Responsible: Prof. von zur Gathen Lecturer: L. El Aimani

Tutorial 4: The Summation Generator

I trade-off Correlation Immunity/Linear Complexity

In this exercise, we will show that the trade-off Correlation Immunity/Linear Complexity showed in a previous exercise does no longer exist if the combiner is allowed to have memory.

Let f be a non linear combiner of n binary random variables, m_{th} -order correlation immune. We will define z the random variable $z = f(x_1, ..., x_n)$.

- 1. Write the definition of f being m_{th} -order correlation immune.
- 2. Now, and in the rest of the exercise, the combiner f is allowed to have memory. What would be then the definition of correlation immunity of such a combiner.
- 3. Let's suppose that the output of the combiner resembles a truly random sequence, which means that it is impossible to, given the sequence up to a certain value, guess the next bit. Show that the above equation is equivalent to:

$$I(z_j; x_{i_1}^j, ..., x_{i_m}^j, z^{j-1}) = 0 (1)$$

4. Now the combiner has the form:

$$z_j = \sum_{i=1}^n x_{ij} + f'(x_1^{j-1}, ..., x_n^{j-1})$$
 (2)

Show that f is $(n-1)^{th}$ order correlation immune.

5. Conclude.

II The Summation Generator: linear complexity

Let a and b two integers expressed in 2-radix : $a = a_{n-1}2^{n-1} + ... + a_12 + a_0$ and $b = b_{n-1}2^{n-1} + ... + b_12 + b_0$. Let z = a + b be the real sum (expressed in 2-radix).

- 1. Prove that: $z_j = a_j + b_j + c_{j-1}$ where $c_j = a_j b_j + (a_j + b_j) c_{j-1}$. What do you conclude about the non linear order of f.
- 2. What happens if the adder produces a pair of zeros or ones? is such an event likely to happen when adding periodic sequences?
- 3. Give an upper bound of the linear complexity of the output.
- 4. The experience shows that : $LC((z_j)) \le (2^{L_1} 1)(2^{L_2} 1)$ with near equality. Check this result and conclude.

III The Summation Generator: period

Let E be the set of infinite binary periodic sequences. We define the following mapping: $f: E \to \mathbb{Q}$

mapping: $f: E \to \mathbb{Q}$ $(a_i)_{i \in \mathbb{N}} \to \frac{\sum_{i=0}^{T-1} a_i 2^i}{2^T - 1}$ Where T is a multiple of the period.

- 1. Prove that f is an injective mapping.(first prove that it is a mapping, then that it is injective).
- 2. Deduce that if $f(a_i)$ is a binary infinite periodic sequence, then there exists $\frac{p}{q} \in \mathbb{Q}$ where $\gcd(p,q) = 1$, moreover, the period is determined by the multiplicative order of 2 modulo q.
- 3. Let now, (a_i) and (b_i) be two sequences of periods T_1 and T_2 . (s_i) denotes the real sum of (a_i) and (b_i) expressed in 2-radix. If $gcd(T_1, T_2) = 1$ then (s_j) is of period T_1T_2 . Steps of the proof:
 - (3-1) Prove that $f((a_i), (b_i)) = c + \frac{\sum_{i=0}^{T_1 T_2 1} s_i 2^i + c}{2^{T_1 T_2 1}}$ Where c corresponds to the carry to the other period of the sum sequence.c = 1, c = 0.
 - (3-2) If we consider $f((a_i)) = \frac{p_1}{q_1}$ and $f((b_i)) = \frac{p_2}{q_2}$ where $gcd(p_i, q_i) = 1$ for i = 1, 2 and $a + b = c + \frac{n}{q_1 q_2}$, c = 0, 1. Prove that $f((s_i)) = \frac{n}{q_1 q_2}$.
 - (3-3) Prove that $gcd(n, q_1q_2) = 1$.
 - Prove first that $gcd((2^{T_1}-1),(2^{T_2}-1))=1$.
 - Deduce that $gcd(q_1, q_2) = 1$.
 - Conclude that $gcd(n, q_1q_2) = 1$.
 - (3-4) Deduce the period of the sum sequence. Conclude.