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2 Michael Nusken

Distinguish money vs. cash: Cash is a form of money, but reotily one. ..
For the implementation of electronic money and electroaghahere are a lot of things to under-
stand. From top to bottom, we find that we need

o Protocols, that is, formalized chats, to make the systerhange the desired information at
the right place and the right time.

o Signatures (and authentication) to mimic essential ptagseof real money as unforgeability
(of areasonable strength).

o Number theory to implement these things.
o A programming language to bring everything to life.

All these items are of course only the technical side of theystThe social and economical aspects
form an additional field. The reason for enterprises likeiO#&gh going bankrupt were not bad
technical solutions.

1. Properties of € (cash) and e€ (electronic cash)

There are various properties that can be asked of electnoon@y. A problem is that there are often
no standard names, so you find two or three different wordghfsame thing.

unforgeable This is a basic part of security: it should not be possibletgd a coin.

double spending protectedThis is a basic part of security: it should not be possiblgognsl a coin
twice, or at least it must be guaranteed that double spefdiagerious consequences.

Online vs. offline vs. with observer This refers to the payment protocol in an electronic payment
system. Some systems require an interaction with the bahisgtoint, they are callednline
For example, if you pay with your bank card at the supermaakedtenter your PIN then the
bank is called for clearance. Other system do not need tigg,dre offline. Apart from these
two extremes there is a further solution: typically the oustr gets a card from the bank
anyway. So if this card can do some active computation we reaytdo carry a further secret
such that the card can acknowledge transactions by a sign&uch a card then is called an
observer Though the bank is not directly contacted during this kihgayment, | think that
the observer has to be considered as part of the bank and this®imehow online. Yet, with
respect to scalability the system behaves like an offlineegsysthere is no central server that
has to deal with every payment.

untraceable, anonymous, privacy protected vs. fairAn electronic payment system that does not
allow the bank to trace who paid whom which amount is caleadnymou®r untraceable
sometimes this property comes along under the heguingcy. Bank transfers angotanony-
mous. As we will see later unconditional anonymity mightuadty not be wanted. Using a
trustee, possibly split, one can build systems that allowaoe coins when a court decides
that this is necessary. Still, the bank shall not be ablesteta coin unless a double spending
occurs.

One might also consider privacy protection with respech®rmerchant as a possible tracer
but in any case the merchant must know where to send his goods t

atomic It must be clear to all participants when a coin is transf&rr& partial completion of the
payment protocol should not cause conflicts.

reusable, transferable This means that a customer can hand over coins to anothenoeisand so
on. The coin must only be transferred to the bank after aicamaximal number of transfers.
This is similar to the ordinary life of a physical coin.

divisible It might be nice to have coins that can be divided into smalfexs as needed.
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account-free vs. -basedElectronic money is always account-free, most electroaimpent system
are account-based.

acceptable Which bank takes your coins?
reliable The system should always work when it is needed.

independent The system should not depend on any physical location. Threegncan be transferred
through computer networks.

2. Public key cryptography

Key words: RSA and its security, simple attacks. SignindhRISA. Group based cryptography,
examples, simple attacks. Authentication. (Zero know#&tjg

2.1. Rivest, Shamir & Adleman (1978). Public key cryptography was developed in the seventies.
Only when, shortly after the key exchange protocol by Diffi¢d&llman (1976), Rivest, Shamir &
Adleman (1978) published the first publicly known asymnuatriyptosystem, now named RSA after
their inventors, the raise of public key cryptography begBefore that it was commonly thought
to be impossible that two previously unknown parties coWddhange secrets in the presence of
eavesdroppers. Only symmetric key systems were used betil tThe following decades brought
more and more electronic means, in particular the Interfleere was and is an increasing need of
confidentiality and security.

Curiously, the British secret service discovered publig &&yptography already about five years
earlier and astonishingly the two schemes they came up watie RSA and the Diffie Hellman key
exchange. See Ellis (1987) for an historical account, thgiral papers are Cocks (1973); Ellis
(1970); Williamson (1974, 1976).

RSA is fairly simple. For a start you need two prime numbeandq. Form their multipleN =
p-q. If you calculate moduldv then there are only finitely many possible results. Thusifsepeat a
specific operation, say multiplying by a fixed numbethe sequence of results, x, 2%, 2%, 2%, . . .)
must become periodic at some point. Actually= (p — 1)(¢ — 1) is a repetition length (Later,
we will prove this!) and the period starts almost immediatel = z'*% = 2!+2L = .| Thus if
ed = 1inZg thenz®® = z' in Zx. As we will see it is easy to calculate such a faird) provided
one knows the repetition lengih

Suppose Alice has computéd = p - ¢ and two numbers andd as above. Now if she wants to
obtain a message from Bob, she sends him her publi¢ key). Bob translates the messages into
a numberr € Zy (for example by writing it using ASCII characters and coecatting the bits to
a long integer) and calculatgs— z° in N. (This is also very easy, as we will see.) When Alice
getsy she computes « 3¢ in Zy. Now, z = y¢ = (2¢)? = 2°? = z in Zx and so Alice can read
the message. Eve, listening to the entire conversationdinl the explanations about the system,
cannot decode the message: She kndiyg andy. Though this identifies the message, she needs
to solve the equation® = y in Zy. This is considered to be a difficult problem, even if Eve vadoul
content herself with guessing a single bitiof

There are several important questions:

o Correctness: Does the protocol fulfill its demands? (And whipte that the ‘why’ is impor-
tant! It enables us to look for generalizations as well asftacks.)

o Efficiency: How fast can the necessary operations be pegdfm

o Security: How fast can the best possible attack break themsysOr more modestly: How fast
are the best known attacks?

2.1.1. Correctness. We have already seen that= y? = z°¢ = z in Zy sinceed = 1in Zy,.
However, the value for the repetition length still has to baved. We postpone that to Section 3.
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2.1.2. Efficiency. To answer the question about the timing we have to consigeoplerations to
be performed. They are

o Finding prime andgq. This splits into the subtasks

— Choose a random/2-bit number.
— Test whether it is prime.
— Repeat until you find a prime.

Choosing random numbers may be costly depending on theedesécurity. If an attacker
can guess the results of the random number generation shienail all we do. Even partial
attacks are dangerous.

Testing primality can be performed in deterministic polgmal time. This is known only since
Agrawal, Kayal & Saxena (2003) (mostly cited as AKS). Heticgly this algorithm runs
in time O~ (n®) after embedding several enhancements. In practice, thsich too slow.
But fast probabilistic algorithms run in im@~ (kn?) with fast andO(kn?) with classical
arithmetic and return a wrong answer with probability at o, This is only by a factokn
slower than the time to multiply two numbers of similar size.

This has to be repeated until a prime is found. The probghiiat ann-bit number is a prime
is about—L—. Thus an expected number©f* (n) repetitions leads to a prime number. (Here,
some care is necessary, in particular, if the prime testlisaprobabilistic one.)

Of course, we have to do all this twice but we ignore constactoirs anyway.

o ComputeN = p-gandL = (p — 1)(¢ — 1). Multiplying n-bit numbers can be performed in
time O(n?) with classical arithmetic or in timé(n log n loglog n) by Schonhage & Strassen
(1971). The simple and practical Karatsuba algorithm a@sé(n'°823). More information
about the arithmetic of integers can be found in von zur Ga&&erhard (2003).

o Finde andd. This splits into the subtasks

— Choose a random-bit numbere.
— Decide whethed exists and compute it.
— Repeat untitl is found.

The first task is as above. The two aspects of the second camnieeati once by the Extended
Euclidean Algorithm. It need®(n?) operations with classical arithmetic. A clever fast im-
plementation achieves the desired result (but not theeeBfFA!) with O(n log® n loglog n)
operations.

o Computer® in Zy. This is actually the simplest thing: Just start withnd multiply byz in
Zy until you reachze. Of course, the multiplication should be performedg in order to
keep the memory requirements small. This only takesultiplications ofn-bit numbers. ...
— Sorry, | was kidding:e itself is ann-bit number, too, and doin@™ multiplications may
take longer than we live even with the best of all computeas e can imagine. OK, how to
do better? The answer ispeated squaringfor example, computing?°% is easy by simply
squaring eight times. We only need 8 instead of 256 mul@iicms. To compute any power
of = write e in binary, for example, it = 1011101, we computer, 210, 2190, 7101 51010,
1011 410110 - 1011T -, 101110 © 1011100 -0, 1011101 1y other words: either we square the last
result which attaches a zero to the end of the binary reptatsen of the reached exponent or
we multiply the last result by: which addsl to the exponent. This we use in order to build up
the desired exponent. That takes at nif{st — 1) multiplications. We need — 1 squarings
and one multiplication for eachin the binary representation fer Slight improvements are
possible but you will never get along with less thar- 1 squarings. Now, the time here is:
O(n?) with classical and>™~ (n?) with fast arithmetic.
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For short, all operations can be performed in polynomiaktinin practice, choosing random

numbers and verifying primality are the most time consunpiags. Luckily, these occur only in the
key generation procedure.

To understand all this properly we need some knowledge ahodular arithmetic and its imple-
mentation. In particular, multiplication of large integgrdivision with remainder and, most promi-
nently, the Extended Euclidean Algorithm.

There are some possibilities to speed up things, in paaticuth specially tailored hardware:

o Using a speciat, which is small and has only few ones in its binary repres@macan make

exponentiation slightly faster. But be aware of possible agacks!

o Using the Chinese Remainder Theorem 3.1 can speed up thgtenrby usingN = p - g.
Yet, this may be a bad idea if the calculations are performed say, stolen smart card since
it involves more secret data than necessary.

2.1.3. Security. Let's consider this in more detail: Eve knows e andy. She would like to know
the plain textr or anything that gives her knowledge about it. To break tletesy completely she
could try to

(A) factor the modulusVv and findN =p - gq.

(B) find the repetition lengtii.

(C) find the decryption exponedtsuch thai{z¢)? = z forall z € Zy.

(D) find the plain textc such thaty = z€ in Zy .

Clearly, (A) is equivalent to (B) and implies (C) which in tumplies (D). [Note thatz —p)(z —

q) = 22— (N +1— L)z + N, so givenL computingp andg simply amounts to solve a known
quadratic equation.] Though one can obtain (A) from a sietédrm of (C), it is an open problem
whether a form of (D) implies one of the other items. After aht only these complete breakings are
threats to RSA. If an attacker would be able to guess a hitwith probability significantly larger
than 50%, then this is already considered to be a breaking.

There are many attacks on RSA, or better, false usage of RSA.

1. Chosen cipher text attacks.

Suppose Alice uses the same RSA key pair for encryption gmihg. (Signing with RSA is
done as follows: The signer decrypts the message or its leist. vl his serves as a signature.
It can be generated only with the knowledge of the secretd@pnly the signer can produce
it. It can be easily verified using the public key.)

o Eve collects a message= z°¢ in Zx for Alice. To decode it Eve computesg = r¢y
with some random € Z3, and makes Alice sigp’: she gets’ = r¢dy? = ry? = rz.
Now she can easily divide byand obtain: = 2’/r.

Trent is a public computer notary. He signs any documenigioédiim to grant its existence at
the usage period during the present key life time.

o Mallory wants Trent to sign a criminal documentMallory makes Trent sign’ = zr¢
instead and obtaing = z%°? = z% from which he easily obtains the signature=
y'/r =z to .

o Mallory can also writer = x1z2 and make Trent sign both factorg; = x¢. Then the
wanted signature ig? = z¢x4.

There are further attacks on encrypting and signing witrsimae RSA key pair. See Schneier
(1996), section 19.3, page 473.
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2. Common modulus attacks.

For broadcasting purposes Bob and Carol have the public(Réys, ) and(V, e2). To broad-
castz Alice computesc©! andx©2 in Zy and sends them. Eve now simply findand¢ such
thatl = se; + tex and computes = x! = (z°1)%(2°2)%.

. Low encryption exponent,less than number of recipients.

If, for a broadcast say, you encrypt the same messagegh the same: and e different
values forN then an attacker can recoveeasily. Namely, if you knowt® modulo Ny, No,
..., N then by the Chinese Remainder Theorem 3.1 you also kifomodulo the product
M :=[],<;<. NV; of all these moduli. Sincé/ is larger than:®, we have the integer® and
extracting itse-th root is simple. This attack can be generalized to linedependent (instead
of equal) messages.

. Low decryption exponend, < N'/4

There is an attack by Michael Wiener that recovers such d sthglapproximating the rational
number% =£- ﬁ with the known fractiong;. Using continued fractions we can recoder
provided it is small enough.

3. Number theory

In this section we deal with basics on modular arithmetiougrtheory and finite fields. It should
cover:

o modulo calculation¥y,

the Chinese Remainder Theorem 3.1,

EEA,

inverting elements modulo some integék;,

the Euler totient function,

finite groups, Abelian,

Lagrange’s Theorem 3.4, Euler's Theorem 3.5, Fermat'seLltheorem 3.6,
element order, cyclic, group generator,

repeated squaring,

element order test,

discrete logarithms,

finite fields, in particular their multiplicative group,

an additional example: elliptic curves. (An overview isHKwou (2003), section 2.4.3, page
20-22))

Not all of these topics are worked out in detail.

As promised, we are going to prove that RSA works, thatls = z for z € Zy if ed = 1 in

Zr.. To do so we first need to clarify where our numbers live and timy behave.
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3.1. The ring Zy of integers moduloN. We introduce the rin@ n, called integers moduld/,
as a set ofV elements with an addition and a multiplication, a zero eleinaand a one element.
Typically, the implementation uses the $&t 5 of non-negative integers less thahas a set and
the addition and multiplication are simply the addition andltiplication of integers with results
reduced moduldV. (Alternatively a symmetrical set is often used; € Z| — § <z < 5} It
can be understood as a class in an object oriented languagiess= 6 in Z; is immediately clear,
the multiplication is performed as the class demands (anésdor integers). Thaky is aring
means (don’'t PANIC, PAN, D):

P+,P- Itis properly defined, that is, it consists of a $gta zerd) € S, an additiorH: S x S — 5,
aonel € S and a multiplication: S x S — S.

A+,A- Both operations arassociative{a + b) + ¢ = a + (b + ¢), (ab)c = a(be).
N+,N- Both operations havergeutral elementy + 0 =a=0+a,a-1=a=1"a.

|+ The addition hamversesu+x = 0 = x+a is always solvable. (And thus uniquelyftz = 0
andy +a=0thenz =04+z=(y+a)+2xz=y+ (a+z) =y+0=y. Youmay also
implement the operatio@— x as—.)

C+ The addition icommutativeia + b = b + a.
D Addition distributes over multiplication(a + b)c = ac + be, a(b + ¢) = ab + ac.
A lot of rings, including our example, are called commutatiVhat means:

C- The multiplication iscommutativeia - b =b - a.

If additionally the multiplication has inverses for all n@aero elements,-| then the ring is even a
field. Actually, in casep is a prime therZ,, is a field as we will see shortly. Still, if not all non-zero
elements do have a multiplicative inverse, some may haveanyncase the question arises how to
compute them in our rin@ . Actually, for RSA we will need that for computing € Z. But we
are still on the way to prove that RSA works, so keep that gqoest mind for later.

3.2. The Chinese Remainder Theorem. Coming from RSA, we want to prove thatis a repe-
tition length for the multiplication withe € Zy, that is,z' % = z for all z € Zy. The nice way
to prove that is to split the problem into two halves, one factefactor ofN = p - ¢. This is done
by the famous Chinese Remainder Theorem 3.1. It claimsniktarces of the teacher’s problem are
always solvable:

A teacher has a number of pupils. Arranging them in rows of $tvows that one pupil
remains. With rows of five three remain. With rows of threeiagme pupil remains.
Given that the class is of a standard size, how many pupilthare?

Mathematically we write that as follows. Denote byhe number of pupils. We know that
r=91, x=53, z==3l.

The notation explains itself from the teacher’s probleme (@ad / is congruent td modulo2’ and
so on. Most people write = 1 mod 2 instead, but | don't like that.) Clearly, if is a solution then
alsox +2-3-5 = x + 30 is a solution and vice versa.

CHINESE REMAINDER THEOREM 3.1. SupposeN = NN, with gcd(N1,N2) = 1. Then the
(canonical) map
Zn — 7Zn, X 7Ln,,
amodN +—— (amodNy,amodNy)

is well defined, structure preserving, injective (1-1) angextive. In other words: it is an isomor-
phism.
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Here, we understand ‘ma¥’ to be the canonical mag — Zy, a — amodN whatever imple-
mentation ofZ 5 you have chosen. This map respéxts, addition and multiplication and it mapé
to 0. Since the map in the theorem is not defined usingpd /N for describing the image but, we
need to prove that everything is well defined. Namely,iiiodN = «’ modN then the description
of the image must not depend on whether we ws® o’ to compute it,(a modN;, a modN;) =
(a’ modNy, @’ modNy).

A more classical formulation of the theorem states that fra , a2 € Z there is some: € Z
such thatr =5, a; andx =y, ae. That is exactly the surjectivity in the above version whigh
actually the most tricky part. So let’s try to prove that.

PROOF Itis easy to check that the map is well defined, structuregkéng and injective. To see
that it is surjective take some b € Z. We need to find some integere Z such that: mod N maps
to (amodNy,bmodNs). Since the map respects addition and scalar multiplicatimenough to
consider the special cases= 1, b = 0 anda = 0, b = 1. For if z; maps to(1,0) andzs maps
to (0,1) thenz = ax; + bxry maps toa(1,0) + b(0,1) = (amodNy,bmodN,) as desired. By
symmetry we only consider the case= 1, b = 0.

So our task is to solve = 1 — k1, N, andx = 0 + ko Ny simultaneously for, k1, ko € Z. In
particular, we need to solve

(3.2) 1= ki Ny + ko No.

Such an equation is the result of the extended euclideanigdgoapplied to( N1, N2 ) provided their
greatest common divisor isas requested in the theorem, see Section 3.3. O

Actually, if the greatest common divisor 8f; andNs is different from1 then there is no solution to
(3.2).
Further, we observe that

koN2 =n, 1, k1N1 =n, 0,
kQNQ =N, O, klNl =N, 1.

Thus we can compute = ako N2 + bk N1. This is called the Chinese Remainder Algorithm. Of
course, we can generalize that to more than two moduli.

3.3. The extended Euclidean Algorithm. We do not consider the euclidean algorithm in detail.
We simply perform an example. All calculations are dispthirea simple table. We are given two
integers, say: = 66013, b = 46199. The aim is to compute their greatest common divigoAt
the same time we would like to represent it as a linear contioimg = sa + tb. We have a pair
(a,b) with a certain, still unknown greatest common divisor. Wk lasw we can change this pair
such that the greatest common divisor of the new pair is tstll same. First answekb, a — b)
can be the next pair. Better answéb; a remb). Any common divisor of the old pair divides also
ro := aremb = a — ¢;b. Any common divisor of the new pair divides also= ¢1b + 5. So we
perform a division with remainder to make the pair ‘smalldfinally, the greatest common divisor
shall be represented as a linear combinatiom @hdb. It is easy to represent andb as such:
a=1-a4+0-b,b=0-a+1-b. And from that we easily get a representation9t= a — ¢1b as
S9 = 89 — q181,t2 =19 — q1t1- So we have this:

i | rilqi|si| ti] Comment |
0166013 -] 1 0
1146199 1| 0O 1
2119814 1] -1({66013 =1-46199+ 19814
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We have puty = a andr; = b. For each line we have = s;a + t;b. Continuing this yields:

1 ri | q Si t; Comment
066013 | — 1 0

1146199 | 1 0 1

2119814 | 2 1 —1]166013 =1-46199+ 19814
3| 6571 3 -2 3146199 =2-1981446571
4 101 | 65 7 —10| 19814 =3-6571+ 101

5 6|16 —457 653 | 6571 =65-101+6

6 51 1 7319 | —10458 101 =16-6+5

7 1 5| -7776 | 11111 6 =1-5+1

8 0| —| 46199 | —66013 5 =5-1+0

Since the greatest common divisor of the last pairrs) = (1,0) is 1, this is the greatest common
divisor of (a, b) = (66 013, 46 199). In general, the last pair {g/, 0) whose greatest common divisor
is g. Since for each line; is represented by; and¢; we can read off:

(3.3) 1=—7776-66013 + 11111 - 46 199.

The extra line provides a simple crosschetk: 46 19966 013 — 66 013 - 46 199 which is obviously
true.
For the Chinese Remainder problem this gives us the two lodistons:

—7776-66013 =66013 0, 11111-46199 =66013 17
—7776-66013 =46 199 1, 11111-46199 =46199 0.

3.4. The unit groupZy,. Looking at an earlier question we see that the extendeddmasiialgo-
rithm also solves the question how to calculate inverségyn Reading (3.3) modul66 013 we
find:

4619911111 =1 inZ66013.

Thus46 199~ ! = 11111 in Zgs013. Let us give a name to the set of invertible elements, alsakno
asunits of Zy: We call it theunit groupZy of Zy. It always containd but never0. Since
1+14---+1 =0, the set of invertible elements is not closed under addiBut it is closed under
multiplication! We can easily verify this by only using thei@ms. Suppose, b € Zy both have an
inverse. Saygx = 1 andby = 1. Then clearly(ab)(yx) = 1. Thusab has an inverse, namely:.
Further witha also its inverse: has an inverse, namely ThusZy; is, don’t PANIC, acommutative
group.

o Itis properly defined: there is a s&t; with a multiplicationZy x Zy — Zy, (a,b) — ab, a
neutral element € Z5,, and an inversion magy, — Zy, a — a~'. (By abuse of notation,
we use the same symbol for the set and for the group! In an bbjented programming
language that would cause problems...)

The multiplication isassociative.

1 is aneutral element.

Each element imvertible.

The multiplication iscommutative.

O O O O

There are also groups that are not commutative. The smatlestommutative group is the group of
permutations on three points with only six elements. Roitetin space also form a non-commutative
group, the operation is concatenation. Getting back o the extended euclidean algorithm allows
us to compute an inverse whenewer= (emodN) and gcda, N) = 1. Namely, then it yields
an equationl = sa + tN and thusl = (smodN)z in Zy. Vice versa, ifl = yz andy =
bmodN thenl = ba + tN for somet € Z. This implies that: and N have no non-trivial common
divisors, since any common divisor efand N divides1 = ba + tN. Thatis, gcda, N) = 1.
Concluding: the sefy, consists exactly of those elements that come from integgygroe toV;

Zy ={amodN |a € Z, gcda, N) = 1}.
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3.5. Repetition lengths in finite groups. Still, we have not found why!** = z in Zy as we
need for RSA. But by the Chinese Remainder Theorem 3.1 weradd to prove:' X = z in Ly,
and similarly inZ,. That might be easier singeandq are prime. And it actually is. For observe:
Forz = 0 the claimed equality is trivial. And all other elementsZp are invertible and thus in
Z," (Indeed, giverd < a < p, we havea modp invertible iff a is coprime top, that is,a # 0.)
That means, that we can work in a group instead of a domainenrheitiplication is only nice with
respect to some but not all elements. That all element8 bave a multiplicative inverse is of course
the same as saying thd, is a field. Recall that we announced to prove that at the beggnof
Section 3.

We already observed that repeating a fixed operation, aspiicdtion by a fixed element in
Zy, must lead to a finally periodic sequeridex, z*, 2%, ... ). Now, the number of elements iy’
is p — 1. Thus the repetition length is at mgst- 1. Now, something miraculous happens: for any
elementz in the groupZ,; its size (also known asrder) #Z; = p— 1 is a repetition length. In most
generality this is

LAGRANGE' S THEOREM 3.4. Supposé- is a (multiplicatively written) finite group and € G any

element. Then
"¢ = 1.

PrROOF  We first give a proof only for commutative groups. Considésta

91, 92,93, - - -, 9#G

of all group elements without any repetitions. Now, muttigll its elements by and obtain the new
list
Xg1,2g2, g3, ..., Lg#G-

We claim that this also is a list of all group elements with@getitions.

First argument: no two elements on the new list are equal.e®@ike,zg, = zg, for some
indicesa # b and thus, being in a group, = g, after multiplying by the inverse of. Thusa = b,
contradiction.

Second argument: the second list is complete. Take som@ gtement,. Thenz~lg, = ¢
for some index since the first list is complete. But thetg, = g, and sog, is somewhere on the
second list.

Since both lists are finite either of the preceding argumentdd have been enough to prove that
the lists are equal apart from their order. Now multiply ddireents on each list. This yields

gl 92 ..... g#G: (ajgl)(xg2)(xg#c;)
— g1 g guc.
Multiplying with the inverse of the left hand side now gives- 2#¢. O

PrROOF*. For the general result we must consider subgroups andsose

CLAIM . Supposdl is a subgroup ofs, that is, any subset @ closed under the group operations.
Then#H divides#G.

First let us prove the claim. To this end we considerléfecosetscH = {zh|h € H}.

Cosets are either equal or disjoint. Indeed, supposexH NyH. Thena = zh' = yh” and
thusz = yh” (h')~t andxh = yh” (h')~1h provingzH C yH. By symmetry themH = yH.

All cosets are equal in size. Indeed, the nfdp— zH, h — xh is bijective sincer has an
inverse inG. Thus#(zH) = #H.

Any group element is in a coset. Indeeds = H sincel € H becausdd is a subgroup.
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ThusG is a disjoint union of cosets, each of which has sizH. Thus#H divides#G. This
proves the claim.

Now we finish the proof using the claim. Consider the subgrofufy generated by, that is,
H = (z) :={...,272,27',1,2,2%,... }. Clearly,H is a group again. Further, the size Hfis
precisely the smallest repetition lengtiof z, also known asrderord(z) of z:

CLAIM . # (z) = ord(z).
Indeed, since:” = 1 we may reduce exponents moduland we haved C {1,z,2?,...,z""!
and#H < L. And the smallest repetition lengfhof = can be at most H of course. Thus they are
equal.

By the first claim#H = L divides#G, that is,#G = k - L for somek € N. Now, 2l =
(z")k = 1% = 1 proving the theorem. O

Consider the unit groui §;, again. Its size is denoted (V) and is called theEuler totient
function Applying Lagrange’s Theorem 3.4 to this group yields

EULER'S THEOREM 3.5. SupposeN is any positive integer and < Zy;. Then
z#WNV) = 1.
In other notation, i, € 7 is coprime toN we haves? V) =y 1. O

Specializing to primes gives

FERMAT'S LITTLE THEOREM3.6. Suppose is a prime and € Z,. Then
Pl =1.
In other notation, if: € Z is no multiple ofp then we have?~! =, 1.

From this very last result, we now deduce the
COROLLARY 3.7. Suppose is prime and: € N. Thenz't#(r=1) =y for x € Z,,.

PROOF  The claim is true for = 0. Otherwiser € Z; and thus by Fermat's Little Theorem 3.6
we haver?~! = 1 and thuse' tF(P—1) = g(2P~1)F = 2. 1 = 2. O

Now, finally we can give the desired nice proof of the RSA ccmess:
THEOREM3.8. RSA is correct, that is, for any € Z we haver¢? = x.

PROOF Sinceed = 1 in Z; we haveéd = 1 + ¢L for somet € N. (Here, the conditions
e =émodL and0 < é < L defines a structureless mapping.;, — Z.) By the Chinese Remainder
Theorem 3.1 and symmetry we only need to pro¥ = z for z € Z,,. SinceL = (¢ — 1)(p — 1)
usingk = t(qg — 1) in the previous result gives*® = ! THe=D®=1) = 4 in Z,. Together*? =
in ZnN. O

Generalizing this a little we can calculate the values ofBhéer totient function from a factor-
ization of its argument:
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THEOREM3.9. SupposeN = [],_, p;' is given as a product of prime powers with different primes
p;. Then

o) =T -y =nN [ (1- }9»

i<t p|N,
p prime

PROOF Based on the Chinese Remainder Theorem 3.1 and Fermadités Tliteorem 3.6 we can
give a short proof:

IncaseN = pis prime, the only non-invertible element®f is 0, all others have a trivial greatest
common divisor withp and thus by the EEA an inverse modwo Consequentlyp(p) = p— 1 then.

In caseN is a prime power, safy = p¢, inspection shows that(p¢) = p¢~!(p — 1). (Do this
as an exercise, we do not need that in this course.)

If N = N;N, with N7 and N, coprime then the Chinese Remainder Theorem 3.1 tells us that
Zy isisomorphic tdZy, x Zy,. In particular, invertible elements correspond to inteetielements.
In other wordsZy, ~ Zy, x Zy, and so their size is equab(N) = ¢(N1) - ¢(Nz).

By induction the previous statements prove the theorem. O

In the following we will encounter cryptographic systematthise some unspecified group gen-
erated by an element The system needs to know its order, its minimal repetitergth. Actually,
since the security might be based on it, we should at least &away to check the order. Here it goes:

THEOREM3.10. Supposés is a group,x is an element ofs and L is some number. Then the
minimal repetition length of is L if and only if

ozl =1and ;
o for each prime divisop of L we haver» # 1.

PROOE You can do this as an exercise. O

This turns into an order test provided you know all the prirvesdrs of L. (Computing them might
be difficult!)

3.6. Discrete logarithms. The security of RSA is somehow based on the difficulty of feotp
large integers. There is another very prominent problemmfnomber theory that has similar proper-
ties. We already noted in Section 2.1.2 that the exponéiatap

Z#G — G,

e — zx°

is easy to evaluate via repeated squaring (aka. repeat ahiglg)u Its inverse map is called the
discrete logarithmdlog, y = e means thayy = z°. The discrete logarithm problem in a groGp
is the problem to compute the discrete logaritftom = andy. For many groups it is difficult to
compute discrete logarithms.

For example, ifp is a large prime such that we have a large prime fagtof p — 1 then the
discrete logarithm problemin the subgratijof Z 5 generated by some element of orgés probably
difficult. On the one hand side, there is a particularly fasthod for computing discrete logarithms
in Z,: the index calculus. (Index is another common name for areliedogarithm.) The prime
p must be large enough to prevent this. On the other hand dideg fare several known generic
algorithms. Genericmeans, laxly spoken, that the algorithm works in any group does not use
special features. The primemust be large enough to protect against them. There is ndi¢h)b
known way to use the special propertieZgffor a small subgrouf.

Another example are elliptic curves. An elliptic curve ig et of solutions of a cubic equation,
as for example,? = 23 + az + b with given coefficientss andb, plus one point, called, at
infinity. We can consider this kind over any field, not only o#ee reals or the complex numbers.
For cryptography we choose a finite fiélg. (To any prime poweq there exists an essentially unique
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Figure 3.1: The elliptic curvg®? = 2% — 2 overR and oveiF;

finite field with ¢ elements. Itis denoted l§;, or GHg), for Galois field.) A lot of things are known
about elliptic curves. The number of solutions to the culgigagion can be at mo8y since for each
x € F, there are at most two possible valugsActually, on average there is approximately one,
the Hasse bound states th&tl — (¢ + 1)| < 2,/q. The most miraculous property however is that
these curves carry a group structure! To add two palh@nd @ simply ‘draw’ the line through
them. Since the curve is the solution of a cubic equatioretinll be a third pointR on this line.
If you reflect this point at the:--axis you obtain a poinP + @, the sum ofP andQ.! (Sorry for
the inconvenience: Due to various reasons the operatioflipticecurves is called addition and not
multiplication. So instead of multiplying we add, insteddaking thee-th power we compute the
scalar multiple bye. Just remind yourself, that everything we do with a groupisriulated using
the group operation, regardless of its name.) There are gechaical problems, for example, what
happens whe® = @Q or P = —Q, but they can all be solved. This turns the mere set into agirou
And there is no known algorithm for computing discrete lgifans on most elliptic curves that is
essentially faster than the generic algorithms. For thadaor, the number of bits required fgis
only betweeri 60 and240 rather thari 024 needed to store a group element in the previous example.
PS: There are groups where discrete logarithms are eashe ladditive grou;Z;f of the ring
Z,, with a primep, for example, computing a discrete logarithm is simply atiplitation with the
inverse of the basis.

4. Signatures

Keywords: RSA signatures, EIGamal sighatures, Schnonasiges and refinements. Security.

Let us first ask what usual signatures are made for. A clddsaadwritten signature certifies
that the signer accepts the statement he signs. For exashplegrees to some purchase contract or
she states a final will. Later, anybody should — at least ingipie — be able to verify whether the
signature is valid. And the signature is thought to mean gletitally the signer acknowledged the
document’s contents. Note that this can in some case tuinsigesigner. She can not deny that she
signed and must comply to the statement made in the signeshstat. In any case, the signature
links a person, the signer, to the document. In practicesitirature is just the intermediary between
person and document. Actually, the same will be true forted@@c signatures. The signature a

1ConsequentlyP + Q + R = @ is the neutral element.
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priori only establishes a link between some document anées®oret information. By other means,
namely non-cryptographic ones, it must be guaranteedhlbegdcret information is only accessible
to a given person.

This last point is particularly problematic in case the parslaims that she ‘lost’ this very secret
information or that somebody has stolen it. But the nontedaic world already deals with this prob-
lem in connection with, say, credit cards or bank cards. €gallholder is simply made responsible
for his secret information. In case of a theft or loss he hasmtwmunce this in time. Transactions or in
our case signatures made in the mean time are (at leastiyadtéributed to the holder. By this the
legal holder is forced to be careful and cannot simply deay tie gave a certain signature. Clearly,
there is no cryptographic solution to this problem.

The cryptographic problem that we are facing is how to linkreeinformation to a given — of
course electronic — document.

Section 2.5.1 in Kou (2003), page 25ff, gives a short ovevveer signatures:

o RSA signature scheme (Use decoding to sign),
o Rabin public key signature scheme (square roots mag complete break equivalent to fac-
toring; butcompletely brokeby chosen-message attack),
o DSA (Schnorr signatures),
o ECDSA,
o blind digital signatures,
o* undeniable signatures,
o* fail-stop signatures,
o* group signatures,
o* proxy signatures.

4.1. RSA signatures. In RSA Alice chooses a key paftV, ¢) and (N, d) such thatz¢? = z for
everyx € Zy. Anybody can compute the encryptign= z¢ of some (number encoding a) message
x € Zy. But only Alice can compute the decryption of some numperZy. Moreover, the order
of encryption and decryption does not matter. Thus the sigaaould work as follows.

o Decrypt the document € Zy. Now (z,z?) is the signed document. (Actually, theis
superfluous since it can be computed frofh)

o To verify a signed documeit, y) € Z3, simply use the encryption and test whether y°.

Actually, we can easily produce a document that is seemisiglyed by Alice:(y¢, y). However, we
only have very little control on the document= y¢ then. This seems not to be a really great threat
but still: If Mallory chooses some number (more or less atltan)» € Zy and makes Alice sign
r¢ -z, he obtaingy = r°?2?. From that he can easily extract sincer® = r and thus he has a
signature of a document Alice has never seen.

Further problems occur in connection with signing encrgiatecuments.

A countermeasure is to introduce a hash function{0,1}" — Zy. Instead of signing itself
we sign its hash valug(z). This also makes the signature typically much smaller sinost hash
values use only 160 to 320 bits regardless of the size of therdent:

o In order to signz Alice decrypts the document's hash valugr) € Zy. Now (z, h(z)?) is the
signed document.

o To verify a signed documeit:, y) € Z3, simply use the encryption and test whethér) =

Y.
Now, a forger must solve the equation
(4.2) h(z) =y® InZy

where he may use a signature for a different docuraént



Workshop e (Electronic Money) 15

One way of forging breaks the hash function and computés a giveny. To prevent forging
a signature we must now require that it is difficult to finavith a given hash valug®. Actually, it
must even be impaossible to find two documentg z’ with the same hash valugz) = h(z'). If
we are able to do the latter and maybe large partsarfidz’ even coincide, then we could let Alice
sign the innocuous document obtainingy = h(z)¢ and later we presert:, y) where Alice, now
president, admits that she forged the latest presideni@hsc

Another way of forging of course still consists in breakingAR Yet, we assume that this is
difficult. 1t does not really help us to use a random factorlto the message, since (hopefully) the
hash function is not multiplicative.

There may be other ways to solve (4.1). It would be nice if waldprove that any way of doing
so involves either breaking the hash functionr the RSA encryption. But no such proof is known
or even suspected.

4.2. *Rabin signatures. Rabin signatures are very similar to RSA signatures. But tisee = 2
and thus a correspondingloes not exist. Sometimes however there are ways to extraateroots
modulo some numbe¥. For example, ifV = p - ¢ and bothp andq are congruent t8 modulo4.
Theny = 2" isa square root af € Z, if one exists. [The square gfis 2" . Now suppose that
x = 22. Theny? = zPT! = 22 = x. Actually, we have eithey = z ory = —z.] Thus by Chinese
Remainder Theorem 3.1 you can extract square roots madydmvided you do know andg.

This system is nice since one can prove that forging a sigaalequally difficult as computing
the factorization ofV. But at the same time this featurempletely breakthe system by the following
chosen message attack: Suppose Mallory chooses some messagl obtains a signatuke Then
z2 = s2. By the Chinese Remainder Theorem 3.1 there are four sqoatg ofz2. And there is a
fifty percent chance that neither= s norz = —s. Then Mallory knowsN|(z — s)(z + s) but N
divides none of the factors. Thus déd, « — s) must be a proper factor d¥.

EXERCISE4.2 (Chosen-message attacks for Rabin signatuiEeg.evil grand vizier Jaffar wants to
find out the signature of the enchanting princess Jasmin! uSbe Rabin’s signature scheme and
gladly gives autographs to honest-looking strangers. fdéywaffar is only satisfied if he finds out
the prime factorg andq of Jasmin’s numbeN . Jaffar chooses a random numbercomputes:?
and asks Jasmin to sign the messagéor him.

(i) Suppose we have, s € 7 with 2? =y s? andxr #x +s. Show thatN dividesz? — s? but
neitherr — s norxz + s.

(ii) Deduce thaicd N,z — s) is a proper factor oN, that is, a factor that is neithémor N .

(iii) Compute the probability that he can find out the primetéasp andq this way.
Hint: Chinese Remainder Theorem.

(iv) How large is the probability that Jaffar finds out therpe factorg andq afterk iterations of
this strategy?

(v) Deduce:
THEOREM. Rabin’s signature scheme is completely broken by a chosssage attack.
Alas, Genie will have to come to the rescue of princess Jas@nimaybe Aladdin can help . ..

4.3. General EIGamal signatures. The much too nice properties of RSA ask for different signa-
ture schemes that do not allow for splitting off random fastas above. The following system gives
a different signature scheme.

o We fix some (cyclic) grous and a generatay where the discrete logarithm problem is diffi-
cult. LetL be the order of. Further fix an arbitrary ma@ — Z,, a — a. (For example, read
the bit representation of the group element as the bit reptason of an integer and reduce
that moduloL.)
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o Alice chooses a secret keye Z; and computeg = ¢g* € G as a public key.

o Sign an element: € Zj,, say an encoded message or a (cryptographically secuteyahge
of such:

Choosek € Z; and compute = g* € G. Now it is easy for Alice to find € Z;, such that
(4.3) yiab = g™ € G,

since this is equivalent to the equatief+ kb = m € Z, and the only real task is to invelt
in Zz,. Now, (a, b) is the signature fom.

o Verify a signed documeriin, a, b):
Verify the equation (4.3). Note that all necessary infoiiorato do that is publicly available!

Correctness: clear. Efficiency: fast. Security: Solvin@)4s probably difficult. All proposed
algorithms require finding some discrete logarithm. The sif the signature is quite large: An
elementinG and an element i, need almost twice as much space as the signed elemdhyou
choose’ as a subgroup af60-bit prime order ofZ,; with 1 024-bit primep then the signature needs
1184 bits for a160-bit element.

4.4. General Schnorr signatures. Schnorr invented a variation of the EIGamal signatures that
produces even smaller signatures.

ProTOCOL4.4. General Schnorr signature scheme.

1. Fix a primep so large that discrete logarithms are difficul#ip and a prime factog of p — 1 so
large that a birthday attack (Pollard rho) is infeasibleo@¥e an elementof orderq. (Choose
h € Z, arbitrary, letg be K"7 . If this turns out to be then retry.) LetQ): Z, — Z, map an
element ofZ,, to its smallest non-negative representative reduced madu(This map has no
nice structure, it is neither additive nor multiplicatiye.
More generally, fix a group! (instead ofZ,) and a generatoy of prime orderg. The discrete
logarithm problem in the groufl must be difficult, in particular the ordemust be large enough
to prevent a birthday attack (Pollard rho). Note that riapis the exponent group @ = (g).
Further fix amags — Z,, h — Q(h).

2. Alice chooses a secret keye Z, and computeg = ¢g” € G as a public key.

Sign an element € Zj:

3. Choosé: € Z,, letr beQ(g*) and solve

1 1

(4.5) Qg™ "y =

This is possible since (4.5) is implied by + zr = ks in Z,. (If Q: G — Z, is injective
[one-to-one], the two equations are even equivalent.) Naw,) is the signature fom.

Verify a signed documerttn, r, s):
4. Verify the equation (4.5). Note that all necessary infation to do that is publicly available!

For the digital signature scheme (DS$), = Z,, p is a 512- tol 024-bit prime, ¢ is a 160-
bit prime and@ is simply taking the smallest non-negative representatieelulog. Further, the
digital signature algorithm (DSA) always signs the secuashthalgorithm (SHA) hash value =
SHA1(messaggof the message.

To prevent some weak moduli the primes for DSS must be gestebgta given algorithm. There
is an algorithm, involving SHA again, that takes a random-hi@equencé and outputg, a certain
counterC andp satisfying the requirements above or it fails. Repeat itl itrgucceeds and retain
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S andC as a prove that the primes were generated as required. (8aei&c(1996), section 20.1,
page 489, for a complete description.)

Correctness: clear. Efficiency: fast. Space: 320 bits foB@Hit hash value. Security: Solving
(4.5) is probably difficult. All obvious algorithms requiselving some discrete logarithm problem
in H.

ExAMPLE 4.6. For DSA first you have to fix a primg(160 bit or so), sayy = 11. Then you need
another primep such thatg|(p — 1) (1024 bit or so), say = 67. Further we need an element of
order1l in Z,: take some random element, Say= 2 theng = 266/11 = 26 = 64 = —3is an
element of order (minimal repetition length). Finally, we need some map which maps powers
of g to elements 0%, this will be just taking the minimal non-negative repres¢ine inN_47 and
reducing it moduld 1. For example)(—3 mod67) = 64 modll = —2mod11. This is the general
setup, so we have

p=67,q=11,9 = —3.

Then Alice needs a key pair, say she choases4, theny = g* = (-3)* = 14,

To sign the message: = 3 Alice chooses at randorh = 5 and computes = Q(g*) =
Q((—3)°) = Q(—42) = Q(25) = 25 mod11 = 3. Now she must solve the key equation

—1 -1
Qg™ Ty =

for s. To do so she solves + zr = ksin Zy1, thatis,3+4-3 =5-s. Theresultiss = 3. Thus
the signed document {gn, r, s) = (3, 3, 3).

Bob verifies the key equation ! = 4 (in Z11!), ms™! = 1,7s7! =1, g'y! = (-3) - 14 =
—42 = 25, Q(25) = 3, and this is" so everything is fine. O

4.5. Attacks against the randomization k). Each signature requires a new valuekofIf Eve
ever recovers & that Alice used for signing, perhaps by exploiting some prtips of the pseudo
random number generator, then she can compute Alice’ prisgatr. Actually this secret key is only
protected by the secrecy of the second unknown in the equatie- xr = ks which implies (4.5).
If Eve ever gets two messages signed using the dathen she can recover [The two equations
mi1 + xr = ks andms + xr = ks, are a2 x 2 linear equation system ovér, with respect to the
indeterminates andk.]

4.6. *Subliminal channels. A signature is not supposed to carry any additional inforomat It
only links the given document to a certain secret. But thegensys of abusing signatures to send
information secretly. For example, a malicious agent mayrithute a program environment that
allows you to sign documents with your secret key but at tieeséime with each signature leaks
some bits of your secret key. Actually, you will not be abledtect that in the signatures, even if
you suspect such a fraud. The only way to prove this attackduoel to disassemble the program’s
code (provided it has not deleted its bad parts after comngldéis perfidious task). An agent might
also use this channel to send secret messages when nobokty ltei is distributing information at
all. This kind of trick is called a subliminal channel.

Schneier (1996) lists several:

o Any signature scheme with a random value allows to embed abftsin the signature by
choosing the random value until the signature has presthle with the wanted values.

o ElGamal: Alice to anybody knowing her secret key.

o DSA: Alice to anybody knowing her secret key.

o DSA: A single bit. Or some bits.

Using the secrek the signer can embed secret messages in her signaturessh®ayas fixed
some additional primedifferent fromp andq. With DSA, for example, she can chodssuch that
r is a quadratic residue moduifoor not (that is,r =; s for somes € N, or for nos € Ny,
respectively) depending on whether she wants to transindgraa0. By using several different such
extra primes even several bits (say up to ten or so) can bedsatle Similarly, Alice’ signature
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smart card could choogerandomly until some bits of equal some given values. The embedded
bits could be one-time pad encoded bits of her secret keyy tBelcard issuer would know of this
and could extract Alice’ key bits, it would not even be pobstio detect this leak. Since the card can
precalculaté: this would not even be noticeable by longer signing times.

If Alice conspires with Bob she can even transfer as manydsitthe signature through such a
channel. With ElIGamal, for example, she shares her secyetite Bob and simply uses the secret
valuek as the subliminal message. Knowing the secret key Bob caiveethe message. Nobody
else will even doubt that a message was sent to Bob.

All these subliminal channels can be foiled by restricting thoice of the random parameters.

5. Solutions for electronic money

Chaum. Brands. Further systems for additional propeitiedivisibility or smart card ‘agencies’.

5.1. Chaum’s system. See Schneier (1996), section 6.4, pages 139ff.

ProTOCoOL5.1. Chaum’s electronic cash.

1. Alice prepares 100 anonymous money orderd fag0 € each with a uniqueness string (that is,
a serial number). On each order she adds a list of 73 pairseqfitgl bit strings, so that xoring
a pair gives Alice’ identity information, her name and acebnumber, say. Alice commits to
each of these 146 bit strings. Alice blinds each order and$iilem to the bank.

2. The bank asks Alice to open all but one including all theatdg string pairs and checks whether
all data are as required. If so it signs the remaining ordadhl.

3. Now Alice has a valid coin.

For spending it to the merchant Martin, she hands him tire co

Martin verifies the bank’s signature. If it is wrong he &g to accept and calls the Police.
Then he chooses 73 random bits and asks Alice to open trer igght half of the identity pairs
accordingly.

7. Alice does so.

SIS

©

Martin takes the money to the bank.
9. The bank verifies all constraints:

o its signature,
o the uniqueness string,
o the identity strings.

If the signature is wrong the bank refuses and calls the @olic

If the uniqueness string is registered and the identitygtriare opened as in the earlier coin,
Martin tries to cheat.

If the uniqueness string is registered and the identitygsriare differently opened, the bank
reconstructs Alice’ identity information and calls the ieel

This system isanonymous the bank cannot identify Alice by the information she getsf the
merchant. And it isoffline It does not require an interaction with the bank during tagrpent.
There is a protection againdbuble spendinglf Alice spends a coin twice she is caught by the
identifier. If the bank detects a double spending it canmtjstish whether Martin or Alice tried to
cheat: If the bank receives a coin with the same uniquengsg $iut different identity strings then
Alice tried to cheat. If also the identity strings are equmrt Martin has to be blamed. Also Alice
cannot frame Martin since she cannot control how Martin slesdis challenge. Only an alliance of
Alice and Mallory, another merchant, may achieve this: ifilsly simply asks the same challenge as
Martin and he is faster to be at the bank then ... To prevestdisi kind of fraud the merchant can
be forced to use special challenges that depend on his aotooner and the present date and time.
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5.2. Chaum, Fiat & Naor (1989). Chaum’s original cut-and-choose variant has the major dis-
advantage that the probability of cheating by using a fakectlepe is still% if n envelopes are
used. Further, the last section does not yet tell us how te thid identity information in a practical
implementation such that Alice is really bound to it.

The following set of protocols gives an answer to these guest We assume that the bank has
published its public RSA keyV, 3) and a security paramete(specifying the number of ‘envelopes’
and ‘identity splits’ to use). For simplicity, lét be a multiple of4. And the bank has fixed two
collision-resistant functiong, g: Zy x Zy — Zy and such thay with any fixed first argument
gives a one-to-one (bijective) map. Further, Alice has eplethe account numberand obtained a
counterv that has to be advanced in every withdrawal.

PrROTOCOLS5.2.
1. Alice chooses;, b, ci,di,r; €r Zn for i € N. at random under condition that

(5.3) a; ® b = ul|(v +1).
Herexz & y means the binary XOR of the binary representations of thdlestaon-
negative integers that reducexd®r y. (Write x = (E].EN<“ o ] 3:]-2j> modN with
. o 2
x; € {0,1} such thattheintegeZKNd‘ N x;2’ isless thanV. Then user;®y; to
0g2

definex @y = Z].EN< gy 1 (x; ©y;)2?. To avoid difficulties with the allowed range

we might require that the topmost bit (the highest signifiddnof N) of a;, b; andu
is always zero.) Withu||(v + i) we mean the number with the binary representation
u - 2% 4 (v + i) supposing that we negd? bits for the counter. Alice computes

z; = g(ai, i),

(5.4) yi = g(bi, di),
B; := Tff(xla yl)
for each: and sends the envelope vectd?;) to the bank. (Bi)iengy,
2. Now the bank chooses a random suli3eff k£ /2 indices inN; and sends? to Alice. R

w

. Alice opens the envelopes chosenibyy sending as, bs, ¢;, di, 7:)ie r 10 the bank. (@i, ... )ier
4. The bank tests (5.3) and (5.4) foe R. If this turns out well she computes

o= T BO

i¢R

and sends to Alice. The bank charges Alice’s account ¥Gnd increments the

counterv by k. s
5. Alice can then easily unblind this signature and obtaihs= s/[],;ri. She re-

indexes the identitypair(su, bi, ci,d;) totheindices), . . ., k/2—1 such thatf (o, yo) <

flzi,1) < -+ < f(@r/2—1,Yx/2—1). Finally, Alice increments her copy of by k.
Now she has a coin

((a’i7 bi7 Ci, di)i€N<k/27 C)
which fulfills the condition that
ai @ bi = u||V (i),

xi = g(as, ),

(5.5) yi = g(bi, di),
Cc® = H f(@i, yi).
€N g /2

To withdraw a coin with invalid identity information Alice @uld have to send some wrotigy
to the bank. But if she does so in ondyof all her envelopes then the chance of not being caught is
(*%727)/ (i), which is at most1—e)*/2 < e~2<*. On the other hand to hide her identity in double
spending she must get a pair of challenges that differs amiyate proportion, thus the chance of
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getting a challenge that allows her to re-spend a coin is a;t(@(l/?*e)k. With k£ = 128 we get
the following probabilities:

e | Chance of forgery Chance for successful double spending

0 1 264
1/8 2717.54... 2748
1/4 2—39.55... 2_32
1/2 2—124.17... 1

To forge a coin without cheating the bank Alice would haveroduce such a set of information
fulfilling (5.5). If Alice can forge bank signatures that is problem, she just computes a vafid
Otherwise she must adapt the right hand side to give a culheankihown root. Say, as a particular
case, she chooses all b, by, o, dy in advance. Then the remaining task is to find these to give a
particular value forf (¢(ao, co), g(bo, do)). But that means that Alice has an efficient way to compute
preimages of that combination gfandg and therefore of . That would mean thaf is not one-way
and thus not collision-resistant.

A third possibility would be to withdraw a valid coin but latese different values for the coin
values that do not reveal the true identity but some garb&lire could do that if she knew collisions
for g. Suppose(z,y) = g(«’,y’) with x £ 2’ is one such collision. Then she usgs= z, ¢o = y
with the bank but when she spends the coin she wges =/, ¢ = y'. Yet, finding collisions fory
is supposed to be difficult. Of course, Alice has more roonvéosrations but no variation seems to
help her circumvent breaking f or RSA. Yet, we cannot prove that rigorously!

Now, let us see how to pay Martin:

ProOTOCOLS.6.

1. Alice sends the coin signatu€ééto Martin. C
2. Martin chooses some random bit string {0, 1}*/? and sends it to Alice. z
3. Alice computes her answer by revealing a half of each identity pair:
7 — (as,ciy yi) ?f zi =1,
(.Z‘i, bi, dl) if Z; = 0.
She send¥ to Martin. A

4. Martin computese; = g(ai,c;) ory; = g(bs,d;) according to the value of;. He then
checks the signatur€® = [] f(z;,y:) according to (5.5). If everything is OK, he
accepts the payment.

€N g /2

The protocol already guarantees that the equations (5.5) beuvalid. Otherwise Martin does
not accept the coin. Of course, Martin wants to deposit tlie &bthe bank which is simply done as
follows:

PrROTOCOLS.7.

1. Martin sends the entire payment transc((@tz, Z) to the bank.

2. The bank verifies that the coin is valid and then checks ldreghe coin has already been de-
posited by searching for a coin with the sa@ién her database. If she does not find the coin she
puts 10GE on Martin’s account and sends him a receipt.

If, however, she finds a coifC, z’, Z’) she detects a double spending. There are two cases:

o If z = 2’ andZ = Z’ then Martin tries to redeposit an already deposited coin.
o If z # 2/ then alsoZ # Z' and the bank knows a complete quadrufig b;, ¢;, d;) and
a; ® b; = ul[v’ reveals Alice’ identity. The bank calls the police.

The case: = 2’ andZ # Z’ is highly improbable. If transmission errors can be exctlithés
can only happen if Alice knows a collision fgr
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There are various possible scenarios of trying to cheat.g@ssible problem is that Alice coop-
erates with Mallory, another merchant. She tells him to usetid’s challenge and then Mallory goes
to the bank with the very same transcript as Martin. The bartkus that either Mallory or Martin
is lying but she cannot tell which one. And also she has no wayatch Alice. But this is no new
story to us: it can be prevented by using a pseudo-randortecdigak that depends on the merchant’s
account and date and time of the transaction. Then Mallamagsimply use the same challenge for
he would be easily spotted as the misbehaving merchant a&ud su

One further problem is that so far the bank can easily franigeAbr double spending. She can
simply perform all of Alice’ and Martin’s actions. This meathat the scheme cannot have any legal
significance and thus no bank will use the system as it waepted. To prevent that Alice simply
signs her identity in.. Instead of (5.3) Alice uses

a;i ® ¢; = ul[ g (u, s)][(v + 7).

Note that Alice must use a new random valydor each signature to prevent the bank from simply
copying her signed identity.

5.3. Brands (1999). The solution described in Brands (1999) is a system thataugiéferent sup-
posedly hard problem as the basis of & gystem. Brands has described several variants of this
system with different focuses. Apart from a system with &mproperties than the previous one
there are also solutions that incorporate a smart card astanded arm of the bank. The smart card
has to be asked upon any payment and can prevent double sgengriiori. But even if the smart
card’s secret is revealed to a malicious Alice she still b&fa¢e double spending detection as in the
previous system.

The basis for Brands’ system is a generalization of the deetaiscrete logarithm problem.
If you work in a group then exponentiation is easy to calaulatowever, finding an exponeat
satisfyingz® = y in the group may be difficult. An example for groups with supgdly difficult
discrete logarithm problem are the subgroupg pfgenerated by an element of ordewhere bottp
andq are prime and large enough. For example, takiag a 1024-bit prime angas a 160-bit prime
was considered to be safe a few years ago. Other groups \fitullidiscrete logarithm problem are
elliptic curves of appropriate size. (The number of bitsdgroint should be 160 to 240 bits.) The
generalization used here is called tepresentation problem

Suppose you are given several generajors. ., g, and somer € G.
Findey,...,e, € Neyg with

€1 €2

r=97'95...97.

In caser = 1 this is simply the discrete logarithm problem, so we onlyruse2 here. Clearly, if we
can solve the discrete logarithm problemdnthen we can solve this problem. The inverse is only
partially true. So assuming that this problem is difficultifittle more than assuming that finding
discrete logarithms is difficult.

If you want to know more about the details then read section Brands (1999). The basic
reasonings about how to detect double spending or to prénaming Alice or ... are similar than
the one before.

In view of the next system let us emphasize one more points 3ystem does not use cut-and-
choose to give the bank the necessary conviction that thedima has Alice’ identity embedded.
Instead a clever use of exponents and generators guarémées

5.4. Ferguson (1994b). This system is based on the difficulty of RSA and a discretaritigm

problem but it also uses some hash functions at sensiticepka (hopefully) increase the security.
Further, polynomial secret sharing is used in order to gegé¢he coin size without loss of security.
The important part here is Martin’s challenge size, it mustidrge enough to prevent repetitions.
The challenge size in Chauet al. (1989) wask/2 bits, so the size of the coin grows linearly with
the wanted challenge size. Here the challenge size depeylew the chosen group and is thus
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typically not much larger than with, saly,= 4. But let us first explain the polynomial secret sharing
and the system.

5.4.1. Polynomial secret sharing. Suppose there is some secrahat we want to give to a group
of people. Yet, the secret is very valuable and we do not aushgle person far enough to give
him the secret. Think of the access code of the central safebaink or the start code of nuclear
weapons. The solution is to distribute the secret: eacltopessly gets part of the secret. Now, we
know that to determine a polynomiglof degree less thak over some field® we need to knowk
pairs(z, f(x)). By interpolation we can then recovgrin particular, sayf(0). If we give one point
(z, f(x)),  # 0, to each person then at ledsbf them must come together to recover the secret
f(0) and thus to be able to open the safe or to start the missilewré-|1 shows a picture of a line
overFo57. Any two points determine the secret. But if we only know on@pthen any secret could
complete the picture. In Figure 5.2 we see a line dgg, the elements df,56 have been numbered
in some systematical way for that purpose. Again any twotsaletermine the line, one point could
go with any secret. Figure 5.3 shows cubic curves. Only if wevk at least four of its non-zero
points then we can recover the secret.

5.4.2. The system. Following the description of the author we also first desethe payment thus
specifying the form of the coins. For the payment processhea have to find a way of getting
the appropriate blind signatures from the bank. The basipsmntains an RSA signature key pair
of the bank with public key N, v). Additionally to the standard assumptions we require thiata
sufficiently large prime and that(/V') contains at least one large prime factor. Further some gizme
g1, 92, 93 € Zy, of large order (minimal repetition length) are fixed. To béeab find them the bank
should construct her primes ¢ such that she knows large prime factorgoef 1 andg — 1. Next we
need a suitable primesuch thatV | ¢ — 1 and elementés, hs € F,* of order N. Finally, the bank
chooses hash functiorfs: Zy — N, fo, f3: F; — N, andfs: No,, x N, — Z},. The bank
publishes the data

(NaUagla.92593at7h27h37f17f2;f37f4)-

Further Alice’ identity is coded in a valué € N_,. Note that we will do a lot of calculations in the
RSA domairZy, but some calculations also will take place in the figld
The coin consists of randomly chosen values, ¢ € Zj; from which anybody can compute

A= ag = /)gf(hé), C = (-g:{“(hé). Further a random parameterc N, and signatures

Sy = (ACK)/Y) andSy = (BCY)(1/7) are part of the coin.

fue) B

PrRoTOCOL5.8. Payment.

1. Alice hands ove(a, b, c) to Martin. (a,b,¢)
2. Martin chooses a random challenge N,,. x
3. Alice computes + 7v «— kx + U with » € N, and a signaturé? to A BC" by

R «— 875,C~" = (A*BC™)1/Y) She sendér, R) to Martin. (r,R)
4. Martin verifies that the signature is valid: all transetttiata are in the required domains

and

R
R’ = A*BC".
Note that he can do that.
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Figure 5.1: The linef: Fos; — Fos7, T — 1287 + 42 over the fieldF,5; carries the secret
f(0) = 42 and passes through zero’At= 84. The elements oFy5; are represented as integers
modulo257 (which is prime!).
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Figure 5.2: The |in@CZ Fosg — Fase, T +— (.237 + a3+ 22+ 1) T+ (.235 + a3+ a:) over the field
Fo56 carries the secret(0) = 2° + 2% + 2 = 2° + 23 4+ 2 = 42 and passes through zeroRE 84.
The elements df 954 are represented as polynomialsiof degree less thahoverF, = Z; modulo
28 + 2% + 2% 4+ 2 + 1 and identified with integers by ‘evaluating’ such a polynahaiver the integers
atr = 2.
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Figure 5.3: The cubic curvé: Foss — Foss, T +— (27 + 28 + 2% + 2 + 23 + 2 + 1) T3 +
(2" +2° +2+1)T?+ (2* + 22 + 2+ 1) T + (z ° + 23 + z) overFas6 on the left hand side and
f:Fosy — Fosp, T +— 20T3 + 42712 + (—60) T + 42 overFo57 on the right hand side each carry
the secreff (0) = 42. For our untrained eyes the nice structure of this curve isvisible but still:
any four points determine the entire polynomial and thustwet.

Depositing the coin is easy, too:

ProTOCOL5.9. Deposit.

1. Martin sends the entire transcript of the payment Prétoéoto the bank.
2. She then looks up the signature in her database.

o If she does not find it, Martin gets his money put on his accandta receipt.
o Otherwise, the bank detects a double spending just as irtlilee ystems:

— If the challenges: andz’ are also equal then Martin has tried to redeposit a coin.

— Otherwise the bank tries to reveal Alice’ identity. For ndwe bank knows =, kx+U
andr’ =, k2’ + U modulov which is just a linear system of equations foandU.
Now she can take Alice to court for double spending.

There are several points to be taken into account for thedwathal process. Of course the first
requirement is that the bank cannot link the withdrawal dreddeposit of a coin (unless a double
spending occurs). Further, it shall be guaranteed thatgrenpeters, b, c andk are chosen randomly.
Both parties, in particular the bank in our case, have to be #hat these parameters are not ‘made
up’. To do so Alice and the bank each choose a partasanda” of these parameters and at the
end they take the produat= a’a”’. Only both must make their choice independently whereas we
have no way of guaranteeing a parallel transmission of theewive shares. (Actually, this seems
very similar to ‘Coin flipping by phone’, Blum 1982.) To ackithis, Alice first chooses and then
transmits some informatioA which binds her to this value af. Then the bank choosed and
sends it to Alice. Actually, in our case the product must dsgyknown to Alice. To make sure that
Alice continues as desired, Alice sends something whichireg that she uses the bank’sin order
to give her the desired meaningful signature. Or the bamisar depends on the informatidrthat
binds Alice. Then the answer is only useful to Alice if shelssito her previously chosen valug

5.4.3. Randomized blind signatures. First we consider how to getrandomized blind signature
Randomized means that the bank will be sure that the usethptgawas indeed chosen at random.
Blind means, as usual, that the bank cannot link the finaladige to the transcript of the signature
protocol. And of course Alice should not be able to genenath s signature on her own (this makes
it a signature). Thus this scheme will be well suited for oeeds. Ferguson attributes it to Chaum
(1992). Additionally we use a one-way hash functionZy, — N.,.
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PrRoTOCOL5.10. Randomized blind signature.
1. Alice randomly chooses’, o € Zx ando € N.,. She computest — a’a’g’ and

sends that to the bank. A
2. The bank randomly choose$ € Zj and sends it to Alice. a”’
3. Alice computess < a'a” € Z% and an adjusting exponeatt ev < f(a) — o with

e € N, and sends to the bank e
4. The bank computéd — A - a” ¢ and sends Alice a signatufe«— A% of it. S

5. Alice unblinds the signature to obtaf «— Soflge Now she has a signature pair

(a, S) satisfying

(5.11) S L ag’@.

Before we discuss attacks let us have a short glance at thectoess. There is one complication
that we did not mention in advance. Actually, Alice must handre € N_,, instead ofe + éev in
order to keep her secrets protected. Unfortunately, it tsalowed to calculate modulo (or any
other number Alice knows of) in the exponentg@f She only knows thag has large order but she
has no idea which one. Thus she will obtain-th root ofag’ (*)~¢? instead of a-th root ofag’(®).
Luckily this is correctable since the deviation is-¢h power of a known value. Indeed, we have

S Sua—u ev
_Aa—v ev
—A I e  —v _ev
=4A-aga g

v,/ .0

=a%d'g? -a"a" g @
= ag’@.

—0

First, note the relations between the values in the tragpisc@learly, Step 4 in Protocol 5.10
implies

(5.12) S =A-a"g".

Everything else in the transcript is independent, as wesed shortly. Indeed, even if Alice follows
the protocol any combination of, o’ ande can occur: First choose any value farthen solve
e+ev = f(a) — o foro € N, ande, a = a’a” for a”, andA = a'd’g° for a.. (We do not care
for efficiency here!) Thus (5.12) is the only relation. Eacbtpcol transcript even occurs with the
same probability. The only choice is the choicexpfill other solutions are unique. Thus in order to
obtain a valid signature from the protocol Alice can chodsande but must then go along with”
andS as given by the bank. Though Alice can chookas av-th power of something she knows,
her major problem is that she does not knowkté root ofa” and thus cannot correct this factor to
her needs without breaking RSA.

What if the bank tries to trace Alice? Can she get any infoimnadn the pair(a, .S) that is
Alice’ signature at the end? No, she cannot. Indeed, eadhsaic occurs with the same probability
from the view of the bank. The bank knowfs a”, e andS. Suppose Alice get&:, S). Then there
is exactly one choice for Alice that can have produced thisamue: o € N, ande are unlquely
determined by +ev = f(a) -0, by S = Sa~1¢¢, anda’ by a = d’a”. The equatiod = a’a’¢®
is implied by (5.12):4 = SV - (@) lg=¢ = avSvg7 1@ ja" = aag/ (@ go=1(@) j¢" = ava/g°.

Let us see what happens if Alice tries to cheat. Clearly, shot solve (5.11) after fixing
a unless she breaks the bank’s signature which is assumeditddasible. But can she use the
signature generation with a more or less prescritizds already stated only (5.12) binds the values
of the transcript. Suppose she wants to get along with a pbestz. What would she have to do
in order to get a signature for it? To satisfy (5.12) she mabtesagf (@) = A - a”g¢ for e. She can
chooseA in a clever way, yet only before she knows. Writing e + év = f(a) — o the equation
a=A- a” g~?~¢v must be solved for. Actually no matter how she has chosdrthe task is to
compute a discrete logarithm. But of course the paramet#irbavadjusted such that computing a
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discrete logarithm with basgis not feasible. By trying several at random she might get control of
some bits of: but no more. Thus there seems at least to be no obvious wayliter t& cheat.

If Alice tries to use some more of the structure she mightdryge some multiple of a power of
(5.12) to obtain a valid signature on some expressipi®:

D§Ev _ DEE(G/,)E . geE

First note thatD can only help if Alice knows a-th root but that does not lead her far. To be helpful
she might try to adjust this such that

(ja//)E — agt7
t+eE = f(a)

with somet € N_,,. Alice can use the first equation only after she knaswhen A is already
fixed. So the obvious way to solve these equations is to chBaaedt and determine by the first
equation. The control over she can obtain this way depends on her ability of computisgrdte
logarithms with respect tg or Aa”. Finally, the second equation determiresiowever, that means
that A, E andt must be chosen befoeds transmitted. N

Note that computing a discrete logarithm with bake’ might be feasible! If the order ofla”
is smooth and can be determined efficiently then we can camjistrete logarithms efficiently and
thus find a ‘good’E. So we choose, computeE ande. The order of the grouffy, however is
unknown to Alice and infeasible to find (unless she breaks R$Ae bank could adjust” a little
to avoid very low order elements. Yet, this affects the distion of «”” and might not be desirable.
Probably, it is true anyway that most element&qdf are difficult discrete logarithm bases provided
() contains large prime factors.

A way to stop Alice from even trying the just described matagion is to change the scheme
a little. In the previous ‘attack’, it was essential thata®ican computéa”)”. If we replacea”
by he” then Alice cannot simply compute the correspondifig”)”) from h®”. Since we compute
a = a’a” in Zy the order ofh, must divideN. But we are not bound to the domains already in use
and simply choose a printesuch that. € I, of order NV exists, thatig = pN + 1 for somep € N.
Oncet is found any element € F; raised to the poweﬁ’;,—1 gives an element = 2~ of orderl,
p, ¢, or N. The bank can easily exclude the first three cases by chekkjad, h? # 1 andh? # 1.
A drawback of this is that Alice cannot verify that. She isyoable to check”Y = 1 andh # 1. But
this is not really severe because it is in the bank’s inteodsave an element of highest possible order
there. Of course we now have to modify the definition of thenifaaction, we need: F;* — N_,,.
In total we have the following

ProTOCOL5.13. Randomized blind signature without exponentialcitta
1. Alice randomly chooses’, o € Z% ando € N.,. She computesl — a’a’g” and

sends that to the bank. B A
2. The bank randomly choose$ € Z3,, computesh «— h*" and sends it to Alice. h
3. Alice computes an adjusting exponent ev «— f(7z“') — o with e € N.,, and sends

it to the bank. e
4. The bank computes — A- a” g¢ and sends Alice a signatué<— AYY of it along N

with a”. a’, s

5. Alice calculates: — a’a” and unblinds the signature to obtaih— Sa~'g°. Now
she has a signature pdir, S) satisfying

(5.14) SY L g’

OPENQUESTIONS.15. Could Alice in either variant obtain more signatures thas miumber of
times she executes the protocol?
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5.4.4. Withdrawal. For the withdrawal process we will use the previous sigreaicheme three
times in parallel. Actually, for signing we use the simple version and for signingndc we use
the one which is protected against the exponential attalok.fifst will be protected by an additional
factor derived from the other two. As in the above protocalie and the bank will each choose a
share of the three values. Yetwill be furthermore linked to the other two. This procedureuld
hand over three signatures to Alice. As we already saw inoeodt5.8 which defined the payment
from Alice to Martin, Alice needs signatures af3* and AC'V. Since we are using the RSA scheme
to compute signatures these two are merely combinatioriedhtree signatures t6, 5 and(C'.

The bank must be sure thitis used as specified since this is the identity coded intodire ¢t
will enable the bank to trace Alice in case of a double spandirhis will be guaranteed since the
bank puts together the second signature as onefdr.

Itis in Alice’ interest thatk is randomly chosen and only known to herself since this patam
protects her identity! If it were known to anyone else theterabnly one payment/ could be
computed. But also the bank shall be sure that this paransetbosen at random because otherwise
Alice could try to fit this parameter according to her needbud'the bank will only hand over a
signature toAX/¥ C'*" without any knowledge of’ but with almighty power ovek”. Using A/*'
(implicitly) is made possible by choosingas ak’-th power. Alice can later raise the result to the
k'-th power and thus giving her a signature/of '+ as desired.

One problem arises again several times: Alice has to cotinecexponents that shall be dealt
with only modulov. For example, this happens kdk”. The final exponent to be used must be
k = (K'k")remu. Since the difference is a multiple ofin some exponent Alice can correct that
even in thev-th root. As can be verified in the protocol the correctiéhgndes are eithei or —1.
But the corrections, ¢;, andk use the entire rangé.,.

ProTOCOL5.16. Withdrawal.

1. Alice chooses random share§ V', €r 7%, random blinding bases
a, 3,7 €Er Zy, and random bllndlng exponents/ © ER N<v She com-
putes the blinded candidatés— " «’ g7, B« B - gz,( — v gy o
and sends them to the bank. - A, B,C
2. The bank chooses her random shares”, "’ €r Z3, and sends”, hy «—
ny' hs — ks to Alice. a” ha, ha

3. Alice computes

b’

e2+€2v<—f2(E; y— T with es € Ny,
€3+é?3’l)<—f3(77:;(‘)—72 with es € N,.
and chooseg’ €r NZ,. After computinga « (a'a” f4(62,63))k, and

k™ € Ny, TeN such tha’k k= =1+ 1v, she computes

e1+év—k fi(a)—o with e; € Ny

Then she sends the exponehsts, ez, e3) to the bank. €1, €2, €3
4. The bank computes «— q" "fa(ez,e3)g5t, B U/)”962 C —Cc" 953,

Then the bank chooses her shafecr NZ, of k. She then computes the

signaturesS, — (17% )(/*) and, — (F?U)“/”) and sends them to

Alice. bk Sl 52
5. Alice puts everything together: she computes- 0’0", ¢ — /¢ in ZY,

andk 4 kv — E'E” with k € N.,,. Now she can compute

f@ g pgf2h) F3(h)

A —agy C' «— cgs

)

k! k
and unblind the signatures; <« (Sl( -1 f1> (flg?’) )

~ -~ ~ —~\U
gy MR and S, — S2( lg§2> (5—lg§<3> . She now has a coin
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(a,b,c, k,S1,S2) with the property
(5.17) Sy =ACk 8y = pov.

First we verify that this indeed fulfills the claimed equaisq5.17). What the bank obtains actually
is

With this information we can exploit the definitions:

. R N % k' " N v
e ((5 (7t (o)) ot
o R k/ A\ Y _ N\ k/k// N
Alk (((l_lg?) glfl(u)l) ((—' (7’—1953) ) (:v—k?)

and similarly

Thus the key equations (5.17) hold.

In order to prevent the bank from framing an innocent Alicedouble spending at some time
Alice must provide a signature for this identit§. If this is not the case not only Alice will not trust
the system but also the bank will not be able to prosecuteeAtic a potential double spending. No
court would blame Alice if sheanbe framed by the bank. Yet, we must somehow guarantee this in
the withdrawal process, see below. The first thought how fdément this is to maké& a signed
version of Alice’ identity. But then the bank cannot dirgatbntrol thatU has the correct form and
thus Ferguson suggests a different approach.

5.4.5. Summary. Ferguson (1994b) uses polynomial secret sharing to allomympassible queries.
To embed a polynomialx + U into the system we proceed like this: Three numhbers ¢ are cho-
sen at random by the bank and Alice. For the mutual secuiigyiniportant that each partner is sure
that these figures are indeed random. This is done by somgetimilar to ‘coin flipping by phone’.
Alice and the bank each choose a part of each number and ti@ actmber then is composed of
these two parts. Yet only Alice will know the outcome of theadam number. This makes the system
anonymous. From these numbers are derived three numbeérsC' with the help of some one-way
functions. This ensures that Alice has almost no influencéherspecific values of these three num-
bers. In the withdrawal process the bank sends Alice RSAasigies forAC'* and 3C'V. Here also

k must be a random quantity and again both must be sure of it.

To answer a query by Martin Alice shows a signatu to (AC*)*(BCY) = A* BO**+U_ She
can produce this new signature from the two she knows. Gledré must also hand over= kx+U
since Martin cannot compute this quantity. If the bank getssuch answers the bank can solve for
k andU and thus reveal Alice’ identity coded .

That is a very brief sketch of the system. There are some doatioins in the way the numbers
a, b, c andk are chosen and some technical details that are used to poer&in kinds of attacks.
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6. Further topics

Still there are completely different threats.

6.1. The perfect crime. Complete anonymity also has its drawbacks:

o Ed kidnaps a baby.

o He prepare30 000 money orders fot 000<€ each and blinds them.

o He sends them to the authorities with the threat to kill tHeyhanless the following instructions
are met: A bank signs all orders and the results are publisha@ehewspaper (or by any other
kind of broadcast).

o The authorities comply.

o Ed buys a newspaper, unblinds the orders and spends the cbhese is no way for the
authorities to trace the money to him.

o Ed frees the baby.

6.2. Further properties. Fairness, re-usability, ...

6.3. ‘Historical’ remarks. DigiCash(David Chaum), eCash/Cybercash(Hettinga), flaoZo my
knowledge no electronic cash system is used in practice.

6.4. Social aspects. Acceptance, necessity, environment.

6.5. Economical aspects. Transaction costs, existing concurrent paying systems.

7. Texts on electronic money

For the great congress several texts describing typicakysystem for electronic money have been
considered. Finally, those marked with a circlehave been used.

— Chaum (1985) (surface description using lots of pictogdams

o Chaum, Fiat & Naor (1989) (unconditionally untraceablefaymous electronic cash system
[DigiCash]; no proofs),

o Ferguson (1993, 1994b) (nicely described protocols innydome reasoning),
— Ferguson (1994a) (extensions to Ferguson (1993, 1994hji-spendable coins, observers),

— Brands (1993) (extensive paper containing Brands (19948%5), section 11, 12 describe
the basic system, sections 9, 10 are needed for detailiseé&t, 6, 8 concern the underlying
representation problem),

— Brands (1994b) (with observers, complete protocols),

— Brands (1994a) (with smart cards, coins and signatureseparated, uses Schnorr signatures,
very small memory requirements),

— Brands (1995) (off-line, no observer or smart card needsels $chnorr like signatures),

o Brands (1999), first four pages and section 4 (overviewlartiection 4 contains an exam-
ple system similar (or equal?) to Brands (1995), sectionsziilees preliminaries: modeling
electronic cash, authentication techniques, [conveatidynamic authentication; dynamic au-
thentication based on public key cryptography], sectiomw8lts on electronic cash techniques:
representing electronic cash, transferring electrorsb §mansferring register based electronic
cash; transferring electronic coins], when tamper-rasist is compromised [fraud detection;
fraud tracing; fraud liability; fraud containment], seituifor account holders [preventing loss,
preventing payment redirection, non-repudiation], prywaf payments [relaxed monitoring,
anonymous accounts and anonymous devices; blinding;lbme-slinding; guaranteeing your
own privacy; one-sided versus two-sided untraceability])
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— Medvinsky & Neuman (1993) (NetCash is a system to make varffiouns of electronic money
be exchangeable and acceptable via various channels),

— Frankel, Tsiounis & Yung (1996, 1998) (fair electronic cgsh

— Bellare, Garay, Jutla & Yung (1998a,b) (),

— Maitland & Boyd (2001) (use group signatures),

o Schneier (1996), §6.4 (describes Chaum'’s system, adv@gstep by step)
— Kou (2003), §88.3 (describes Brands’ system, probably Bsgh€95)),

— Kou (2003), §8.4 (one-response digital cash),

o Kou (2003), §8.5 (fair digital cash).
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