the bank will be sure that the used parameter was indeed chosen at random.
Blind means, as usual, that the bank cannot link the final signature to the transcript of the signature
protocol. And of course Alice should not be able to generate such a signature on her own (this makes
it a signature). Thus this scheme will be well suited for our needs. Ferguson attributes it to Chaum
(1992). Additionally we use a one-way hash functionf : Z

×
N → N<v.
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PROTOCOL5.10. Randomized blind signature.

1. Alice randomly choosesa′, α ∈ Z
×
N andσ ∈ N<v. She computes̃A ← αva′gσ and

sends that to the bank. Ã
−−−−−−−−−−−→

2. The bank randomly choosesa′′ ∈ Z
×
N and sends it to Alice. a′′

←−−−−−−−−−−−
3. Alice computesa ← a′a′′ ∈ Z

×
N and an adjusting exponente + êv ← f(a) − σ with

e ∈ N<v and sendse to the bank. e
−−−−−−−−−−−→

4. The bank computesA← Ã · a′′ge and sends Alice a signaturẽS ← A
(1/v)

of it. S̃
←−−−−−−−−−−−

5. Alice unblinds the signature to obtainS ← S̃α−1gê. Now she has a signature pair
(a,S) satisfying

(5.11) Sv ?
= agf(a).

Before we discuss attacks let us have a short glance at the correctness. There is one complication
that we did not mention in advance. Actually, Alice must handovere ∈ N<v instead ofe + êv in
order to keep her secrets protected. Unfortunately, it is not allowed to calculate modulov (or any
other number Alice knows of) in the exponent ofg. She only knows thatg has large order but she
has no idea which one. Thus she will obtain av-th root ofagf(a)−êv instead of av-th root ofagf(a).
Luckily this is correctable since the deviation is av-th power of a known value. Indeed, we have

Sv = S̃vα−vgêv

= Aα−vgêv

= Ã · a′′geα−vgêv

= αva′gσ · a′′α−vgf(a)−σ

= agf(a).

First, note the relations between the values in the transcript: Clearly, Step 4 in Protocol 5.10
implies

(5.12) S̃v = Ã · a′′ge.

Everything else in the transcript is independent, as we willsee shortly. Indeed, even if Alice follows
the protocol any combination of̃A, a′′ ande can occur: First choose any value fora, then solve
e + êv = f(a) − σ for σ ∈ N<v andê, a = a′a′′ for a′′, andÃ = αva′gσ for α. (We do not care
for efficiency here!) Thus (5.12) is the only relation. Each protocol transcript even occurs with the
same probability. The only choice is the choice ofa, all other solutions are unique. Thus in order to
obtain a valid signature from the protocol Alice can chooseÃ ande but must then go along witha′′

andS̃ as given by the bank. Though Alice can chooseÃ as av-th power of something she knows,
her major problem is that she does not know thev-th root ofa′′ and thus cannot correct this factor to
her needs without breaking RSA.

What if the bank tries to trace Alice? Can she get any information on the pair(a, S) that is
Alice’ signature at the end? No, she cannot. Indeed, each such pair occurs with the same probability
from the view of the bank. The bank knows̃A, a′′, e andS̃. Suppose Alice gets(a, S). Then there
is exactly one choice for Alice that can have produced this outcome:σ ∈ N<v and ê are uniquely
determined bye+ êv = f(a)−σ, α by S = S̃α−1gê, anda′ by a = a′a′′. The equatioñA = αva′gσ

is implied by (5.12):Ã = S̃v · (a′′)−1g−e = αvSvgσ−f(a)/a′′ = αvagf(a)gσ−f(a)/a′′ = αva′gσ.
Let us see what happens if Alice tries to cheat. Clearly, she cannot solve (5.11) after fixing

a unless she breaks the bank’s signature which is assumed to beinfeasible. But can she use the
signature generation with a more or less prescribeda? As already stated only (5.12) binds the values
of the transcript. Suppose she wants to get along with a prescribeda. What would she have to do
in order to get a signature for it? To satisfy (5.12) she must solve agf(a) = Ã · a′′ge for e. She can
chooseÃ in a clever way, yet only before she knowsa′′. Writing e + êv = f(a) − σ the equation
a = Ã · a′′g−σ−êv must be solved forσ. Actually no matter how she has chosenÃ the task is to
compute a discrete logarithm. But of course the parameters will be adjusted such that computing a
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discrete logarithm with baseg is not feasible. By trying severalσ at random she might get control of
some bits ofa but no more. Thus there seems at least to be no obvious way for Alice to cheat.

If Alice tries to use some more of the structure she might try to use some multiple of a power of
(5.12) to obtain a valid signature on some expressionagf(a):

DS̃Ev = DÃE(a′′)E · geE

First note thatD can only help if Alice knows av-th root but that does not lead her far. To be helpful
she might try to adjust this such that

(Ãa′′)E = agt,

t + eE = f(a)

with somet ∈ N<v. Alice can use the first equation only after she knowsa′′, whenÃ is already
fixed. So the obvious way to solve these equations is to chooseE andt and determinea by the first
equation. The control overa she can obtain this way depends on her ability of computing discrete
logarithms with respect tog or Ãa′′. Finally, the second equation determinese. However, that means
thatA, E andt must be chosen beforee is transmitted.

Note that computing a discrete logarithm with baseÃa′′ might be feasible! If the order of̃Aa′′

is smooth and can be determined efficiently then we can compute discrete logarithms efficiently and
thus find a ‘good’E. So we choosea, computeE ande. The order of the groupZ×

N however is
unknown to Alice and infeasible to find (unless she breaks RSA). The bank could adjusta′′ a little
to avoid very low order elements. Yet, this affects the distribution of a′′ and might not be desirable.
Probably, it is true anyway that most elements ofZ

×
N are difficult discrete logarithm bases provided

ϕ(N) contains large prime factors.
A way to stop Alice from even trying the just described manipulation is to change the scheme

a little. In the previous ‘attack’, it was essential that Alice can compute(a′′)E . If we replacea′′

by ha′′

then Alice cannot simply compute the correspondingh((a′′)E) from ha′′

. Since we compute
a = a′a′′ in ZN the order ofh must divideN . But we are not bound to the domains already in use
and simply choose a primet such thath ∈ Ft of orderN exists, that ist = ρN + 1 for someρ ∈ N.
Oncet is found any elementx ∈ F

×
t raised to the powert−1

N gives an elementh = x
t−1

N of order1,
p, q, or N . The bank can easily exclude the first three cases by checkingh 6= 1, hp 6= 1 andhq 6= 1.
A drawback of this is that Alice cannot verify that. She is only able to checkhN = 1 andh 6= 1. But
this is not really severe because it is in the bank’s interestto have an element of highest possible order
there. Of course we now have to modify the definition of the hash function, we needf : F

×
t → N<v.

In total we have the following

PROTOCOL5.13. Randomized blind signature without exponential attack.

1. Alice randomly choosesa′, α ∈ Z
∗
N andσ ∈ N<v. She computes̃A ← αva′gσ and

sends that to the bank. Ã
−−−−−−−−−−−→

2. The bank randomly choosesa′′ ∈ Z
×
N , computes̃h← ha′′

and sends it to Alice. h̃
←−−−−−−−−−−−

3. Alice computes an adjusting exponente + êv ← f(h̃a′

) − σ with e ∈ N<v and sends
it to the bank. e

−−−−−−−−−−−→
4. The bank computesA← Ã · a′′ge and sends Alice a signaturẽS ← A

(1/v)
of it along

with a′′. a′′, S̃
←−−−−−−−−−−−

5. Alice calculatesa ← a′a′′ and unblinds the signature to obtainS ← S̃α−1gê. Now
she has a signature pair(a, S) satisfying

(5.14) Sv ?
= agf(ha).

OPEN QUESTION 5.15. Could Alice in either variant obtain more signatures than the number of
times she executes the protocol?
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5.4.4. Withdrawal. For the withdrawal process we will use the previous signature scheme three
times in parallel. Actually, for signinga we use the simple version and for signingb andc we use
the one which is protected against the exponential attack. The first will be protected by an additional
factor derived from the other two. As in the above protocols,Alice and the bank will each choose a
share of the three values. Yet,a will be furthermore linked to the other two. This procedure would
hand over three signatures to Alice. As we already saw in Protocol 5.8 which defined the payment
from Alice to Martin, Alice needs signatures ofABk andACU . Since we are using the RSA scheme
to compute signatures these two are merely combinations of the three signatures toA, B andC.

The bank must be sure thatU is used as specified since this is the identity coded into the coin. It
will enable the bank to trace Alice in case of a double spending. This will be guaranteed since the
bank puts together the second signature as one forACU .

It is in Alice’ interest thatk is randomly chosen and only known to herself since this parameter
protects her identity! If it were known to anyone else then after only one paymentU could be
computed. But also the bank shall be sure that this parameteris chosen at random because otherwise
Alice could try to fit this parameter according to her needs. Thus the bank will only hand over a
signature toA1/k′

Ck′′

without any knowledge ofk′ but with almighty power overk′′. UsingA1/k′

(implicitly) is made possible by choosinga as ak′-th power. Alice can later raise the result to the
k′-th power and thus giving her a signature ofACk′k′′

as desired.
One problem arises again several times: Alice has to correctthe exponents that shall be dealt

with only modulov. For example, this happens tok′k′′. The final exponent to be used must be
k = (k′k′′) remv. Since the difference is a multiple ofv in some exponent Alice can correct that
even in thev-th root. As can be verified in the protocol the correctionsê2 andê3 are either0 or−1.
But the correctionŝ1, ê1, andk̂ use the entire rangeN<v.

PROTOCOL5.16. Withdrawal.

1. Alice chooses random sharesa′, b′, c′ ∈R Z
×
N , random blinding bases

α, β, γ ∈R Z×
N , and random blinding exponentsσ, τ , ϕ ∈R N<v. She com-

putes the blinded candidatesÃ← αva′ · gσ
1 , B̃ ← βvb′ · gτ

2 , C̃ ← γvc′ · gϕ
3

and sends them to the bank. Ã, B̃, C̃
−−−−−−−−−−−−−−−−−−−→

2. The bank chooses her random sharesa′′, b′′, c′′ ∈R Z
×
N and sendsa′′, h̃2 ←

hb′′

2 , h̃3 ← hc′′

3 to Alice. a′′, h̃2, h̃3
←−−−−−−−−−−−−−−−−−−−

3. Alice computes

e2 + ê2v ← f2(h̃2

b′

)− τ with e2 ∈ N<v,

e3 + ê3v ← f3(h̃3

c′

)− ϕ with e3 ∈ N<v.

and choosesk′ ∈R N
×
<v. After computinga ← (a′a′′ · f4(e2, e3))

k′

and
k− ∈ N<v, 1̂ ∈ N such thatk′k− = 1 + 1̂v, she computes

e1 + ê1v ← k−f1(a)− σ with e1 ∈ N<v.

Then she sends the exponents(e1, e2, e3) to the bank. e1, e2, e3
−−−−−−−−−−−−−−−−−−−→

4. The bank computesA← Ãa′′f4(e2, e3)g
e1

1 , B ← B̃b′′ge2

2 , C ← C̃c′′ge3

3 .
Then the bank chooses her sharek′′ ∈R N

×
<v of k. She then computes the

signatures̃S1 ← (A C
k′′

)(1/v) andS̃2 ← (B C
U
)(1/v) and sends them to

Alice. b′′, c′′, k′′, S̃1, S̃2
←−−−−−−−−−−−−−−−−−−−

5. Alice puts everything together: she computesb ← b′b′′, c ← c′c′′ in Z
×
N ,

andk + k̂v ← k′k′′ with k ∈ N<v. Now she can compute

A← ag
f1(a)
1 , B ← bg

f2(hb
2)

2 , C ← cg
f3(hc

3)
3

and unblind the signaturesS1 ←

(
S̃1

(
α−1gê1

1

) (
γ−1gê3

3

)k′′
)k′

g
−f1(a)1̂
1 C−k̂ andS2 ← S̃2

(
β−1gê2

2

) (
γ−1gê3

3

)U

. She now has a coin
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(a, b, c, k, S1, S2) with the property

(5.17) Sv
1 = ACk, Sv

2 = BCU .

First we verify that this indeed fulfills the claimed equations (5.17). What the bank obtains actually
is

A
k′

= A ·
((

αg−ê1

1

)k′

g
f1(a)1̂
1

)v

,

B = B · (βg−ê2

2 )v,

C = C · (γg−ê3

3 )v.

With this information we can exploit the definitions:

Sv
1 =

((
S̃1

(
α−1gê1

1

)(
γ−1gê3

3

)k′′
)k′

g
−f1(a)1̂
1 C−k̂

)v

= A
k′

((
α−1gê1

1

)k′

g
−f1(a)1̂
1

)v (
C
(
γ−1gê3

3

)v)k′k′′

C−k̂v

= ACk′k′′−k̂v = ACk

and similarly

Sv
2 =

(
S̃2

(
β−1gê2

2

)(
γ−1gê3

3

)U
)v

= B
(
β−1gê2

2

)v (
C
(
γ−1gê3

3

)v)U

= BCU .

Thus the key equations (5.17) hold.
In order to prevent the bank from framing an innocent Alice for double spending at some time

Alice must provide a signature for this identityU . If this is not the case not only Alice will not trust
the system but also the bank will not be able to prosecute Alice for a potential double spending. No
court would blame Alice if shecanbe framed by the bank. Yet, we must somehow guarantee this in
the withdrawal process, see below. The first thought how to implement this is to makeU a signed
version of Alice’ identity. But then the bank cannot directly control thatU has the correct form and
thus Ferguson suggests a different approach.

5.4.5. Summary. Ferguson (1994b) uses polynomial secret sharing to allow many possible queries.
To embed a polynomialkx + U into the system we proceed like this: Three numbersa, b, c are cho-
sen at random by the bank and Alice. For the mutual security itis important that each partner is sure
that these figures are indeed random. This is done by something similar to ‘coin flipping by phone’.
Alice and the bank each choose a part of each number and the actual number then is composed of
these two parts. Yet only Alice will know the outcome of the random number. This makes the system
anonymous. From these numbers are derived three numbersA, B, C with the help of some one-way
functions. This ensures that Alice has almost no influence onthe specific values of these three num-
bers. In the withdrawal process the bank sends Alice RSA signatures forACk andBCU . Here also
k must be a random quantity and again both must be sure of it.

To answer a queryx by Martin Alice shows a signatureR to (ACk)x(BCU ) = AxBCkx+U . She
can produce this new signature from the two she knows. Clearly, she must also hand overr = kx+U
since Martin cannot compute this quantity. If the bank gets two such answers the bank can solve for
k andU and thus reveal Alice’ identity coded inU .

That is a very brief sketch of the system. There are some complications in the way the numbers
a, b, c andk are chosen and some technical details that are used to prevent certain kinds of attacks.
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6. Further topics

Still there are completely different threats.

6.1. The perfect crime. Complete anonymity also has its drawbacks:

◦ Ed kidnaps a baby.
◦ He prepares10 000 money orders for1 000e each and blinds them.
◦ He sends them to the authorities with the threat to kill the baby unless the following instructions

are met: A bank signs all orders and the results are publishedin a newspaper (or by any other
kind of broadcast).
◦ The authorities comply.
◦ Ed buys a newspaper, unblinds the orders and spends the coins. There is no way for the

authorities to trace the money to him.
◦ Ed frees the baby.

6.2. Further properties. Fairness, re-usability, . . .

6.3. ‘Historical’ remarks. DigiCash(David Chaum), eCash/Cybercash(Hettinga), flooz, . . . To my
knowledge no electronic cash system is used in practice.

6.4. Social aspects. Acceptance, necessity, environment.

6.5. Economical aspects. Transaction costs, existing concurrent paying systems.

7. Texts on electronic money

For the great congress several texts describing typically one system for electronic money have been
considered. Finally, those marked with a circle ‘◦’ have been used.

− Chaum (1985) (surface description using lots of pictograms),

◦ Chaum, Fiat & Naor (1989) (unconditionally untraceable/anonymous electronic cash system
[DigiCash]; no proofs),

◦ Ferguson (1993, 1994b) (nicely described protocols including some reasoning),

− Ferguson (1994a) (extensions to Ferguson (1993, 1994b): multi-spendable coins, observers),

− Brands (1993) (extensive paper containing Brands (1994a,b, 1995), section 11, 12 describe
the basic system, sections 9, 10 are needed for details, sections 5, 6, 8 concern the underlying
representation problem),

− Brands (1994b) (with observers, complete protocols),

− Brands (1994a) (with smart cards, coins and signatures are separated, uses Schnorr signatures,
very small memory requirements),

− Brands (1995) (off-line, no observer or smart card needed, uses Schnorr like signatures),

◦ Brands (1999), first four pages and section 4 (overview article, section 4 contains an exam-
ple system similar (or equal?) to Brands (1995), section 2 describes preliminaries: modeling
electronic cash, authentication techniques, [conventional dynamic authentication; dynamic au-
thentication based on public key cryptography], section 3 dwells on electronic cash techniques:
representing electronic cash, transferring electronic cash [transferring register based electronic
cash; transferring electronic coins], when tamper-resistance is compromised [fraud detection;
fraud tracing; fraud liability; fraud containment], security for account holders [preventing loss,
preventing payment redirection, non-repudiation], privacy of payments [relaxed monitoring,
anonymous accounts and anonymous devices; blinding; one-show blinding; guaranteeing your
own privacy; one-sided versus two-sided untraceability]),
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− Medvinsky & Neuman (1993) (NetCash is a system to make various forms of electronic money
be exchangeable and acceptable via various channels),

− Frankel, Tsiounis & Yung (1996, 1998) (fair electronic cash),

− Bellare, Garay, Jutla & Yung (1998a,b) (),

− Maitland & Boyd (2001) (use group signatures),

◦ Schneier (1996), §6.4 (describes Chaum’s system, advancing step by step)

− Kou (2003), §8.3 (describes Brands’ system, probably Brands (1995)),

− Kou (2003), §8.4 (one-response digital cash),

◦ Kou (2003), §8.5 (fair digital cash).
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