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Chapter 1

Algebraic tools

This chapter provides a short survey on algebraic tools that will be employed
throughtout the document. Many of the concepts treated here can be found
in any undergraduate book of algebra.
The chapter is structured as follows: section 1 gives basic material in Num-
ber theory. Section 2 is a collection of facts about the elementary structures
in abstract algebra which are: groups,rings and fields and finally polynomial
rings.

1.1 Number theory

1.1.1 The integers

The set of integers {...,−3,−2,−1, 0, 1, 2, 3, ...} is denoted by the symbol Z.

Definition 1. Let a and b be integers. Then a divides b (equivalentely: a
is a divisor of b, or a is a factor of b) if there exists an integer c such that
b = ac. If a divides b, then this is denoted by a | b.

Example 1. −3 | 18, 173 | 0,...

Fact 1. 1. a | a,

2. if a | b and b | c, then a | c,

3. if a | b and a | c then a | bx + cy ∀x, y ∈ Z,

4. if a | b and b | a then a = ±b

Definition 2. (Division algorithm for integers) If a and b are integers with
b ≥ 1, then ordinary long division of a and b yields two integers : q (the
quotient) and r (the remainder) such that

a = qb + r where 0 ≤ r < b
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Moreover, q and r are unique. The remainder of the division is denoted
amod b and the quotient is denoted a div b.

Example 2. a = 73, b = 17⇒ q = 4, r = 5

Definition 3. An integer c is a common divisor of a and b if c | a and c | b.

Definition 4. A non-negative integer d is the greatest common divisor of
integers a and b denoted d = gcd(a, b) if:

1. d is a common divisor of a and b and

2. whenever c | a and c | b, then c | d

Equivalently, gcd(a, b) is the largest positive integer that divides both a and
b with the exception that gcd(0, 0) = 0.

Example 3. The common divisors of 12 and 18 are {±1,±2,±3,±6} and
gcd(18, 12) = 6

Definition 5. A non negative integer m is the least common multiple of
integers a and b , denoted m = lcm(a, b) if:

1. a | m and b | m and

2. whenever a | c and b | c, then m | c

Equivalently, lcm(a, b) is the smallest non-negative integer divisble by both
a and b.

Example 4. lcm(12, 18) = 36

Definition 6. Two integers a and b are said to be relatively prime or co-
prime if gcd(a, b) = 1.

Definition 7. An integer p ≥ 2 is said to be prime if its only positive
divisors are 1 and p. Otherwise, p is called composite.

Fact 2. (Fundamental theorem of arithmetic) Every integer n ≥ 2 has a
factorization as a product of prime powers:

n = pe1

1 ...pek

k

where pi are distinct primes and ei are positive integers. Furthermore, the
factorization is unique.

Fact 3. if a = pe1

1 pe2

2 ...pek

k and pf1

1 pf2

2 ...pek

k then:

gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 ...p

min(ek ,fk)
k

lcm(a, b) = p
max(e1,f1)
1 p

max(e2,f2)
2 ...p

max(ek ,fk)
k
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Remark 1. The above definition implies that a.b = gcd(a, b).lcm(a, b)

Definition 8. For n ≥ 1, let φ(n) denote the number of integers in the
interval [1, n] which are relatively prime to n. The function φ(n) is called
the Euler Phi function (or the Euler totient function)

Fact 4. (Properties of Euler phi function)

1. If p is prime and e is a positive integer, then φ(pe) = pe − p(e−1).

2. The Euler phi function is multiplicative. That is, if gcd(m,n) = 1
then φ(mn) = φ(m).φ(n).

3. If n = pe1

1 pe2

2 ...pek

k is the prime factorization of n, then:

φ(n) = n(1− 1
p1

)(1− 1
p2

)...(1 − 1
pk

)

1.1.2 Algorithms in Z

Let a and b be non negative integers of size |a| and |b| respectively. We will
consider that |a|, |b| ≤ n, in other terms, their binary representation needs
at most n bits. The number of bit operations (or the complexity) of the
four basic integer operations of addition, substraction, multiplication and
division using the classical algorithms is summarized in the following table.

Operation Bit complexity

Addition a + b O(max(|a|, |b|)) = O(n)
Substraction a− b O(max(|a|, |b|)) = O(n)
Multiplication a.b O(|a|.|b|) = O(n2)
Division a = qb + r O(|q|.|b|) = O(n2)

The greatest common divisor of two integers a and b can be computed via
Fact 3. However, computing a gcd by first obtaining the prime factorization
of the given numbers does not result in an efficient algorithm, as the problem
of factoring integers appears to be difficult. The Euclidean algorithm is an
efficient algorithm for computing the greatest common divisor of two integers
that does not require the factorization of the integers. It is based on the
following fact:

Fact 5. If a and b are positive integers with a ≥ b, then gcd(a, b) =
gcd(b, a mod b)

Proof. Let a = qb + r be the euclidean division of a by b, then r ≡ a mod b.
We need to prove two things:

1. gcd(a, b) | gcd(b, a mod b): We have gcd(a, b) | a and gcd(a, b) | b, then
gcd(a, b) | bq and therefore gcd(a, b) | a − qb = r, by definition of the
gcd, this results in gcd(a, b) | gcd(a, r ≡ a mod b).
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2. gcd(b, a mod b) | gcd(a, b): We have gcd(b, r ≡ a mod b) | b and
gcd(b, r) | r, then gcd(b, r) | bq and therefore gcd(b, r) | bq + r = a,
finally by definition of the gcd, gcd(b, r) | gcd(a, b).

Thereby, gcd(a, b) = ±gcd(b, a mod b). As the gcds are, by definition, non-
negative integers, we conclude then that gcd(a, b) = gcd(b, a mod b).

The above fact leads to the following algorithm for computing the gcd
of two integers:

Algorithm 1. Euclidean Algorithm for computing the greatest com-
mon divisor of two integers
INPUT: two integers a and b with a ≥ b.
OUTPUT: the greatest common divisor of a and b.

1. while b 6= 0 do the following:

(a) Set r ← a mod b

(b) Set a← b

(c) Set b← r

2. return (a)

We remark that the euclidean algorithm has a complexity O(|b|.|b|.|q|)
(a = bq + r). If we consider that the given numbers have size less than n,
then the running time of the euclidean algorithm is O(n3). However, we can
notice that the bs are decreasing,this leads to a running time of = O(n2).

Example 5. (Euclidean algorithm) The following are the division steps of
algorithm 1 for computing gcd(4864, 3458) = 38:

4864 = 1.3458 + 1406

3458 = 2.1406 + 646

1406 = 2.646 + 114

646 = 5.114 + 76

114 = 1.76 + 38

76 = 2.38 + 0

The euclidean algorithm can be extended so that it does not only yield
the greatest common divisor of two integers a and b, but also integers x and
y satisfying ax+by = gcd(a, b). We first notice that the Euclidean algorithm
calculates a sequence defined by a two terms recurrence:
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a0 = a, a1 = b

an−1 = qnan + an+1

Where qn = ⌊(an−1

an
)⌋.

In other terms:
an+1 = −qnan + an−1 (1.1)

This leads to another version of the Euclidean algorithm which is as follows:

Algorithm 2. Euclidean Algorithm (2)
INPUT: two integers a and b with a ≥ b.
OUTPUT: the greatest common divisor of a and b.

1. Set a0 ← a, a1 ← b, i← 1.

2. While ai 6= 0 do the following:

(a) Set ai+1 ← ai−1 mod ai

(b) Set i← i + 1

3. return (ai−1)

Now, if we put:

an = axn + byn

The sequences xn and yn satisfy the same equation 1.1.(xn+1 = −qnxn +
xn−1) and (yn+1 = −qnyn + yn−1), where qn = ⌊(an−1

an
)⌋. This leads to the

following algorithm:

Algorithm 3. Extended Euclidean Algorithm
INPUT: two integers a and b with a ≥ b.
OUTPUT: gcd(a, b) and two integers x and y, such that a.x+b.y = gcd(a, b).

1. Set:

(a) a0 ← a, a1 ← b.

(b) x0 ← 1, x1 ← 0.

(c) y0 ← 0, y1 ← 1.

(d) i← 1

2. While ai 6= 0 Set:

(a) qi = ⌊(ai−1

ai
)⌋

(b) ai+1 ← ai−1 − qiai

(c) xi+1 ← xi−1 − qixi

(d) yi+1 ← yi−1 − qiyi
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(e) i← i + 1

3. return (ai−1, xi−1, yi−1)

Example 6. 1. a0 = 4864, a1 = 3458, x0 = 1, x1 = 0, y0 = 0,y1 = 1,
i = 1.

2. the loop:

(a) step 1: q1 = 1, a2 = 1406, x2 = 1, y2 = −1, i = 2 (1406 =
(1).4864 + (−1).3458)

(b) step 2: q2 = 2, a3 = 646, x3 = −2, y3 = 3 , i = 3 (646 =
(−2).4864 + (3).3458)

(c) step 3: q3 = 2, a4 = 114, x4 = 5, y4 = −7 , i = 4 (114 =
(5).4864 + (−7).3458)

(d) step 4: q4 = 5, a5 = 76, x5 = −27, y5 = 38, i = 5 (76 =
(−27).4864 + (38).3458)

(e) step 5: q5 = 1, a6 = 38, x6 = 32, y6 = −45, i = 6 (38 =
(32).4864 + (−45).3458)

(f) step 6: q6 = 2, a7 = 0, x7 = −91, y7 = 128 , i = 7 (0 =
(−91).4864 + (128).3458)

3. return (a6 = 38, x6 = 32, y6 = −45)

1.1.3 The integers modulo n

Let n be a positive integer.

Definition 9. If a and b are integers, then a is said to be congruent to b
modulo n, written a ≡ (mod n), if n divides (a−b). The integer n is called
the modulus of the congruence.

Example 7. 1. 24 ≡ 9 (mod 5) since 24− 9 = 3.5

2. −11 ≡ 17 (mod 7) since −11− 17 = −4.7

Fact 6. (properties of congruences) For all a, a1, b, b1, c ∈ Z, the follow-
ing are true:

1. a ≡ b (mod n) if and only if a and b leave the same remainder when
divided by n.

2. (reflexivity) a ≡ a (mod n)

3. (symmetry) if a ≡ b (mod n) then b ≡ a (mod n)

4. (transitivity) if a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n)
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5. if a ≡ a1 (mod n) and b ≡ b1 (mod n), then a + b ≡ a1 + b1 (mod n)
and ab ≡ a1b1 (mod n).

The equivalence class of an integer a, denoted cl(a), is the set of all
integers congruent to a modulo n. From properties 2, 3 and 4, it can be
seen that for a fixed n, the relation of congruence modulo n partitions Z

into equivalence classes. In fact, for all i ∈ Z, a ∈ cl(a) (reflexivity) thus
Z =

⋃
i∈Z

cl(i). From the other hand, if x ∈ cl(a) ∩ cl(b), then a ∈ cl(b)
(symmetry + transitivity), it follows by the same properties that cl(a) =
cl(b), which proves that the equivalence classes are disjoint.
Now if a = qn + r, where 0 ≤ r < n, then a ≡ r (mod n). Hence, each
integer a is congruent modulo n to a unique integer between 0 and n − 1.
Thus a and r are in the same equivalence class, and so r may simply be used
to represent this equivalence class.

Definition 10. The integers modulo n, denoted Zn, is the set of (equiva-
lence classes of) integers {0, 1, ...n − 1}. Addition, substraction and multi-
plication in Zn are performed modulo n.

Example 8. Z2 = {0, 1}. In Z2, 1 + 1 = 0, since 1 + 1 = 2 = 0 (mod 2).
Similarly 1.1 = 1 in Z2. It is obvious that the relation congruent modulo
2 partitions Z into two dsjoints sets, the set of integers congruent to 1
modulo 2 , and the set of integers congruent to 0 modulo 2, in other terms,
it partions Z into the set of odd integers and the set of even integers.

Definition 11. Let a ∈ Zn. The multiplicative inverse of a (mod n) is an
integer x ∈ Zn such that ax = 1 (mod n). If such inverse exists, it is unique
and is denoted a−1.

Fact 7. a is inversible if and only if gcd(a, n) = 1. Moreover, this inverse
can be efficientely computed using the Extended Euclidean Algorithm.

Proof. Extended Euclidean Algorithm.

Finally, we end this section about integers with a theorem of great im-
portance: The Chinese Remainder Theorem CRT.

Theorem 1. (Chinese remainder theorem, CRT) If the integers n1, n2, .., nk

are pairwise relatively prime, then the system of simultaneous congruences :

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

.

.

.

x ≡ ak (mod nk)

has a unique solution modulo n = n1n2...nk.
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1.2 Abstract Algebra

1.2.1 Groups

Definition 12. A group (G, ∗) consists of a set G with a binary operation
satisfying:

1. The group operation is associative. That is a ∗ (b ∗ c) = (a ∗ b) ∗ c for
all a, b, c ∈ G.

2. There is an element 1 ∈ G, called the identity element, such that
a ∗ 1 = 1 ∗ a = a for all a ∈ G.

3. For each a ∈ G there exits an element a−1 ∈ G, inverse of a, such that
a ∗ a−1 = 1
A group G is abelian (or commutative) if furthermore,

4. a ∗ b = b ∗ a for all a, b ∈ G.

Example 9. 1. (Z,+), (Zn,+) (where n is a positive integer), (R∗, .),...

2. The multiplicative group of Zn:

Z∗
n = {a ∈ Zn/gcd(a, n) = 1}

The group operation is of course the multiplication modulo n, wich is
associative, the identity element is 1 and every element has an inverse
due to fact 7.

Definition 13. A group G is called a finite group if the set G is finite. The
number of elements in a finite group is called its order.

Example 10. 1. (Zn,+) is a finite group of order n.

2. (Z∗
n, .) is a finite group of order φ(n).

Definition 14. A non-empty subset H of a group G is a subgroup of G if
H is itself a group with respect to the operation of G.

Example 11. (Z,+) is a subgroup of (Q,+) which is itself a subgroup of
(R,+)

Definition 15. A group G is cyclic if there is an element α ∈ G such that
for each b ∈ G, there is an integer i with b = αi. Such element α is called a
generator of G.

Fact 8. If G is a group and a ∈ G, then the set of all powers of a forms
a cyclic subgroup of G, called the subgroup generated by a, and denoted by
< a >
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Definition 16. Let G be a group and a ∈ G. The order of a is defined to
be the least positive integer t such that at = 1, provided that such integer
exists. If such a t does not exist, then the order of a is defined to be ∞

Fact 9. Let G be a group and a ∈ G. The order of the group generated by
a, < a > is exactely the order of the element a.

Fact 10. (Lagrange’s theorem) If G is a finite group and H is a subgroup
of G, then ord(H) | ord(G). Hence, if a ∈ G, the order of a divides ord(G).

Fact 11. Let (G, .) be a finite group. Then ∀a ∈ G, aord(G) = 1, where 1 is
the identity element in G.

Before ending this paragraph about groups, it is important to exhibit
an important algorithm for exponentiation in multiplicative groups. Recall
that in the Diffie-Hellman key exchange, we stated that, in a multiplicative
group, exponentiation is easy, but we did not give an algorithmic solution
to it. Actually, if we perform the exponentiation by successive multiplica-
tions, it results in a very inefficient algorithm (whose running time depends
exponentially on the exponent). However, if we use the following remark:

g
Pk

i=0
ti2i

=
∏k

i=0 gti2i

= (g20

)t0(g21

)t1 ...(g2k

)tk

we will have an efficient algorithm running in a polynomial time.

Algorithm 4. (Square and multiply algorithm)
INPUT: g ∈ (G, .), where G is a multiplicative group whose identity element
is denoted 1, and t =

∑k
i=0 ti2

i, an integer (t ≤ n) given by its binary
representation.
OUTPUT: gt

1. Set b← 1, if t = 0 then return (b)

2. Set B ← g

3. If t0 = 1 then set b← g

4. For i from 1 to k do the following:

(a) Set B ← B2

(b) If ti = 1 then set b← b.B

5. return (b)

The above algorith has complexity O(k.multG), where multG is the com-
plexity of multiplying two elements in the group G.
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1.2.2 Rings and Fields

Definition 17. A ring (R,+, .) consists of a set R with two binary oper-
ations denoted + (addition) and . (multiplication) satisfying the following
axioms:

1. (R,+) is an abelian group with identity denoted 0.

2. The operation . is associative. That is a.(b.c) = (a.b).c = a.b.c for all
a, b, c ∈ R

3. There is a multiplicative identity denoted 1, with 1 6= 0, such that
1.a = a.1 = a for all a ∈ R

4. The operation . is distributive over +. That is, a.(b+c) = (a.b)+(a.c)
and (b + c).a = (b.a) + (c.a) for all a, b, c ∈ R

The ring is a commutative ring if a.b = b.a for all a, b ∈ R

Example 12. 1. The set of integers Z with the usual operations of ad-
dition and multiplication is a commutative ring.

2. the set Zn with addition and multiplication performed modulo n is a
commutative ring.

Definition 18. A set I is called an ideal of a ring (R,+, .) if:

1. I is a subset of R

2. ∀a, b ∈ I a + b ∈ I

3. ∀a ∈ I, r ∈ R a.r ∈ I

Example 13. 1. The set {0} is an ideal of (Z,+, .)

2. The set of even numbers, denoted 2Z, is an ideal of (Z,+, .)

3. In general, the set of multiples of any integer a, denoted aZ, is an ideal
of (Z,+, .).

Fact 12. The ideals of (Z,+, .) are aZ where a is an integer.

Proof. 1. aZ is clearly an ideal of (Z,+, .), for all a ∈ Z.

2. Let I be an ideal of (Z,+, .) and let a = min(I ∩ N∗). If x ∈ I,
then x = qa + r, where 0 ≤ r < a. a ∈ I, then −qa ∈ I, hence
r = x − qa ∈ I. Since a = min(I ∩ N∗), then r = 0 and therefore
x = qa, in other terms x ∈ aZ. Finally I ⊂ aZ. The other inclusion is
obvious by definition of an ideal.
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This motivates the following definition:

Definition 19. A ring is called principal if all its ideals can be generated
by a unique element.

In this way, we call Z a principal ring.

Definition 20. A field F is a commutative ring in which all non-zero el-
ements have multiplicative inverses or equivalentely, F ∗, which denotes the
set F without the zero element, is a group for the multiplication.

Fact 13. For a prime integer p, Zp is a field.

1.2.3 Polynomial rings

Definition 21. Let p be a prime integer. Zp[x] denotes the set of polyno-
mials whose coefficients are in Zp.

In the rest of this paragraph, f(x) will denote a polynomial of Zp[x] of
degree n ≥ 1.

Fact 14. (Zp[x],+, .) is a commutative ring for the usual addition and mul-
tiplication of polynomials

Definition 22. Let f(x), g(x) and h(x) be elements of Zp[x], where deg(f) =
n ≥ 1.

1. f(x) is said to divide g(x) (and we denote f(x) | g(x)) if there exists
a polynomial q(x) ∈ Zp[x] such that:

g(x) = q(x)f(x)

2. g(x) is said to be congruent to h(x) modulo f(x), and we denote:

g(x) ≡ h(x) (mod f(x))

if

f(x) | (g(x) − h(x))

Now, let’s consider the ring of polynomials modulo f(x) denoted Zp[x]/f(x).
The construction is the same as the construction of Zn from Z.
If deg(f) = n and if we divide g(x) by f(x), we get q(x) and r(x) such that

g(x) = q(x)f(x) + r(x)

where deg(r(x)) < n.
We get then to the important result: every polynomial in Zp[x] is congruent
(modulo f(x)) to a unique polynomial in Zp[x] of degree at most n− 1.
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Definition 23. Zp[x]/f(x) is the set of polynomials of Zp[x] of degree at
most n− 1

Fact 15. (Zp[x]/f(x),+, .), where + and . denote respectively addition and
multiplication of polynomials in Zp[x] followed by a reduction modulo f(x),
is a ring

Definition 24. Let f(x) be a polynomial in Zp[x]. f(x) is said to be ir-
reducible if there exists no polynomials f1(x) and f2(x) in Zp[x] such that
:

f(x) = f1(x)f2(x)

with def(f1) > 0 and deg(f2) > 0

Fact 16. Zp[x]/f(x), where f(x) is irreducible, is a field and the order
of (Zp[x]/f(x))∗ (seen as a group whose operation is the multiplication of
polynomials in Zp[x], followed by a reduction modulo f(x))is pn − 1

Proof. • Extended Euclidean Algorithm for polynomials.

• The set of polynomials, whose coefficients are in Zp, of degree at most
n− 1 contains pn elements, if we discard the zero element, then there
are exactly pn − 1 elements.

Before going further in this section, it is convinient to note the symmetry
between arithmetic on integers and arithmetic on polynomials. We sum up
the basic similarities in the following table:

Integers Polynomials

Z Zp[x], where p is prime
Zn Zp[x]/f(x)

prime modulus n irreducible modulus f(x)
ideals are aZ ideals are b(x)Zp[x]

Example 14. In this example, we construct the field of 8 = 23 elements.
We can do it by looking for an irreducible polynomial of degree 3 in Z2[x], for
example f(x) = x3 +x+1. The elements of Z2[x] are: 0, 1, x, x+1, x2, x2 +
1, x2 + x, x2 + x + 1.

• addition: x2 + (x2 + x + 1) = 2.x2 + x + 1 = x + 1 (mod (x3 + x+ 1)).
(the coefficients of the polynomials are in {0, 1})

• multiplication: (x2 + 1)(x2 + x + 1) = x4 + x3 + x + 1 = (x + 1)(x3 +
x + 1) + x2 + x = x2 + x (mod (x3 + x + 1)).

• the order of (Z2[x]/f(x))∗ is 7 = 23 − 1
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Definition 25. f(x) is said to be a primitive polynomial if x is a generator
of the multiplicative group (Zp[x]/f(x))∗

Fact 17. In the group (Zp[x]/f(x))∗, ord(x) | (pn− 1), with equality if f(x)
is a primitive polynomial.

Proof. Lagrange theorem plus the above definition

In the above example, the polynomial f(x) = x3 + x + 1 is a primitive
polynomial, one can check easily that all the elements of (Z2[x]/f(x))∗ can
be obtained by successive powers of x.
Finally, there is one more concept needed in the next chapter which is the
order of a polynomial.

Definition 26. Let f(x) ∈ Zp[x] be a polynomial such that f(0) 6= 0. We
define the order of f , e, as the least positive integer such that f(x) | xe− 1.
Equivalentely, such that xe ≡ 1 (mod f(x)).

Remark 2. In case the polynomial f(x) is irreducible, the order of f(x)
and the order of the polynomial x in the multiplicative group (Zp[x]/f(x))∗

coincide.
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Chapter 2

Linearly recurrent sequences

Sequences whose terms depend in a simple manner on their predecessors are
of great importance for a variety of applications. Such sequences are easy to
generate by recursive procedures, which is certainly advatageous from the
computational viewpoint. In this chapter, we are particularly interested in
the case where the terms depend linearly on a fixed number of predecessors,
resulting in a so-called linearly recurrent sequences. Such sequences are used
in many applications, for instance in stream ciphers as we will see in later
chapters.
In section 1, we define what a linearly recurrent sequence is and discuss
some of its basic periodicity properties. Section 2 introduces the concept of
the minimal polynomial of a linearly recurrent sequence, further periodic-
ity properties are also treated in this way. Section 3 is of both theoretical
and practical interest, in fact, it shows how to implement the generation of
linearly recurrent sequences on special switching circuits called Linear Feed-
back Shift Registers or LFSRs, and establishes then the interface between
mathematics and electrical engineering. The last section is dedicated to the
summary of the already stated results.
Last but not least, the content of this chapter is freely inspired from the
book of von zur Gathen and Gerhard [GG03] as well as the book of Lidl and
Niederreiter [LN86].

2.1 Introduction

2.1.1 Basic definitions

Let F be a field. Then F N is the (infinite-dimentional) field of infinite
sequences (si)i∈N, with all si ∈ F .

Definition 27. A sequence a = (si)i∈N ∈ FN is linearly recurrent (over
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F) if there exist L ∈ N and c0, ..., cL ∈ F with cL 6= 0 1 such that
∑

0≤j≤L

cjsn+j = cLsn+L + ... + c1sn+1 + c0sn = 0 (2.1)

for all n ∈ N.

1. L is called the order of the sequence.

2. The row vector (sn, sn+1, ..., sn+L−1) is referred to as the nth state vec-
tor of the linear recurring sequence.In particualr, the vector (s0, s0+1, ..., s0+L−1)
denotes the initial state vector.2

3. The polynomial c =
∑

0≤j≤L cjx
j ∈ F [x] of degree L, which depends

only on the coefficients of the linear recurrence relation, is called a
characteristic (or annihilating) polynomial of a.

Example 15. 1. F = R, sn = 0 for all n ∈ N. This sequence is linearly
recurrent of order 0, and any nonzero polynomial f is a characteristic
polynomial.

2. F = Q, s0 = 0, s1 = 1, sn+2 = sn+1 + si for all n ≥ 0. Then
s = (sn)n≥0 is the Fibonacci sequence,which is linearly recurrent of
order 2 having (0, 1) as an initial state vector and c = x2 − x− 1 is a
characteristic polynomial of s.

2.1.2 Periodicity properties

So far, we gave a general definition on what a lineraly recurrent sequence
is. Now, and in the rest of this document, we will consider a special cate-
gory of linearly recurrent sequences that is linearly recurrent sequences over
finite fields3. Such sequences have the characteristic feature that is, after
a possible irregular behavior in the beginning, the sequences are periodic.
This paragraph will mention some basic properties about the periodicity of
such sequences. Before anouncing these properties, we establish first the
necessary terminology for periodic or ultimately periodic sequences.

Definition 28. Let S be an arbitrary nonempty set, and let s0, s1, ... be a
sequence of elements of S. If there exist integers T > 0 and n0 ≥ 0 such
that sn+T = sn for all n ≥ n0. Then the sequence is said to be ultimately
periodic and T is called a period of the sequence. The smallest period is
called least period of the sequence.

1In the rest of the document, we will consider that this condition is satisfied automat-
ically if the given linearly recurrent sequence is of order L

2this definition will be justified in section 5
3All linearly recurrent sequence that will be considered in the rest of this document

are assumed to take values in Fq,(The field of q elements) unless an explicit definition of
the field is given
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Lemma 1. Every period of an ultimately periodic sequence is divisible by
the least period.

Proof. Let T be an arbitrary period of the ultimately periodic sequence
s0, s1, ... and let T1 be its least period, so we have sn+T = sn for all n ≥ n0

and sn+T1
= sn for all n ≥ n1. We could write T = qT1+r where 0 < r < T1.

Then for all n ≥ max(n0, n1) we get:

sn = sn+T = sn+qT1+r = sn+(q−1)T1+r = ... = sn+r

and so r is a period of the sequence, which contradicts with the definition
of the least period.

Definition 29. An ultimately periodic sequence s0, s1, ... with least period
T is called periodic if sn+r = sn holds for all n = 0, 1, ...

The follwing condition, which is sometimes found in the literature, is
equivalent to the definition of a periodic sequence.

Lemma 2. The sequence s0, s1, ... is periodic if and only if there exists an
integer T > 0 such that sn+T = sn for all n = 0, 1, ...

Proof. The necessity of the condition is obvious. Conversely, if the condition
is satisfied, then the sequence is ultimately periodic and has a least period
T1. Therefore, with a suitable n0 we have sn+T1

= sn for all n ≥ n0. Now
let n be an arbitrary integer, and m an integer such that m ≡ n mod T .
Then, sn+T1

= sm+T1
= sm = sn, which shows that the sequence is periodic

in the sense of Definition29.

Remark 3. If s0, s1, ... is ultimately periodic with least periodic T , then the
least nonnegative integer n0 such that sn+T = sn for all n ≥ n0 is called the
preperiod. The sequence is periodic precisely if the preperiod is 0.

Now, we come back to linearly recurrent sequences and give the basic
results concerning the periodic behavior of such sequences.

Theorem 2. Let Fq be the finite field of q elements and k a positive integer.
Then every Lth-order linearly recurrent sequence in Fq is ultimately periodic
with least period satisfying T ≤ qL − 1

Proof. We note that there are exactely qL−1 nonzero4 distinct L-tuples of
elements of Fq. Therefore by considering the state vectors sn, 0 ≤ n ≤ qL,
of a given Lth-order linear recurring sequence in Fq, it follows that si = sj

for some i and j with 0 ≤ i < j < qL. Using the linear recurrence relation
and the induction, we arrive at sn+j−i = sn for all n ≥ i, which shows that
the linear recurring sequence itself is ultimately periodic with least period
T ≤ j − i ≤ qL − 1.

4We discard the zero tuple because the result is the zero sequence which is obviously
periodic of least period 1
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An important sufficient condition for the periodicity of a linearly recur-
rent sequence is provided by the following result.

Theorem 3. If s0, s1, ... is a linearly recurrent sequence in a finite field
satisfying the linear recurrence relation 2.1 and if the coefficient c0 is non
zero, then the sequence s0, s1, ... is periodic

Proof. According to Theorem 2, the given sequence is ultimately periodic.
Let T be its least period and n0 its preperiod, then sn+T = sn for all
n ≥ n0. Suppose we had n0 > 0. from the linear recurrence relation with
n = n0 + T − 1 and the fact that c0 6= 0, we obtain:

sn0−1+T = −c−1
0 (cLsn0+L−1+T + cL−1sn0+L−2+T + ... + a1sn0+T )

= −c−1
0 (cLsn0+L−1 − cL−1sn0+L−1 + ... + a1sn0

)

We find the same expression for sn0−1, it follows then that sn0−1+T = sn0−1.
This is a contradiction with the definition of the preperiod.

2.2 The minimal polynomial

So far, we saw that linearly recurrent sequences are periodic or ultimately
periodic. In case they are periodic of period T , the polynomial xT − 1
can be viewed as a characteristic polynomial of the given sequence. This
motivates the following questions, what are the characteristic polynomials
of a given linearly recurrent sequence? what is the relationship between
these characteristic polynomials? how can the choice of the characteristic
polynomial impact the predictability of a given sequence?
This section tries to answer such questions by defining a special characteristic
polynomial called the minimal polynomial which is of a crucial importance
in determining the predictability of the given linearly recurrent sequence.

2.2.1 Multiplication by polynomials

At this stage, it is convinient to define the multiplication of sequences in or-
der to be able to approach linearly recurrent sequences from an ideal theory
viewpoint.
Let F be a field. Then F N is the (infinite-dimentional) field of infnite se-
quences (sn)n∈N, with all sn ∈ F .

Definition 30. Let f =
∑

0≤j≤L fjx
j be a polynomial in F [x] of degree L

and s = (sn)n∈N a sequence in F N. The multiplication of the sequence s by
the polynomial f is set as follows:

f • s = (
∑

0≤j≤L fjsn+j)n∈N ∈ FN

The constants f ∈ F act on sequences in the usual way, and the indert-
erminate x acts as a shift operator:

18



x • s = (sn+1)n∈N.

Example 16. 1. s = (0)n∈N = 0 is the zero sequence. Then f • s = 0 is
again the zero sequence5 for all f ∈ F [x].

2. f is the zero polynomial. Then f • s = 0 for all s ∈ F N.

3. f = 1. Then f • s = s for all s ∈ F N.

4. s is the Fibonacci sequence and f = x2 − x− 1. Then f • s = (−sn −
sn+1 − sn+2)n∈N = (0)n∈N.

We notice that the operation • has the following properties:

f • (s + t) = f • s + f • t (2.2)

f • 0 = 0 (2.3)

(f + g) • s = f • s + g • s (2.4)

(fg) • s = f • (g • s) = g • (f • s) (2.5)

0 • s = 0 (2.6)

1 • s = s (2.7)

for all f, g ∈ F [x] and s, t ∈ F N. The proof follows from the simple applica-
tion of the definition.
Now, let’s come back to the examples mentionned above. The last example
leads to a reformulation of the property of being a characteristic polynomial
in terms of the operation •: c ∈ F [x] is a characteristic polynomial of s ∈ F N

if and only if c•s = 0. Using the above properties, we can state that the set
of all characteristic polynomials of a sequence s ∈ F N, together with the zero
polynomial, is an ideal in F [x]: if f, g are both characteristic polynomials or
zero, then so is f + g, and if r ∈ F [x] is arbitrary, then rc is either zero or
a characteristic polynomial, by (2.3),(2.4) and (2.5). This ideal is called the
annihilator of s and denoted by Ann(s). Since F [x] is a principal ring, then
either Ann(s) = {0} or there is a unique monic polynomial m ∈ Ann(s) of
least degree such that < m >= {rm : r ∈ F [x]} = Ann(s). This polynomial
is called the minimal polynomial of s and divides any other characteristic
polynomial of s. We denote it by ms. If s is not linearly recurrent, then
Ann(s) = {0}, and we set ms = 0. The degree of ms is called the recursion

order of s. To sum up, we have the following equivalences for f ∈ F [x] and
s ∈ F N :

c = 0 or c is a characteristic polynomial of s ⇔ c • s = 0

⇔ c ∈ Ann(a) ⇔ ms|c
5the zero sequence will be denoted in this document by 0
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s ∈ F N is linearly recurrent ⇔ ∃c ∈ F [x]\{0} : c • s = 0

⇔ Ann(s) 6= {0} ⇔ ma 6= 0

Example 17. 1. Any polynomial annihilates the zero sequence, by (2.3).
Thus Ann(0) = F [x] and m0 = 1.

2. The minimal polynomial of the Fibonacci sequence is ms = x2−x− 1.
This is because the polynomial is irreducible over Q (its roots (1±

√
5)/2

are irrational), and hence no proper divisor of ms annihilates s.

The above definition of the minimal polynomial gives rise to a precise de-
scription of the least period in the special case where the minimal polynomial
is irreducible.

Theorem 4. Let s = (si)iN be a linearly recurrent sequence over Fq and
c(x) its minimal polynomial of degree L:

1. The least period of the sequence s is uniquely determined by the order
of c(x).

2. The least period of s divides qL − 1 if c(x) is irreducile

3. The least period of s equals qL − 1 if c(x) is a primitive polynomial.

Proof. 1. Let T be the least period of the sequence s. Then, xT − 1
is a characteristic polynomial of s,then, by definition of the minimal
polynomial, c(x) devides xT −1, the rest follows from the definition of
the period and the order of a polynomial.

2. If c(x) is irreducible, then F = Fq[x]/c(x) is a field of qL elements.
The order of c(x) is, by definition of the order of a polynomial and
of an element in a group, exactely the order of x in the multiplicative
group F ∗, by Lagrange theorem , this order divides the cardinal of F ∗

that is qL − 1.

3. if c(x) is a primitive polynomial, then x is a generator of F ∗ and its
order is equal to qL − 1.

Theorem 5. The minimal polynomial of a linearly recurrent sequence can
be efficiently computed using the Extended Euclidean Algorithm, provided
we have 2n initial values of the given sequence, where n is a bound on the
recursion order. It uses O(n2) operations in the field Fq.

Proof. It is not examinable, but if interested see the following paragraph.
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2.2.2 Computation of the minimal polynomial

In this paragraph, we indicate how to compute the minimal polynomial of
a given sequence s = (si)i∈N ∈ FN, provided that we know an upper bound
n ∈ N on the recursion order. We define first the concept of the reversal of
a polynomial.

Definition 31. Let f = fdx
d + ... + f0 ∈ F [x] be a polynomial of degree d.

The reversal of f is defined as follows :

rev(f) = xdf(x−1) = f0x
d + f1x

d−1 + ... + fd ∈ F [x]

Lemma 3. Let s = (si)i∈N ∈ FN be linearly recurrent, h =
∑

i∈N
six

i ∈
F [x], the formal power series whose coefficients are the coefficients of the
sequence s, c ∈ F [x] of degree d and r = rev(c) its reversal.

1. The following are equivalent:

• c is a characteristic polynomial of s,

• r.h is a polynomial of degree less than d,

• h = g/r for some g ∈ F [x] with degree less than d.

2. if c is the minimal polynomial of s, then d = max{1 + deg g, deg r}
and gcd(g, r) = 1

Proof. 1. r.h = (
∑d

j=0 cd−jx
j)(

∑
i∈N

six
i) =

∑d−j−1
i=0

∑d
j=0 sicd−jx

i+j +
∑∞

i=d−j

∑d
j=0 sicd−jx

i+j

∑∞
i=d−j

∑d
j=0 sicd−jx

i+j =
∑∞

i=j

∑d
j=0 sicjx

i+d−j =
∑∞

i=0

∑d
j=0 si+jcjx

i+d =

xd
∑∞

i=0 xi
∑d

j=0 si+jcj

2. (a) We note that deg r ≤ d, with equality if and only if x does not
devide f , and hence d ≥ max{1 + deg g, deg r}. Now let c = ma,
and s.t d > max{1 + deg g, deg r}, then x | c, r = rev(c/x), and
c/x is a characteristic polynomial of degree d−1. This contradicts
the minimality of c. Thus d = max{1 + deg g, deg r}

(b) Let u = gcd(g, r). Then c∗ = c/rev(u) is a polynomial of degree
d − deg u, r/u = rev(c∗), and (r/u)h = (g/u) is a polynomial of
degree less than d−deg u. Hence c∗ is a characteristic polynomial
of s. By the minimality of c deg u = 0.

If L ∈ N is an upper bound on the recursion order of s, then we can
compute ms by solving the Padé approximation problem :

h ≡ u

v
mod x2n, x not devide v, deg u < n, deg v ≤ n, gcd(u, v) = 1 (2.8)

21



• By Lemma 3, (u, v) = (g, r) is a solution to equation 2.8.

• This solution is unique and can be computed with the Extended Eu-
clidean Algorithm.

This leads to the following algorithm:

Algorithm 5. Minimal polynomial for s ∈ F N

Input: An upper bound L on the recursion order and the first 2L entries
s0,...s2L−1 ∈ F of a linearly recurrent sequence s ∈ F N.
Output: The minimal polynomial ms ∈ F [x] of s.

1. h← s2L−1x
2L−1 + ... + s1+0

call the Extended Euclidean Algorithm to compute u, v ∈ F [x] s.t
v(0) = 1 and equation 2.8 holds.

2. d← max{1 + deg u, deg v}

3. return revd(v)

Theorem 6. Algorithm 5 correctly computes the minimal polynomial of a
linearly recurrent sequence (si)i∈N of recursion order at most L and uses
O(L2) operations in F .

Proof. Let c ∈ F [x] be the minimal polynomial of s. The discussion above
implies that (g, r) = (u, v), where g, r are as in Lemma 3. Finally, If c =
revk(r) for some k ∈ N, Lemma 3 implies that k = d

2.3 Implementation of linearly recurrent sequences

This section shows how the generation of linearly recurrent sequences over
F2 can be implemented on a special electronic switching circuit called linear
feedback shift registersor LFSRs

Definition 32. A linear feedback shift register (LFSR)of length L consists
of L stages numbered 0, 1, ..., L−1, each capable of storing one bit and having
one input and one output; and a clock which controls the movement of data.
During each time unit, the following operations are performed:

1. the content of stage 0 is output and forms part of the output sequence,

2. the content of stage i is moved to stage i− 1 for each i, 1 ≤ i ≤ L− 1

3. the new content of stage L− 1 is the feedback bit sj

Such LFSR is depicted in figure 2.1. In this way, the new feedback bit
is calculated as follows:

sj = (c1sj−1 + c2sj−2 + ... + cLsj−L) (mod 2) for j ≥ L
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Figure 2.1: Initial state for a LFSR for the sequence s

The LFSR of Figure 2.1 is denoted < L, c(x) >, where c(x) = 1 + c1x +
... + cLxL ∈ Z2[x] 6 is the connection polynomial which is obviousely the
reversal (see Definition 31) of the characteristic polynomial c̃ of the sequence
s (c̃(x) = c̃LxL+ ˜cL−1x

L−1+...+ c̃1x+ c̃0 = xL+c1x
L−1+c2x

L−2...+cL−1x+
cL). The initial content of stage i is si ∈ {0, 1}, for each i, 1 ≤ i ≤ L − 1,
then [sL−1, ..., s1, s0] is called the initial state of the LFSR. If n is positive
integer, then after n time units, the stage j will contain sj+n. It is therefore
natural to call the row vector sn = (sn, sn+1, ..., sn+L−1) the nth state vector
of the linearly recurrent sequence s (or of the linear feedback shift register).
We saw in the last section that the recursion order L of a linearly recurrent
sequence is of crucial importance, in fact, it permits to recover the minimal
polynomial of the sequence in polynomial time provided we have the first
2L enteries of the given sequence. This recursion order has another name in
the electrical engineering world:

Definition 33. The linear complexityof an infinite binary sequence s, de-
noted L(s), is defined as follows:

1. if s is the zero sequence s = 0, 0, ..., then L(s) = 0;

2. if no LFSR generates s, then L(s) =∞;

3. otherwise, L(s) is the length of the shortest LFSR that generates s.

Similarly, the linear complexityof a finite binary sequence sn, denoted L(sn),
is the length of the shortest LFSR that generates a sequence having sn in its
first n terms.

Before moving to the next section, we summarize in this table the termi-
nology used for linearly recurrent sequences or linear feedback shift registers:

6since the coefficients are in Z2, we have −1 = 1
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L.R.S LFSR

characteristic (annhilating) polynomial reversal of the connection polynomial
minimal polynomial reversal of the connection polynomial of the shortest LFSR

minimal polynomial’s order period
recursion order linear complexity

2.4 Summary

This chapter introduces the theory of linearly recurrent sequences. We ba-
sically recall that thought linearly recurrent sequences over finite fileds are
efficiently generated by special switching circuits called linear feedback shift
registers, they can be easily predicted via their linear complexity. Thereby,
they can not be used directly in cryptographic applications. In practice, and
in order to destroy the linear properties that linearly recurrent sequences
have, we put a suitable non linear combiner on the output of several linearly
recurrent sequences, the output of such combiner is still a linearly recurrent
sequence but has large linear complexity and large period which allows it to
be candidate for a stream cipher keystream generator.
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Chapter 3

Non linear combinations of

linearly recurrent sequences

As mentiond in the summary of last chapter, linearly recurrent sequences
are widely used in keystream generators because they are well-suited for
hardware implementation, produce sequences having large periods and good
statistical properties, and they are readily analysed using algebraic tech-
niques. Unfortunately, they are also easily predictible, as the following
argument shows. Suppose that the output linearly recurrent sequence s
has linear complexity L, or equivalently has a minimal polynomial of de-
gree L. The minimal polynomial can be efficiently computed if we have
2L entries of the sequence. Once computing the minimal polynomial, we
can use L entries to initialize the LFSR and then generate the remainder of
the sequence. An adversary may obtain the required entries by mounting
a known or chosen plaintext attack on the stream cipher: if the adversary
knows the plaintext subsequence m1,m2, ...,mn corresponding to a cipher-
text sequence c1, c2, ..., cn, the corresponding keystream bits are obtained as
mi ⊕ ci, 1 ≤ i ≤ n.
We recall that a linearly recurrent sequence should never be used as a
keystream generator. Nevertheless, linearly recurrent sequences are desir-
able because of their very low implementation costs. One solution to destroy
their linear properties is the use of a suitable non linear combiner on the
output of several LFSRs: The output sequence is still linearly recurrent but
has a high linear complexity:

Fact 18. Suppose that n maximum-length LFSRs 1, whose linear complex-
ities L1, L2, ..., Ln are pairwise distinct and greater than 2, are combined
by a nonlinear function f(x1, x2, .., xn). Then the linear complexity of the
keystream is f(L1, L2, .., Ln). (The expression f(L1, L2, .., Ln) is evaluated
over the integers rather than over Z2 )

1a maximum-length LFSR is a linearly recurrent sequence whose minimal polynomial
is primitive (the upper bound on the period is then achieved)
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Figure 3.1: f is a nonlinear combining function

Example 18. (The Geffe generator) The Geffe generator is defined by
three maximum-length LFSRs whose lengths L1, L2, L3 are pairwise relatively
prime, with nonlinear combining function

f(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3

The key stream generated has period (2L1 − 1).(2L2 − 1).(2L3 − 1) and linear
complexity L = L1L2 + L2L3 + L3.
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