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Chapter 1

Basic cryptosystems

We start with a look at some of the most important cryptosystems. The de-
scription in this section focusses on the fundamental properties and leaves out
some details, in particular proofs why certain things work the way they do. The
complete underpinnings for these methods are provided in later chapters.

We learn to ask the fundamental questions: How easy is the system to use
for its legitimate players? How hard is it to break for others? In other words:
what can we say about its security? We begin with a short discussion of two
fundamentally different types of cryptosystems that we will encounter: symmetric
vs. asymmetric systems. In the first type, sender and receiver share the same
secret key, while in the latter type, only the receiver needs a secret key. If you
have not yet seen such systems, stop here for a moment! Does this not sound
contradictory? How could it possibly work? The first system is the AES, chosen
from 15 candidates in a competition launched in 1997 by the National Institute
of Standards and Technology (NIST), a US government institution. This system
is an example of a symmetric cryptosystem in which the two protagonists (sender
and receiver) share the same key. AES is characterized by its simplicity, good
structure, and efficiency.

We then describe the RSA system named after its inventors Rivest, Shamir &
Adleman. The security of this asymmetric or public key cryptosystem is somewhat
related to the difficulty of factoring large integers into their prime factors.

The third example is the Diffie & Hellman key exchange protocol. Here the
goal is not to send a secret message, but somewhat more modest: the two players
just want to agree on a common secret key (which they may then use in some other
cryptographic setting). This example introduces the idea of doing cryptography
in groups. The security of such system relies on the difficulty of computing
discrete logarithms in these groups.

We then discuss Shamir’s scheme for sharing a secret among many players so
that together they know the secret but any coalition of fewer than all players has
no knowledge about it. This is based on polynomial interpolation.

The final example is Naor & Shamir’s visual cryptography. We have included
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1.1
∗
. AES

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.
Representation: 8 bits for an element = 1 byte.
Addition: XOR, (a + b)i = ai + bi.
Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.
Example 57 · 83 = C1:

(x6 + x4 + x2 + x + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + x + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.
Field: You can divide by every non-zero element.

Figure 1.1: The field F28

it here because of its striking effects: you have two random pictures (here: one
on paper and one on a transparency), and when you match them up, you can see
a secret message.

1.1∗. AES

In the early 1970’s, a team at International Business Machines (IBM) developed
a cryptosystem which became known as the Data Encryption Standard (DES).
The US National Bureau of Standards (NBS) declared it in 1976 the standard for
US government cryptography, for documents that are sensitive but not classified.
(The National Security Agency (NSA) is responsible for higher levels of security.)
As a consequence, any software or hardware systems with cryptographic capabili-
ties tendered to the US government had to be based on DES. Sales to government
agencies can be highly lucrative, and any company interested in them had to use
DES. Thus it quickly found widespread use.

Over the years, many attacks on DES were developed, most notably differ-
ential cryptanalysis and linear cryptanalysis. In reply, DES was strengthened by
tripling its number of “rounds”: triple-DES or 3-DES.

From the start, experts harbored suspicions—never substantiated—that the
NSA might have built a “trapdoor” into DES that enabled it to decipher encrypted
messages. Already in 1981, Deavours warned that The agency [NSA] is currently
capable of breaking DES using probable plaintext. The major cryptanalytic
hardware involved is rumored to consist of 4 CRAY-1 computers. Analysis takes
less than a day, on the average. Finally, on 17 July 1998 the Electronic Frontiers
Foundation (EFF) presented its US$ 250,000 DES breaker. DES was dead, for
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S :

F28 −−−→ F28 −−−→ F28 ,

y �−→ y−1=̂

⎡
⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎦ �−→

⎡
⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎦ ·

⎡
⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎦ +

⎡
⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎦

Highly nonlinear:
y �→ 05·y254+09·y253+F9·y251+25·y247+F4·y239+01y223+B5·y191+8F·y127+63.
Simple implementation using a 256 byte lookup table.

Figure 1.2: The S-Box

Apply the S-box to every byte.

S

Figure 1.3: The SubBytes operation
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The rows are shifted cyclically by zero, one, two, or three bytes.

Figure 1.4: The ShiftRows operation

R = F28 [z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28 .
Addition: coefficient-wise (a + b)i = ai + bi, XOR.
Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:⎡

⎢⎢⎣
d0

d1

d2

d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

Figure 1.5: Polynomials over the field F28
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Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.
Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Figure 1.6: The MixColumns operation

Ri :

(F28)4 −→ (F28)4,⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

Figure 1.7: Nonlinear part of the key schedule
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1.1
∗
. AES

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

Figure 1.8: The Key Schedule

⊕ =

Simple XOR with the round key.

Figure 1.9: The AddRoundKey operation
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most practical purposes. But it was still the standard and thus in heavy use . . .
The US NIST, successor agency of the NBS, opened on 12 September 1997

a competition for the AES, to replace DES. The requirements were for a block
cipher with blocks of 128 bits, and possible key lengths of 128, 192, and 256 bits.
Not surprisingly, the specifications were rather more precise than in their 1973
competition which led to the adoption of DES. 15 candidates were submitted to
NIST, and pared down to a short list of five systems by August 1999. These in-
cluded MARS from IBM’s Don Coppersmith, one of the chief designers of DES,
RC6 developed by Ron Rivest and three collaborators for RSA Laboratories,
Serpent by Anderson, Biham, and Knudsen, and Twofish by Bruce Schneier’s
Counterpane Company. On 2 October 2000, the NIST announced the winner:
AES, a system developed by the Belgian cryptographers Joan Daemen and Vin-
cent Rijmen and originally called Rijndael. NIST expects this system to be secure
for the next thirty years.

NIST was generally lauded for an open and well-documented procedure. One
of its requirements was to make plausible that there are no hidden trapdoors, thus
alleviating some of the concerns that had surrounded the DES standardization
in 1976.

The features that secured Rijndael’s first place in a tough competition are
security—resistance against all currently known attacks—and efficiency—on a
wide variety of platforms, from 8 bit smartcards to 32- or 64-bit processors.

AES encrypts a message of 128 bits using a key of 128, 192, or 256 bits. It
is an iterated cipher, in which a sequence of four operations is applied a certain
number of times. Thus it consists of 10 rounds at key length 128 (12 rounds at
196 and 14 rounds at 256 bits), and each round of these four operations, except
that the first round only executes Add Round Key, and the last one leaves out
Mix Columns. Each operation turns a 128-bit word into another 128-bit word.
To describe the operations, each 128-bit word is treated as a 4 × 4 matrix (or
array, or block) of 8-bit bytes:

(1.1)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

.

The four operations have the following features:

◦ SubBytes substitutes each single byte by another value,

◦ ShiftRows permutes the bytes in each row,

◦ MixColumns performs a linear transformation on each column of the ma-
trix,
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1.1
∗
. AES

128-bit input

SubBytes

ShiftRows

MixColumns

128-bit key AddRoundKey

128-bit output

repeat 10 times

Figure 1.10: The overall structure of AES

◦ AddRoundKey adds the key to the whole matrix.

Figure 1.10 illustrates the global view. The four operations in the middle
constitute one round. For the first round, the key is explicitly provided as the
secret key to the procedure. From this, the keys for the later rounds are calculated
by the key schedule.

We now describe in more detail the four operations, assuming that the reader
is familiar with the material in Sections ?? through ??. We see many cryptosys-
tems in this book, including RSA and group-based cryptography, say with elliptic
curves which by their nature require some algebra. But AES is the winner in a
competition for bit-oriented (or Boolean) cryptography. The elegant algebraic
description that follows is witness to the unreasonable effectiveness of algebra in
cryptography. cite unreasonable

SubBytes. The basic unit processed is an 8-bit byte a = (a7, a6, a5, a4, a3, a2, a1, a0) ∈
{0, 1}8. The fundamental operations on these bytes are addition and multiplica-
tion. The sum

c = a + b

of two bytes simply has the sum modulo 2 (or the exclusive-or) in each position:

ci = ai + bi

for 0 ≤ i ≤ 7. For example, if we take

(1.2) a = (10011011), b = (11001101),

then

(1.3) c = a + b = (01010110).
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For multiplication, we might first consider the byte a to represent the polynomial

a7x
7 + a6x

6 + · · ·+ a1x + a0,

so that a as in (1.2) now represents

x7 + x4 + x3 + x + 1 ∈ F2[x].

The product a · b of two bytes a and b is calculated by multiplying the two
polynomials, giving a polynomial of degree not more than 14. The product of
the polynomials from (1.2) is

p = x14 + x13 + x11 + x10 + x8 + x6 + x5 + x3 + x2 + x + 1.

Note that we work over F2, so that all coefficients are reduced modulo 2. More
details are given in ??.

We have an obvious problem: the result has up to 15 bits, but we should come
up with just one byte. Algebra provides an elegant solution: reduce modulo a
polynomial of degree 8. Indeed, in AES we work in the finite field F256 defined
by the irreducible polynomial

m = x8 + x4 + x3 + x + 1 ∈ F2[x],

so that a mod m ∈ F2[x]/〈m〉 = F28 = F256.
Now we divide p by m with remainder, obtaining

p = (x6 + x5 + x3) ·m + (x4 + x3 + x2 + x + 1),(1.4)
a · b = (00011111) in F256.

Thus we are back to degree at most 7, or 8 bits. Multiplication in F256 maps
two bytes to one byte. But in SubBytes, we have only one byte as input. How
can we use the arithmetic in F256? The answer is: inversion.

Since F256 is a field, every nonzero element a ∈ F
×
256 has an inverse a−1 ∈ F

×
256.

This can be calculated by the Extended Euclidean Algorithm (Section 16.14).
We extend this mapping to all of F256 by simply mapping zero to itself:

inv(a) =

{
a−1 if a 
= 0,
0 if a = 0,

.

where 0 = (00000000). In our example (1.2), the Extended Euclidean Algorithm
produces

(1.5) (x7 + x3) · a + (x6 + x3 + x2 + x + 1) ·m = 1 in F2[x],

so that indeed gcd(a, m) = 1 in Z2[x], and

inv(a) = (10001000) in F256.
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∗
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AES also uses a similar, yet different, algebraic structure on bytes, namely
the ring R = F2[x]/〈x8 + 1〉. This is not a field, since x8 + 1 = (x + 1)8 is
not irreducible in F2[x]. Thus a byte (a7, a6, a5, a4, a3, a2, a1, a0) ∈ {0, 1}8 now
represents the element

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 mod (x8 + 1) ∈ R.

Addition is, again, just the bit-wise addition (or exclusive-or). Thus (1.3) is also
valid in R. Multiplication of two such polynomials gives a polynomial of degree at
most 14, whose remainder modulo x8 + 1 has again degree at most 7. Reduction
modulo x8 + 1 is particularly easy, since it corresponds to just adding the lower
and the upper half of the polynomial, in the following sense. We split

c = c1x
8 + c0

into its upper and lower halves c1, c0 ∈ F2[x] of degree at most 7, then

c = c1(x
8 + 1) + (c1 + c0) ≡ c1 + c0 mod (x8 + 1),

c = c1 + c0 in R.

To multiply the two bytes a and b in (1.2) in this new representation, we write
their product as

p = (01101101) · x8 + (01100111),

and then their product in the ring R is the sum of these two bytes:

(10011011) · (11001101) = (00001010).

In AES, actually only multiplication in R by the fixed polynomial

t1 = (00011111) = x4 + x3 + x2 + x + 1

is used, and only the polynomial

t0 = (01100011) = x6 + x5 + x + 1

is added to others. Since t1 is invertible modulo x8 + 1, multiplication of bytes
by t1 corresponds to an invertible linear transformation over F2. For a byte a,
the bits in

b = t1 · a + t0

can also be described by the affine linear transformation⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1

b2

b3

b4

b5

b6

b7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

a3

a4

a5

a6

a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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To sum up, SubBytes consists of appliying to each byte a in the block individ-
ually the following steps:

a←− inv(a) (in F256),
a←−t1 · a (in R),
a←−a + t0.

ShiftRows. The operation ShiftRows shifts each of the four rows cyclically
to the left by 0, 1, 2 and 3 places, respectively. Thus ShiftRows applied to the
block (1.1) yields the array

(1.6)

a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32

.

MixColumns. Here we consider an array a = (a3, a2, a1, a0) of four bytes
a3, a2, a1, and a0 as a polynomial

a3y
3 + a2y

2 + a1y + a0 ∈ F256[y]

of degree at most 3. Addition of such polynomials again corresponds to a bit-wise
exclusive-or. Multiplication gives a polynomial of degree at most 6 which is then
decreased to degree at most 3 by reducing the result modulo

y4 + 1 ∈ F256[y].

Thus in effect we are working in the ring

S = F256[y]/〈y4 + 1〉
with 2564 elements. As x8 +1 above, y4+1 = (y+1)4 is not irreducible in F256[y],
hence S is not a field. Reduction modulo y4 + 1 is again particularly easy:

a1y
4 + a0 = a1 + a in S.

In fact, this multiplication is only applied when one factor is the fixed polynomial

(1.7) c = (00000011) · y3 + (00000001) · y2 + (00000001) · y + (00000010)

in F256[y]. Using the hexadecimal abbreviations 03, 01, 01, and 02 for the four
coefficients, the product of c with a = (a3, a2, a1, a0) can also be described as the
4-byte word b = (b3, b2, b1, b0) given by the matrix-vector product⎛

⎜⎜⎝
b0

b1

b2

b3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎠ .
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The operations on individual bytes are those in F256 = F2[x]/〈m〉, as above.
We take the example ⎛

⎜⎜⎝
a0

a1

a2

a3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02
01
80
A0

⎞
⎟⎟⎠ .

Then

b3 = 03 · 02 + 01 · 01 + 01 · 80 + 02 · A0

= (x + 1) · x + 1 · 1 + 1 · x7 + x · (x7 + x5)

= x8 + x7 + x6 + x5 + x2 + x + 1.

Since x8 = x4 + x3 + x + 1 in F256, we have

b3 = x7 + x6 + x5 + x4 + x3 + x2 = (11111100) = FC.

It is interesting to note the three roles that the byte 11111100 plays here: first
as an element of F256, represented by a polynomial in F2[x] of degree 7, then as
an 8-bit string, and finally a 2-letter hexadecimal word. Even more interesting is
the fact that we consider the byte as elements of different domains, such as in the
inversion in F256 or in the second step in SubBytes, and then a multiplication on
the same data may yield completely different results depending on the underlying
domain. This versatility is one aspect of the unreasonable effectiveness of algebra
in cryptography.

AddRoundKey. The 128-bit block and a round key of the same size are
added bitwise.

In an implementation, it is ususally advantageous to replace calculations by
table look-up as far as possible. With a table of 4 kB, a round of AES can be
executed with 16 table look-ups and 16 32-bit XORs.

In DES the S-boxes provide the only nonlinear functions. Their seemingly ar-
bitrary structure had led some cryptographers to fear that some “trapdoor” might
have been built in that enables the NSA to break the system. This allegation has
never been substantiated.

In Rijndael, the nonlinear S-box is the SubBytes function. Its design, and
that of the other parts, involves a few fundamental decisions such as to work in
rings like F2[x]/ 〈m〉 or to arrange things in 4 × �b byte blocks and to use row
shifts. Given this, there are only very few arbitrary items such as the polynomials
m, t0, t1, and the amount of row shifting. The authors say convincingly: We
believe that the cipher structure does not offer enough degrees of freedom to hide
a trap door.

The design of AES involved many decisions about its special structure. How-
ever, the specific values that had to be chosen are very few, and can actually be
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Cryptosystems
private-key public-key

Examples one-time pad, ?, DES,
AES

RSA, ?-?, ?

speed + −
authentication + −
key exchange − +

Table 1.1: Aspects of private-key and public-key cryptosystems.

“explained” as natural choices: the irreducible polynomial m is ??, t0 and t1 in
SubBytes are ??, and c is ?? explain choices MDS property of Mix Columns;
see Wiki AES Mix Columns. Cache attacks: see Wiki AES.

1.2∗. The RSA cryptosystem

We follow the long-standing tradition of calling the two players Alice and Bob.
Our scenario is that Bob wants to send a message to Alice that she should be
able to read, but nobody else. To this end, Alice generates a private key S and
a public key K. Anybody can read K; imagine it is posted on the internet or in
some large database. But she guards S carefully as her secret. Bob uses K to
encrypt his message for Alice. Alice uses S — which is for her eyes only — to
decrypt it. In a symmetric cryptosystem like AES, the encryption and decryption
keys are (essentially) the same, but here K and S are different, and in fact S
cannot be computed easily from K (hopefully).

The messages to be sent may be text, digitized pictures or sound, data or
program files, etc. But we assume here and always in the future that the messages
have been converted into some standard form, say into a (possibly very long)
string of bits 0 and 1. How to perform this conversion best depends very much
on the type of data. For text, a common way is to use ASCII or extended ASCII
encoding of letters into 7-bit or 8-bit strings, respectively.

Bob now wants to send this string of bits. There is a security parameter n
to be explained in a minute. Bob splits his string into blocks of n− 1 bits each,
and transmits each block separately. So we now explain how to transmit a single
block (x0, . . . , xn−2) of n− 1 bits. We interpret this as the binary representation
of the natural number x =

∑n−2
i=0 xi2

i. This number shall be transmitted.
The idea now is the following. Alice chooses two prime numbers p and q

at random with n/2 bits each, and computes their product N = p · q, which
has about n bits. She also chooses some random integer exponent e with 1 ≤
e < N . Alice’s public key is K = (N, e). Bob looks it up and sends the
remainder y = xe remN of xe on division by N to Alice. The magic now is that
Alice can recover x from Bob’s message with the help of her private information
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1.2
∗
. The RSA cryptosystem

derived from (p, q). Here is the system described in full. The required algebraic
terminology is explained in the computer algebra toolbox of ??.

Cryptosystem 1.8. RSA.

Input: Security parameter n, an integer.

Before starting any communication, Alice (and each other user) performs the
following setup:

1. She chooses two distinct primes p and q at random with 2n/2−1 < p, q < 2n/2,
and so that their product is an n-bit number.

2. She calculates N = p · q and ϕ(N) = (p − 1)(q − 1). [This is Euler’s phi
function.]

3. She chooses e ∈ {2, . . . , ϕ(N)− 2} at random, coprime to ϕ(N).
4. She calculates the inverse d of e modulo ϕ(N).
5. She publishes her public key K = (N, e) and keeps S = (N, d) as her private

key.
6. After this setup, Alice may forget p, q, and ϕ(N), and may erase them in

her computer.

Now Bob wants to transmit the plaintext x to Alice. What do they do?

7. Bob knows Alice’s public key (N, e) and the plaintext x. He calculates
y = xe rem N and sends this to Alice.

8. Alice knows her own secret key (N, d) and the ciphertext y. She now cal-
culates x∗ = yd rem N .

This finishes the description of the system. We insist on N being an n-bit number,
that is, 2n−1 ≤ N < 2n. A simple way to achieve this is by choosing p and q in
the interval �2(n−1)/2�, . . . , �2n/2�. Here is a simple example.

Example 1.9. We take n = 6. Literally, we would be looking for primes between
7 and 8, but at such small values we are a bit more liberal, and choose p = 5
and q = 11. Thus N = 55 is a 6-bit number, and ϕ(N) = 40. We choose
e = 13. Using the EEA, we find in a single step that −3 · 13 + 40 = 1, so that
d = e−1 = −3 = 37 in Z40. Thus Alice publishes her public key K = (55, 13)
and keeps her private key S = (55, 37). This finishes the setup phase.

Now Bob wants to send a message to Alice, say x = 6. Thus he has to
calculate y = xe = 613 in Z55. The obvious way to do this is to compute the
integer 613 and take its remainder modulo 55. This would be quite cumbersome
here, and utterly infeasible at practical values of the security parameter n, where
xe would have more bits than there are elementary particles in the universe. But
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there is an easy way out: we calculate xe in small steps, reducing modulo 55 at
each step.

The binary representation of 13 = 8 + 4 + 1 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 is
1101, and Bob first calculates the powers with exponents 2i:

i 0 1 2 3

2i 1 2 4 8

62i
6 36 31 26 in Z55

Now he multiplies those results together for which a 1 occurs in the binary rep-
resentation: y = 51 = 31 · 51 · 6 = 68 · 64 · 61 = 68+4+1 = 613 in Z55. This efficient
way of calculating a large power is called repeated squaring and discussed in ??.

Now Bob has done his share of calculation and sends y to Alice. She decrypts
in the same way, using the binary representation 100101 of 37:

i 0 1 2 3 4 5

2i 1 2 4 8 16 32

512i
51 16 36 31 26 16 in Z55

and computing x∗ = 16 · 36 · 51 = 6 = 5132 · 514 · 511 = 5137 in Z55 and indeed,
x∗ = x = 6 is the message that Bob wanted to send to Alice. ♦

We have to address several questions.

1. Correctness: is x∗ = x?

2. Easy handling: How to calculate fast . . .

◦ . . . large primes at random?

◦ . . . d from e?

◦ . . . powers modulo N? This has to be done for each message, and
speed is even more a concern than for the previous two points.

3. Security: Suppose that an eavesdropper—traditionally called Eve—listens
in to the communications between Alice and Bob. Thus Eve knows y and,
of course, (N, e), and she would like to compute x. In fact, x is uniquely
determined! But how long does it take to calculate this? Is this difficult
enough?

Some of these questions are addressed in ??.
There are many facets to the security problem. We might be concerned about

an Eve who has already seen some valid plaintext-ciphertext pairs (x, y) — the
known plaintext attack — or even (x, y) where Eve has selected x to suit her
purposes — the chosen plaintext attack (an example is mentioned on page ??).
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1.3. Visual cryptography

Her goal is to compute x from y for another pair (x, y). But even a weaker goal
might be destructive to the cryptosystem: computing some information about
x (say: is x even?) from y, and maybe not always correctly, but slightly better
than guessing. These issues are discussed in ? .

There are two frameworks in which to discuss these questions. In the asymp-
totic model, we have a security parameter n for our system. Typically n is defined
via the key length. In RSA, we have n-bit integers N, e and d, and so the public
and secret keys both are 2n bits long. For easy handling, “fast” means computing
time polynomial in n as a first approximation.

In the concrete model, we have a fixed system, say RSA with n = 1024, and
will usually discuss practical attacks on that particular system. This is the only
approach for AES that are fixed, and also for parameterized systems like like
RSA it gives a basis for practical comparisons, as in ??.

1.3. Visual cryptography

The goal is to have a direct visual representation of a secure symmetric cryp-
tosystem such as the one-time pad (which is described in Section 2.1). In its
simplest variant, this scheme of Naor & Shamir (1995) transmits an image by
first creating a random image as private key and then a second image depending
on it and the message. By itself, this second image is again random.

For illustration, suppose a company manager stays at a hotel for negotiations
with another company. If she requires information from home, maybe a blueprint
or picture, her company sends her the second image by fax. Anyone seeing this
fax alone obtains no information. But she can superimpose her secret key slide,
which she took with her, on the fax and see the message.

Before we explain the workings, you should play with the toys provided here.
Put the key transparency on either of the two printed images (Figures 1.11 and
1.12) and see if you recognize the cleartext.

original key and super-
pixel encryption position
white equal 2 w + 2 b = gray
black complementary 4 black

Figure 1.11:

How is this achieved? The cleartext image is split into square pixels, each
of which is either black or white. Each pixel is further divided equally into four
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square subpixels. Both in the random key and in the encrypted message, exactly
two of the four subpixels are black, and two are white. There are six possible
arrangements of two blacks in a 2×2 square. For the random key, one of the six is
chosen uniformly at random, and independently for each of the many pixels. For
the encryption, we choose the same arrangement as on the key if the cleartext
pixel is white, and the complementary one if the cleartext pixel is black. If
we then superimpose the key and the encryption, we have exactly two or four
subpixels black if the cleartext pixel is white or black, respectively. This can be
viewed as a visual variant of the one-time pad, discussed in Section 2.1.

In this system, we can even create secret ink. We take two images A and
B whose superposition gives image C, according to the correspondence in Fig-
ure 1.12.

images A and B white ←→ 2 white + 2 black
black ←→ 1 white + 3 black

image C white ←→ 1 white + 3 black
black ←→ 4 black

w

A B

w

A

w

B

s

A

s

B

s

C

C w

s

Figure 1.12: Sample pixels for secret ink
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Chapter A

Substitution ciphers and frequency
analysis

Most of this text is concerned with “modern” cryptography, which started
in the 1970s.

But cryptography deals with such universal subjects—language and com-
munication—that it has accumulated a rich history over the centuries of proud
inventors and secretive cryptanalysts, famous people and amusing tales, redo-
lent with fascinating characters and episodes, towering victories and abysmal
failures. In this and some other chapters we present an eclectic selection of
such stories. On these few pages, the goal is not a complete or balanced ac-
count. Rather we concentrate on a few systems, individuals, and happenings.
If you find these glimpses to your liking, you might turn to the real thing:
David Kahn’s monumental work The Codebreakers from 1967, still unsurpassed
today.

A.1. Cryptographic primitives

Over the millenia, people have invented and used a bewildering array of cryp-
tosystems for the secret transmission of messages. In this section, we establish
a general framework into which these systems fit. This is a scientific approach
and rather ahistorical. To assess the contributions of individuals over the cen-
turies in a fair way, one has to look at them in the context of contemporary
knowledge, not with modern 20/20 hindsight. However, our hindsight helps
us to sort ideas and see when new things have emerged.

There are two fundamental cryptographic primitives:
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◦ substitution,

◦ transposition.

In Claude Shannon’s terminology, these are confusion and diffusion, and the
goal is to create enough of one of them, or preferably of both, to provide se-
crecy in communication. There is also a modern notion of cryptographic primi-
tives which includes one-way and trapdoor functions; however, in this chapter
we are only concerned with historical cryptography.

In a substitution, we have some “alphabet” X. This might be the 26-letter
English alphabet A = {a, b, c, . . . , x, y, z}, or pairs of letters (bigrams), so that
X = A2, or even longer polygrams, or bits B = {0, 1}, or 128-bit words X = B128

for AES. In general, X is an arbitrary finite set. Furthermore, we have another
alphabet Y, which might equal X or not.

Then a substitution is just a mapping σ : X −→ Y which associates to any
element x of X an element y = σ(x) of Y. In the examples that follow, we try
to be brief and make liberal use of forward references. The neophyte reader
should first get familiar with the forward material, and then go back and look
at it from this general point of view.

EXAMPLE A.1. (i) AES (Section 1.1∗) uses two substitutions. The first is the
fixed substitution σ = SubByte : F256 −→ F256 with σ(x) = x−1 if x 
= 0,
and σ(0) = 0. The second one is the key addition σ = AddRoundKey : B128 −→
B128, where the 128-bit key (which we consider as fixed) and state are
added bitwise.

(ii) RSA (Section 1.2∗) with public key (N, e) is the substitution σ : ZN −→ ZN

with σ(x) = xe.

(iii) The Caeser cipher (Section A.3) identifies A with Z26 and uses the substi-
tution σ : Z26 −→ Z26 with σ(x) = x + 3. More generally, we might have
any key k ∈ Z26 and use σ(x) = x + k.

(iv) A simple substitution (Section A.3) is a bijection σ : A −→ Y from letters
to some alphabet Y.

(v) The de Vigenère cipher (Section B.1) with an �-letter keyword k uses �
Caeser substitutions σ0, . . . , σ�−1. Alternatively, it can be viewed as a
simple substitution σ : A� −→ A� with σ(x) = x + k, using letter-wise
addition. For an example, we take the rather unimaginative keyword k
= key of length � = 3, and encrypt the cleartext x = confuse the enemies as
follows:

x = confuse the enemies

k
′ = keykeykeykeykeyke

y = mslpyqoxfoiloqgow
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Thus σ(x) = x + k
′ , where k

′ is the 17-letter key obtained by the de Vi-
genère key scheduled from k = key, namely sufficiently long repetition
(with the Procrustes rule to make things fit at the end).

The attentive reader has noticed that in this short example, we have no
fewer than four single-letter additions e + k = o. This is a general phe-
nomenon, although usually not this frequent, and will be used in Chap-
ter D to break this cryptosystem.

The alphabet Table A.1 below may be useful for checking the letter addi-
tion.

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12
n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Table A.1: Letter-number conversion in a 26-letter alphabet.

More generally a multiple substitution applies a fixed sequence of simple
substitutions one after the other. When the sequence is exhausted, one
starts again with the first one.

(vi) As a generalization of simple substitutions, a relational substitution works
in the same way, only for each letter we have not just a single possibil-
ity but several ones. We see an example in Tranchedini’s codebook from
1463 in Figure D.1 below. Its first line (after the heading) gives the 21 let-
ters A, b, . . ., z of the alphabet, plus the frequent words for and, with, and
of. Five of the letters get three possible encryptions, the others two. In
general, the goal of the multiple possibilities is to even out the disparate
frequencies of the various letters. The corresponding σ is now only a
relation, not necessarily a function. In the classical terminology, two ci-
phertext values corresponding to the same cleartext value are called ho-
mophones.

(vii) Nomenclators and codebooks (Chapter D) have large alphabets X and
Y, with several hundreds (in the 17th century) or thousands (19th cen-
tury) of elements each. Y has at least as many elements as X does, and
the codebook is a simple substitution σ : X −→ Y. The alphabet X usu-
ally comprises letters, plus certain frequently occurring items, such as
syllables, or words and names that were likely to appear in the corre-
spondence. Their use is recorded from 1377 to the Second World War,
where in one German submarine cipher each square of a grid covering
the North Atlantic was given its code. More examples are in Chapter D.
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(viii) The basic ingredient of the one-time pad (Section 2.1) is a substitution σ
on single bits, where a (random) key bit k is chosen in B, and a one-bit
message x ∈ B is encrypted as σ(x) = x + k. Longer messages are en-
crypted by repeating this procedure, with keys chosen anew (indepen-
dently) for each message bit.

(ix) The Playfair cipher (??) is a simple substitution σ : A2
0 −→ A2

0 on bigrams,
where A0 = A \ {j} is the standard alphabet with j removed.

(x) In the Enigma (Chapter G), the secret key determines (in a complicated
fashion) a sequence of simple substitutions σ0, σ1, . . . , with σi : A −→ A

for all i. ♦

A further classical security measure was the introduction of dummies (or
null values, or nulls), These are encrypting symbols that will be discarded by
the legitimate decryptor, but whose presence is intended to confuse the crypt-
analyst. Figure D.1 below shows a system from 1463 by Tranchedini, with
twelve dummies in the fifth line of the text. The Spanish cipher from around
1590 in Figure D.3 contains the line: Las nullas tendran una raya enzima, exemplo
19.1 This provides a systematic way of introducing a large number of dum-
mies.

For the second cryptographic primitive, we have a length parameter �. A
transposition is simply a bijection (or permutation) on the first � numbers:

τ : {0, . . . , �− 1} −→ {0, . . . , �− 1}.

When we have, in addition, an alphabet U, this leads to a substitution τU on
words of � letters from U by taking the cleartext x = (x0, . . . , x�−1) ∈ U

� and
rearranging it as the ciphertext y = (y0, . . . , y�−1) ∈ U� by interchanging po-
sitions according to τ . That is, the letter xi in cleartext position i is moved to
ciphertext position τ(i) : yτ(i) = xi. If α = τ−1 is the inverse of τ , then we can
write

y = (xα(0), xα(1), . . . , xα(�−1)).

EXAMPLE A.2. (i) AES uses two transpositions: ShiftRow and MixColumns.
The first performs certain cyclic shifts on the rows of the state matrix, and
the second produces a more complicated mixing of the columns of that
matrix. Both are explained in ??.

(ii) In a single columnar transposition (Section E.2) we write the cleartext in
r rows of length c and read it off in columns as the ciphertext. Thus x =
column becomes y = clmoun = x0x2x4x1x3x5 in an r × c = 3× 2 array:

1The nulls will have a bar above, for example 19.
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c o
x = l u

m n

The transposition τ and its inverse α are given by

i 0 1 2 3 4 5
τ(i) 0 3 1 4 2 5
α(i) 0 2 4 1 3 5

and one checks that τ(i) = 3i− 5�i/2�.
(iii) The grille (??) is a transposition on a square array.

(iv) The skytale (Section E.1) can be viewed as a columnar transposition. ♦

From a transposition τ on � numbers we obtain, for any alphabet U, a sub-
stitution τU : U� −→ U� by setting τU(x) = xα(0)xα(1) · · ·xα(�−1) for x ∈ U�, where
α is the inverse of τ . This is illustrated in Example A.2(ii). Thus a transposition
of length � yields a simple substitution on �-grams. However, it is profitable
to keep the two primitives apart. For one, τ as above is much less “power-
ful” than a general substitution on U�, and furthermore, τ works for any U

and might be called a “scheme” for such substitutions. From a higher point of
view, substitutions are semantic objects and transpositions of a syntactical (or
combinatorial) nature.

Caesar

codebook

relational
substitution

multiple
substitution

simple
substitution

key
addition

transposition

Figure A.1: A taxonomy of cryptosystems.

Once we have the primitives, we need two operations to work with them:
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◦ chaining,

◦ composition (classically called superencipherment).

The primitives work on messages of a fixed length, maybe single letters, or
bigrams, or 128-bit words. In order to transmit messages of arbitrary length,
one has to “chain” such fixed-length primitives together. The most common
mode is to just repeat the primitive as often as necessary. When the primitive
is key-driven, there are other ways of chaining them together. For example, in
the cipher-block chaining (or autokey) mode one uses the output of the pre-
vious application as key for the next one; see ??. A characteristic of modern
cryptosystems is that they operate on uniform data formats for input, output,
and key, so that the basic operations can be composed and iterated in many
rounds.

In particular, when we have a substitution σ : X −→ Y and some number
�, we can apply σ independently to each of � elements from X and thus obtain
σ� : X� −→ Y� with

σ�(x0, . . . , x�−1) = (σ(x0), . . . , σ(x�−1))

for any x0, . . . , x�−1 ∈ X is their composition. Then σ� is called the �-fold prod-
uct substitution derived from σ.

The second operation is the composition of two substitutions ρ and σ. For
this to work, we have ρ : X −→ Y and σ : Y −→ Z, and then σ ◦ ρ : X −→ Z

with
(σ ◦ ρ)(x) = σ(ρ(x))

for any x ∈ X is their composition. When σ : A −→ A is the Caeser cipher,
shifting by three positions, then σ2 = σ◦σ : A −→ A is the shift by six positions.

The most profitable application is when we start with a substitution σ : X −→
X and a transposition τ on � numbers. Then we have the product substitution
σ� : X� −→ X�, and can compose it with the substitution τX : X� −→ X� to obtain

τX ◦ σ� : X
� −→ X

�.

EXAMPLE A.3. (i) AES uses the four primitives SubByte, MixColumn, ShiftRow,
and AddRoundKey. The basic substitution σ : B8 = F256 −→ B8 = F256

has been discussed, and SubByte = σ16 : B128 −→ B128 is the 16-fold prod-
uct of σ. The other three primitives work on 128 bits, and their composi-
tion gives one round of AES. Finally, AES is the composition of 12 such
rounds (with minor modifications in the first and last rounds).

(ii) A German code from the First World War (see Section F.2) involved a
codebook σ : X −→ Y ⊆ A3, with X and Y consisting of several thousand
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words, the latter being encoded by trigrams in a 29-letter älphabet A,
which includes ä, ö and ü. Furthermore, there was a simple substitution
τ : A −→ A, and the complete cipher was τ3 ◦ σ, that is, the codebook
superenciphered by the simple substitution.

(iii) We take the de Vigenère cipher σ with key length 3 from Example A.1(v),
so that σ : A

3 −→ A
3 is a substitution, and we take the columnar trans-

position τ from Example A.2(ii). Following the general recipe, we would
consider

ρ = τA3 ◦ σ6 : A
18 −→ A

18,

which first performs the de Vigenère on six blocks of three letters each,
and then interchanges the six blocks according to τ . Thus τ is applied to
the matrix

msl pyg

oxf oil

oqg owv

to yield the ciphertext

z1= msloxfoqgpyqoilowv.

However, we may also perform first the de Vigenère and then the trans-
position separately on each sixpack of consecutive letters:

(τA)3 ◦ σ6 : A
18 −→ A

18.

That is, τ is applied to each of the following three 3× 2 matrices individ-
ually

ms ox oq

lp fo go

yq il wv

to yield the ciphertext

z2 = mlyspqofixologwqov.

See ?? for another example ?.
♦
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We have appended a dummy letter x to the cleartext in order to make its
length divisible by 6. It encrypts as x + y = v. The two options are not crypto-
graphically equivalent: under the Kasiski attack of Section C.1, z1 reveals the
de Vigenère key length 3, but z2 does not.

There is one further general ingredient: the many tools for efficient encryp-
tion and decryption, and for remembering keys. The de Vigenère table reduces
the three steps

letter −→ number
key add−→ number −→ letter

to a simple table look-up. The Alberti system helps to memorize a simple
substitution, and an example is shown in Section A.4; the Playfair cipher (??)
has a mnemonic component for its bigram substitution. And today, couldn’t
we do with a little help to remember all our pass phrases?

A generally useful mnemonic aid is given by the key addition systems.
Here we think of the letters a, . . ., z as the numbers 0, . . . , 25 and add a secret
key to each number. As explained in Section A.3 and Chapters B and C, this
includes the ? cipher, where 3 is added to each number, the de Vigenère ci-
pher, where a longer keyword is added letter-by-letter, and the one-time pad
(Section 2.1), where the key is random and as long as the message.

An even more amazing example is the RSA cryptosystem (Section 1.2∗),
which is just a simple substitution but, with a common key size of 1024 bits,
the alphabet of 21024 letters is so huge that frequency analysis is hopeless. The
winning point here is to encode a substitution on such a huge alphabet in an
extremely concise fashion, namely by its modulus and two exponents. We
might even call this a key exponentiation system: the cleartext has to be multi-
plied with itself as many times as the key indicates.

A.2∗. Brief history of cryptography

Over the centuries, several cryptographic systems have played the major role
in professional use, mainly by the relevant government institutions: diplo-
matic, military, and secret services. The timeline in Figure A.4 tries to give an
overview of the dominating systems throughout history. Of course, this has to
leave out many of the finer points. In particular, it was not uncommon to mix
two types of systems. A fundamental distinction is between the transposition
systems, where individual letters are moved to other positions without being
changed, and various types of substitution, where the units (letters, words,
. . . ) are altered individually, but the flow of the message is not changed.

Historical completeness cannot be achieved in such a concise presentation,
and some injustice to systems, attacks, and their inventors is inherent.

In the history of cryptography, we can distinguish several periods and in-
dicate, very roughly, the corresponding time frames.
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Figure A.2: Polybios’ signalling system as interpreted by Myer (1879).

antiquity 1000 BC – 100 AD
Arab civilization 800 – 1200
European Middle Ages 1000 – 1500
Renaissance 1450 – 1600
Baroque, salon cryptography 1600 – 1850
mechanical devices 1580 – 1950
electromechanical devices 1920 – 1950
computers 1950 – present
public key systems 1977 - present

From antiquity, a few cryptographic tidbits have survived. In the begin-
ning, the knowledge of writing was so exclusive that it did not require further
protection.

There are some examples of Egyptian hieroglyphic cryptography from the
Middle Kingdom time?. The usual writing system employed symbols at three
levels: sound, word, and meaning. As an example, ra means mouth, and ??
can stand either for the letter r or the notion mouth. ?? is the letter h, and
?? is transliterated as hr and pronounced khore, rhyming with more. Its third
letter ? is not pronounced but determines that the preceding word denotes a
divine being. The known Egyptian cryptographic examples employ symbols
that are not or very rarely used, but clearly denote some object, and then stand
for the first letter of its name. They are usually inscriptions hewn into large
stone slabs (stelae). Their purpose was not secret communication, but rather to
create an aura of mystery, accessible only to the initiated. example

Like codebooks, also Egyptian hieroglyphs can denote either a single letter or
a whole word. There is a third usage as determinatives where a symbol denotes
the category into which the object falls.

In the Hebrew bible, a simple substitution occurs in a few places. The first
letter is interchanged with the last, the second with the last but one, and so on.
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Figure A.3: Alberti’s cipher disc.
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key addition
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transposition

electrical machines

Figure A.4: Timeline of cryptography before computers

In our alphabet this would be: a ↔ z, b ↔ y, c ↔ x, . . ., m ↔ n. The Hebrew
version reads:

a b
th sh

It is called the athbash system, corresponding to the first two replacements,
and an example is babel encrypted as sheshakh. where? (Only the consonants
and long vowels are written.)

Our knowledge of Greek cryptography consists of a few isolated incidents,
the Polybios square, and the skytale, of Spartan origin. The latter is a transpo-
sition cipher with a hardware implementation. Later authors describe it, but it
is not clear whether it was really used as claimed; see Section E.1 for details.

The famous historian Polybios (ca. 200–ca. 120 BC) described in his impor-
tant work Histories the conquest of the Mediterranean world by the Romans,
covering the period from 220 to 144 BC. King Philip V. of Macedonia (238–
179 BC) had defended his territories in the First Macedonian War from 215 to
210, but lost everything except his home state in the Second Macedonian War,
200 to 197. Polybios describes his war preparations against Attalos I. Soter,
King of Pergamon (269-197 BC), who had become an ally of the Romans in 211
BC.

They used a signalling system with lighted torches on hilltops. One exam-
ple is the communication from the top of Mount Tisaion, 644 m high, across
the Strait of Trikeri to Demetrios, a distance of about 7 km. On the tortuous
mountain roads around the Bay of Pegasis , the land distance is over 160 km.
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1 2 3 4 5
1 a b c d e
2 f g h i k
3 l m n o p
4 q r s t u
5 v w x y z

Figure A.5: The Polybios Square

Polybios writes that before his invention, only the few terms of a prearranged
tiny “codebook” could be transmitted by fire signals. Of his own method, he
says that Kleoxenus is the inventor, but that others think that Democrit pro-
posed it; in any case, Polybios perfected it. He uses an alphabet of 25 letters,
and writes them in a 5 × 5 square. With our letters, leaving out j, this would
look as in Figure A.5.

The person signalling a message has an arrangement of ten torches hidden
behind a screen, five to the left and five to the right. For each letter, he raises
as many left torches as are required to indicate the row, and then right torches
for the column. Thus to transmit d, in row 1 and column 4, he raises one
left torch and then four right torches. Formally, this is a simple substitution
with elements from {1, 2, 3, 4, 5}2. Both the system and the key are public.
Polybios does not mention the possibility of arranging the letters in his square
in a different sequence. The security depends on the enemy being unable to
observe the light signal - an unexpected similarity to photon-based quantum
cryptography.

Albert C. Myer, United States signals officer, adapted Polybios’ system and
replaced torches by flags. This was used on both sides in the US Civil War, and
the energetic up-and-down waving of flags earned the procedure the name
wigwag system. Many other variations have been used, for example a prisoners’
system where the torches are replaced by knocks on the jail walls.

The Romans perfected military technology in many respects, but appar-
ently not in the area of cryptography. Caeser invented his famous cipher, con-
sisting of a shift by three positions in the alphabet, and Augustus simplified it
to a shift by one only; see Section A.3. This seems to have been used in private
correspondence only.

The Arabs mastered already around 800 the major aspects of simple sub-
stitutions, including cryptanalysis based on frequency counts, and had a basic
knowledge of transpositions; see ??.

No example of secret communication using medieval cryptography has
survived. Its purpose was different. Secret writing often occurs in signatures
and a scribe’s request to pray for him. It does not make much sense for the
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latter, but may be related to an atavistic aversion against naming names. In
signatures on legal documents, one may have thought that they add some
security. And finally, bashfulness may be responsible for the scribes’ use of
cryptography in superstitious and pornographic writing.

In the Middle Ages, two systems of simple substitutions for the vowels
only were popular: by one to five dots, and by the consonant following the
vowel. Here are one plaintext and its two encryptions:

m e d i e v a l c r i p t o h a d n o k e i
m e d i e v a l c r i p t o h a d n o k e i
m f d j f v b l c r j p t p h b d n p k f j

There is no secret key between correspondents involved. Anyone who
knows the system can decrypt any message. Figure A.6 shows leaf 126r of
the beautifully illustrated codex aureus of St. Emmeran, written in 870. It was
restored under the direction of abbot Ramwold (975–1001). The names Aripo
and Adalpertus of the renovators are given in a cryptogram in the center of
the right-hand column and enlarged in Figure A.7:

Figure A.8 shows a unique example of a different type. It comes from a
biography of the English missionary Saint Willibald (ca. 700–787), who tried
hard—with his brother, Saint Wynnebald (701–761)—and ultimately success-
fully to prosyletize the heathens of Southern Germany. Willibald had spent
about a decade of adventure travel in Italy, Asia Minor and the Holy Land.
His Vita is the first travel book written by an English person. It was penned
around 800 by an Anglo-Saxon nun of Heidenheim, whose name remained cryp-
tographically hidden for a long time. Namely, after the last words Amen. Finit
of the biography, the scribe inserted the text in Figure A.8 which reads literally
as follows:

Sẽcdgquãr. quĩn. np̃ri. sp̃rix quãr. ntẽr.
cpr̃i. nquãr. mtẽr. nsec̃un. hquĩn. gsec̃d

bquĩnrc. qãrr. dinando hsẽcdc. scrt̃er

bsẽcd. bpr̃im.

The consonants are written in plaintext, and the five vowels are encrypted
in order:

a = primum = first,
e = secundum = second,
i = tertium = third,
o = quartum = fourth,
u = quintum = fifth.

The ciphertext is abbreviated in a standard medieval fashion, and indi-
cated by a tilde. For example, the first word Sẽcdgquãr means secundum
g quartum, which decrypts as ego. Thus the Latin decryption is
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Figure A.6: Leaf 126r of the Codex Aureus from the Bayrische Staatsbibliothek,
München
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Figure A.7: The cryptogram below the center of the right column in Figure A.6.

D: :mn∴ ·bb·t∴s r·m:·:: :ld∴ ∴:·:ss∴: :n: h:·:nc l∴br:·:m ·r∴p: : :t
·d·lp:rt:·:s r:n: :v·v:r:·:nt. S∴s m:m: :r : : :r

Decryption: Dom[i]ni abbatis Ramuoldi iussione hunc librum Aripo et Adalper-
tus renovaverunt. Sis memor eor[um].

At the order of abbot Ramwold, Aripo and Adalpertus repaired this book.
Remember them.

Figure A.8: Hugeburc’s encrypted subscription to her Life of Willibald.
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Ego una Saxonica nomine Hugeburc ordinando hec scribebam

I am a Saxon lady by name of Hugeburc. I arranged and wrote this.

The last sentence presumably means that she did not just copy the text, but
restructured the material available to her.

Systematic, professional, and well-documented use of cryptography in West-
ern Europe starts only in the early Renaissance, in Italy. The city states estab-
lished permanent diplomatic missions in other states. These had to commu-
nicate regularly with their governments at home. Travel was insecure, and
messengers were often attacked and had their letters (and lives) taken away.
To protect the secrets, cipher bureaus were established which produced code-
books for the various embassies. Tranchedini’s nomenclator in Section D.1 is a
sample output of such a code factory. Frequency cryptanalysis of a simple sub-
stitution was well understood, and protective measures such as dummies, sev-
eral encryptions of a single letter, and long codebooks were commonly used.

The principles developed by these early Italian code builders formed the
backbone of professional cryptography until the First World War, almost half
a millenium later.

A later Renaissance invention is the encryption by several simple substi-
tutions. This was proposed by the abbot Trithemius ., and published as the
first printed book on cryptography in 1516; see ??. He included a table which
reduced encryption to a table look-up and was later named after de Vigenère,
who used it in 1586. Its arithmetic nature—the encryption is the modular sum
of plaintext and key—was recognized around 1690 and the system was com-
pletely broken by Kasiski in 1863, but continued as the “chiffre indéchiffrable”
well into the 20th century. We discuss it at length in Chapters B and C. There
is not much evidence of its use under practical conditions; one such applica-
tion was on the Confederate side in the US Civil War. On the other hand,
we typically only learn about cryptography gone wrong and much less about
successful uses.

Codebooks—small and large—continued to be the method of choice, but
while the Renaissance had freed spirits from dogmatic confines, the flowering
imagination of baroque and later mindsets brought about an exuberant mul-
titude of cryptographic proposals, often beautifully illustrated and explained,
and in general quite useless. This “salon cryptography” includes the elaborate
image in ??, musical ciphers in ??, knots on threads (but much simpler than
Inca quipus), trumpets sounding (Notes ??), flower arrangements, or arith-
metic puzzles (Buck (1772); see von zur Gathen (2004)). These systems were of-
ten esthetically or intellectually pleasing, difficult to execute and easy to break
(being simple substitutions), and showed off the imagination of their authors,
who rarely failed to assert their absolute security.

The earliest mechanical devices for cryptography are—apart from the skytale—
the cipher disks of Alberti and Porta (see Porta disk) and the movable de Vi-
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genère substitutions in Collange’s 1561 edition of Trithemius .’ Polygraphia,
one of which is shown in ??. Later inventions had wheels that rotated about a
common axis; as handy and robust field ciphers they were in military use until
the Second World War. when?

Porta disk image
In the early 1920s, the time was ripe for electromechanical devices, and

four people independently invented rotor-based machines. The most famous
of these became the Enigma, to which Chapter G is devoted.

Also in the 1920s, Vernam proposed his one-time pad. Here the mesage is
represented as a string of bits, each either 0 or 1, a random bit string of equal
length is generated, and the two are added, bit by bit. This provides per-
fect security; see Section 2.1. Alas, it is not easy to generate and distribute
the required huge keys, but the system was employed extensively by Soviet
and East Bloc secret services during the Cold War. Variants of it were put to
practical use, where the key is not really random but pseudorandom; see ??
on pseudorandom generation. Actually, Vernam’s invention was of this type,
and there were later electromagnetical implementations such as the German
Siemens Geheimschreiber ?? in World War II. The hope presumably was that
the minor change from random to pseudorandom would leave the security
intact—but the British cryptanalysts broke the system, incidentally building
the first computer, called Colossus, for this purpose; see Section G.2∗.

From the 1950s on, computers took over much of the cryptographic work.
Shannon had developed a theory and identified confusion and diffusion as
fundamental goals. The Data Encryption Standard (DES), established in 1977,
is a typical product of that era: a fairly complicated set of bit operations per-
formed in 16 rounds on the 64 bits of a message, and which can be run by
standard digital computer hardware at great speed.

In 1976, a 12-page paper by Diffie and ? brought about a revolution in cryp-
tography. They proposed to consider systems where one part of the key is kept
secret and another part is made public. This sounds rather strange, but it soon
sparked the interest of a large community. Much of the present text is about
various aspects of this new public-key cryptography. On the technical side, it
solved the problem of key distribution. More importantly, the new methods
used a wide variety of tools from computer science and mathematics, in par-
ticular from computational complexity and from number theory. The latter’s
influence is pervasive throughout this book, from RSA and discrete logarithms
to elliptic curves. Typical questions in complexity theory are: What does it
mean for a problem to be hard to solve? Can we prove problems to be hard?
The ultimate answer to the last question is still lacking, but the methodologies
developed are essential for the modern theory of cryptography; we can look
at pseudorandom generation, formal notions of security, and zero knowledge
protocols as examples (Chapters ??, ??, ??).
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The word cryptography comes from the Greek κρυπτóσ (kryptos) meaning
hidden or secret, and γραϕειν (graphein) to write. The κρυπτεία (krypteia) was
a Secret Service in Sparta. Cryptanalysis is the art of breaking cryptosystems, a
subdiscipline of cryptography.

In the traditional terminology of historical cryptography, a simple substi-
tution is called an alphabet. Unfortunately, this clashes with the use of alphabet
as the finite set of letters (or symbols) in which everything is written; this is
its standard meaning in computer science, mathematics and natural language.
Thus we cannot use the traditional term or its derivates, but have arrived at
the following dictionary:

simple substitution = alphabet or monoalphabetic substitution,

relational substitution = monoalphabetic substitution with homophones,
multiple substitution = polyalphabetic substitution.

A.3. Simple substitutions

In its simplest form, a simple substitution cipher is a permutation enc : A −→ A

of an alphabet A, that is, to each letter x ∈ A is associated a unique encrypting
letter enc(x) ∈ A, and different letters have different encryptions. Gaius Iulius
Caeser (100–44 BC) used such a cryptosystem, where encCaesar just moves
each letter three positions ahead. Thus encCaesar (caesar) = fdhvdu in our 26-
letter alphabet. The letters at the end of the alphabet wrap around, so that
encCaesar (wxyz) = zabc.

In this and the following examples, the alphabet table Table A.1 on page 21
may be helpful.

If instead of letters we take the corresponding numbers, as in Table A.1,
then encCaesar (x) = x + 3, and decryption is just as easy: decCaesar (y) = y − 3.
In both operations, wrap-around applies. We can replace the shift 3 by any
number k, and consider enck(x) = x + k, with decryption deck(y) = y − k,
applying wrap-around. These 26 ciphers are called the Caeser ciphers.

The historian Gaius Suetonius Tranquillus (c. 70–c. 140) writes about Caeser’s
cryptography: Extant & ad Ciceronem, item ad familiares domesticis de rebus: in
quibus si qua occultiùs perferenda erãt, per notas scripsit, id est, sic structo
litterarum ordine, vt nullum verbum effici posset: quæ si quis inuestigare &
persequi vellet, quartam elementorum litteram, id est, d pro a, & perinde reli-
quas commutet.2 Tranquillus also relates how Caeser’s successor Augustus (63
BC–14 AD) used an even simpler version: shift by one, and no wrap around:

2There exist also [letters of Caeser] to Cicero, and to his family about domestic matters, in
which he wrote in cipher if something was to be hidden. That is, in an arrangement of letters
where no word was recognizable even to someone who wants to find out and read it. Namely,
he turned a letter into the fourth element [following it], that is, a into d, and the others in the
same way.
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quotiens autem per notas scribit, B pro A, C pro B ac deinceps eadem ratione
sequentis litteras ponit; pro X autem duplex A.3

As an example, Caeser would send the plaintext x = gallia omnia divisa est

as encCaesar (x) = jdooldrpqldglylvdhvw, and Augustus as encAug(x) =
hbmmjbpnojbejwjtbftu. For simplicity, we are using the 26-letter alphabet
(which the Romans did not), and arrive at the encryption as follows:

plaintext g a l l i a o m n i a d i v i s a e s t
numerical 6 0 11 11 8 0 14 12 13 8 0 3 8 21 8 18 0 4 18 19
Caesar num. 9 3 14 14 11 3 17 15 16 11 3 6 11 24 11 21 3 7 21 22
ciphertext j d o o l d r p q l d g l y l v d h v w
Augustus num. 7 1 12 12 9 1 15 13 14 9 1 4 9 22 9 19 1 5 19 20
ciphertext h b m m j b p n o j b e j w j t b f t u

In his collection Noctes Atticae, written in the second century AD, Aules Gel-
lius has preserved excerpts from Greek and Roman writings several of which
are known to us only through this work. He mentions that Libri sunt episto-
larum C. Cæsaris ad C. Oppium, & Baltum Cornelium, qui res eius absentis
curabant. In his epistolis quibusdam in locis inueniuntur literæ singulariæ,
sine coagmentis syllabarum, quas tu putes positas inconditè. Nam uerba ex
his literis confici nulla possunt. Erat autẽ conuenium inter eos clandestinum,
de commutando situ literarum, ut inscriptio quidem̀ alia aliæ locũ & nomen
teneret: sed in legẽdo locus cuiq, suus & potestas restitueretur. Id est, hãc
latentẽ & occultã significationem literarum.4

The meaning is not quite clear, but it may well be that Caeser also used
either a codebook (“strange letters”) or a transposition cipher. Roman crypto-
graphy seems to have been more imaginative than what we learn from Tran-
quillus.

There are only 26 “Caeser ciphers” as above (in our alphabet), but if we
consider arbitrary permutations on 26 letters, then there are 26! ≈ 4.03 · 1026

such permutations enc. If a cryptographer chooses enc at random among those
26! possibilities, and a cryptanalyst wants to decrypt a message, it seems that
he has to try out all of them—a hopeless task, at least by hand. Even if it were
feasible on a computer, one would still have to choose one of the 26! outputs,
most of which are nonsense, of course. In the unlikely event that there are two
or more that make sense, you would not even know which one is right. A
precise analysis of this problem is in Section A.5. bale=able

While the cryptanalyst has to find out the permutation, the legitimate users
only have to agree on it, and then remember it. One of the most popular ways

3Often he writes in cipher and puts B for A, C for B, and the following letters in the same
way; for X, he writes a double A. [X is the last letter of the Latin alphabet.]

4There are also collections of letters from Gaius Caeser to Gaius Oppius and Baltus Cor-
nelius, who took care of his affairs in his absence. In these letters you find in some places
strange letters, not connected into syllables, which you would think were placed at random.
For no words can be formed from these letters. They also had arranged a secret key among
them of changing the position of letters. Then although in the writing one letter has the po-
sition and meaning of another one, by reading it in its proper position, the real meaning is
restored. That is, the hidden and secret meaning of the letters.
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of facilitating this was invented by an Italian family of cryptographers, the
Argentis. Giovanni Batista Argenti was cipher secretary to the popes Sixtus V
and Gregorius XIV, at the end of the 16th century. His two nephews Matteo
and Marcello Batista succeeded him in this post. After being sacked in 1605,
Matteo Argenti wrote his famous manuale argenti.

The Argentis proposed the following way of memorizing a substitution
enc : A −→ A, where A is an alphabet. You choose a key word K, map its
letters in sequence to the first letters of A (removing duplicates in K), and
then the rest of the alphabet in sequence. With the English alphabet for A and
K = giovanni, this gives the following permutation:

(A.4)
g i o v a n b c d e f h j k l m p q r s t u w x y z
a b c d e f g h i j k l m n o p q r s t u v w x y z

and encK(batista) = geubtue. As is visible in the example, most keywords
provide only little change in the latter part of the alphabet.

Throughout the historical chapters, we distinguish typographically between
the cleartext, key, and ciphertext.

A.4. Frequency analysis

Any simple substitution is easy prey to a frequency analysis, if only the mes-
sage is long enough.

This cryptanalysis requires as its main tools frequency tables for individ-
ual letters, but also for bigrams (pairs of letters), trigrams (triples), and short
words. Table A.2 gives eight lists of letter frequencies in percent, four for En-
glish in the first columns, and one each for German (D), French (F), Spanish
(S), and Italian (I).

The first English column “HP” is from Joanne Rowling’s (1998) Harry Potter
and the Philosopher’s Stone, the second from Chapter 5 of this book, the third
from Meyer & Matyas (1982), and the fourth from Gaines (1956). The last row
is 100 times the sum of the squares of the frequencies; thus e contributes 100 ·
0.11912 ≈ 1.42 to the first entry 6.36. More details are in the Notes. When we
refer in the following to the English frequency of this table, this will always be
the Harry Potter column—cryptanalysis has its own magic.

We can observe material differences between the various tables for En-
glish, notably k varying from 0.42% to 1.2%. The message of the four English
columns is that there is some consistency across various types of texts, but cer-
tainly not after the decimal point. We can sort the letters into seven categories,
according to a rough approximation of their frequencies:

% 12 9 8 6 4 2 0
e t ao nirsh dl bcfgkmpuwy jqvxz
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Figure A.9: English frequencies (Harry Potter), ordered by alphabet (black)
and by frequency (red).



40 CHAPTER A. SUBSTITUTION CIPHERS AND FREQUENCY ANALYSIS
A.4. FREQUENCY ANALYSIS

letter HP Ch. 5 MM G D F S I
a 7.94 7.13 8.04 7.81 5.26 7.75 12.25 10.71
b 1.59 1.70 1.54 1.28 1.85 0.99 1.48 0.74
c 1.99 3.72 3.06 2.93 3.62 2.67 3.63 5.14
d 4.96 3.29 3.99 4.11 5.05 3.35 5.33 3.73
e 11.91 11.75 12.51 13.05 17.41 16.61 14.01 12.04
f 2.05 2.20 2.30 2.88 1.50 1.08 0.46 1.29
g 2.57 2.83 1.96 1.39 2.94 1.29 1.05 1.82
h 6.73 4.55 5.49 5.85 5.90 0.93 1.22 1.81
i 6.21 8.16 7.26 6.77 8.85 7.33 5.50 10.26
j 0.11 0.29 0.16 0.23 0.15 0.71 0.64
k 1.20 0.59 0.67 0.42 1.13 0.01
l 4.36 3.99 4.14 3.60 3.75 4.90 5.45 5.78

m 2.21 2.87 2.53 2.62 3.19 3.28 2.73 2.98
n 6.51 6.53 7.09 7.28 10.71 7.61 6.63 6.60
o 7.80 7.58 7.60 8.21 1.93 6.92 9.93 9.55
p 1.66 3.09 2.00 2.15 0.37 2.53 2.17 2.79
q 0.13 0.47 0.11 0.14 0.02 1.47 1.99 0.82
r 6.46 5.82 6.12 6.64 6.65 6.57 6.17 6.44
s 5.88 6.00 6.54 6.46 6.14 7.56 7.68 5.61
t 8.67 8.87 9.25 9.02 5.79 6.54 3.77 5.74
u 2.91 2.64 2.71 2.77 3.86 6.62 4.86 3.60
v 0.87 0.93 0.99 1.00 0.76 2.22 1.09 2.01
w 2.51 1.90 1.92 1.49 2.01 0.02
x 0.11 1.08 0.19 0.30 0.01 0.37 0.02 0.04
y 2.57 1.75 1.73 1.51 0.01 0.22 1.53 0.02
z 0.08 0.26 0.09 0.09 1.15 0.48 0.40 0.45∑
f 2

i 6.36 6.15 6.58 6.74 7.77 7.55 7.51 7.22

Table A.2: Four frequency tables for English, and one each for German, French,
Spanish, and Italian, all in percent.

Thus etaonirsh is a useful mnemonic for English frequencies if you ever have
to break a simple substitution.

If we want to analyse some encrypted message that we suspect to be in a
classical system, we set up the frequency table of the ciphertext, preferably in
the frequency ordered way of the red graph in Figure A.9. If it matches roughly
the English table, then this is a strong indication that we deal indeed with a
simple substitution and that the plaintext could be in English. The context will
usually tell us the language, or leave a choice between two or three. Then we
assume the language that matches best. If no language matches at all, as in
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the “flat” distribution of Figure C.1 below, then we conclude that this is not a
simple substitution.

Then we substitute matching entries in the two frequency tables, starting
with the ones that occur most often. Of course, we cannot expect the two
tables to match exactly. For example, in Figure A.9, the rates for n, i, r, s, and
h (near the 6% line) are so close to each other that we can, at best, expect them
to match as a group. Thus one makes conjectures about individual letters.
Some sections of the ciphertext will then have a substantial portion of cleartext
guesses, and one tries to find actual words that fit. The search for individual
words, such as one-letter words like a or I (if the word divisions are visible),
or frequent words like the, helps along. The whole is a process of trial and
error. Some experts have observed that as important as the technical tools
are a certain degree of ingenuity and perseverance—virtues that are generally
useful in life.

The great American poet Edgar Allan Poe (1809–1849) became interested
in cryptography in late 1839, and had a forum as the editor of the weekly
Graham’s Magazine, where readers would send him ciphertexts and he would
publish his solutions. The only systems he solved were simple substitutions.
He soon achieved a reputation as a master cryptographer, but modern-day
experts judge differently; see below.

Rather than quibble about his boastful self-aggrandization as master cryp-
tographer, we follow the master story-teller in the frequency analysis in his
story The Gold-Bug, written in 1843. It deals with the hunt for the treasure of
the pirate Captain Kidd, hidden on Sullivan’s Island, near Charleston SC. The
hero, William Legrand, has discovered a parchment with hidden characters
on it. This is an example of superencipherment: the secret message was first
encrypted (by a simple substitution, as it turns out), and this then superen-
ciphered by steganographic use of sympathetic ink (see ??). The superenci-
pherment was stripped by accident: on a cold autumn evening, the narrator
warmed himself by the fire-place, holding the parchment close to it and thus
revealing the secret writing. The ciphertext is as follows:

53‡‡†305))6∗;4826)4‡.)4‡);806∗;48†8¶60))
85;]8∗:‡∗8†83(88)5∗†;46(;88∗96∗?;8)∗‡(;485);
5∗†2:∗‡(;4956∗2(5∗—4)8¶8∗;4069285);)6†8)
4‡‡;1(‡9;48081;8:8‡1;48†85;4)485†528806∗81(
‡9;48;(88;4(‡?34;48)4‡;161;:188;‡?;

Legrand shows off: the solution is by no means so difficult as you might be
led to imagine from the first hasty inspection of the characters. These charac-
ters, as any one might readily guess, form a cipher—that is to say, they convey
a meaning; but then, from what is known of Kidd, I could not suppose him
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Figure A.10: The narrator (seated), Legrand, and Jupiter examine the parch-
ment with the Gold-Bug cryptogram.
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capable of constructing any of the more abstruse cryptographs. [. . . ] Circum-
stances, and a certain bias of mind, have led me to take interest in such riddles,
and it may well be doubted whether human ingenuity can construct an enigma
of the kind which human ingenuity may not, by proper application, resolve.

Circumstantial evidence points to English as the language. He sets up the
ciphertext’s frequency table:

Of the character 8 there are 33.
; “ 26.

4 “ 19.
‡) “ 16.
∗ “ 13.
5 “ 12.
6 “ 11.
†1 “ 8.
0 “ 6.

9 2 “ 5.
: 3 “ 4.

? “ 3.
¶ “ 2.

] — “ 1.

In Figure A.11, we have overlain the graphs of this and the English fre-
quency tables; the match is quite reasonable. Legrand goes on: “Now, in En-
glish, the letter which most frequently occurs is e. Afterwards, the succession
runs thus: a o i d h n r s t u y c f g l m w b k p q x z. E however predomi-
nates so remarkably that an individual sentence of any length is rarely seen, in
which it is not the prevailing character.” His positions of t and n are somewhat
different from Table A.2. “Let us assume 8, then, as e. Now, of all words in
the language, ‘the’ is most usual; let us see, therefore, whether there are not
repetitions of any three characters, in the same order of collocation, the last of
them being 8. If we discover repetitions of such letters, so arranged, they will
most probably represent the word ‘the.’ On inspection, we find no less than
seven such arrangements, the characters being ;48. We may, therefore, assume
that the semicolon represents t, that 4 represents h, and that 8 represents e—the
last being now well confirmed. Thus a great step has been taken.

“But, having established a single word, we are enabled to establish a vastly
important point; that is to say, several commencements and terminations of
other words. Let us refer, for example, to the last instance but one, in which the
combination ;48 occurs—not far from the end of the cipher. We know that the
semicolon immediately ensuing is the commencement of a word, and, of the
six characters succeeding this ‘the,’ we are cognizant of no less than five. Let
us set these characters down, thus, by the letters we know them to represent,
leaving a space for the unknown—
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t eeth.

“Here we are enabled, at once, to discard the ‘th,’ as forming no portion of the
word commencing with the first t; since, by experiment of the entire alphabet
for a letter adapted to the vacancy we perceive that no word can be formed of
which this th can be a part. We are thus narrowed into

t ee,

and, going through the alphabet, if necessary, as before, we arrive at the word
‘tree’, as the sole possible reading.” Then he notes the arrangement

the tree thr‡?3h the.

and “the word ‘through’ makes itself evident at once.” He then finds †83(88 or
†egree, which gives † = d, and ;46(;88∗ or th6rtee∗, “an arrangement immedi-
ately suggestive of the word ‘thirteen’, and again furnishing us with two new
characters, i and n, represented by 6 and ∗. The first characters 5good yield
5 = a, and to avoid confusion, it is now time that we arrange our key, as far as
discovered, in a tabular form. It will stand thus:

5 represents a
† “ d
8 “ e
3 “ g
4 “ h
6 “ i
∗ “ n
‡ “ o
( “ r
; “ t

“We have, therefore, no less than ten of the most important letters represented,
and it will be unnecessary to proceed with the details of the solution. I have
said enough to convince you that ciphers of this nature are readily soluble,
and to give you some insight into the rationale of their development. But be
assured that the specimen before us appertains to the very simplest species of
cryptograph. It now only remains to give you the full translation of the char-
acters upon the parchment, as unriddled. Here it is: ‘A good glass in the Bishop’s
hostel in the Devil’s seat—twenty-one degrees and thirteen minutes—northeast and
by north—main branch seventh limb east side—shoot from the left eye of the death’s-
head—a bee-line from the tree through the shot fifty feet out.’ ”

The secret message is deciphered, but Legrand still has a lot of figuring to
do. Will he find Captain Kidd’s treasure?

William F. Friedman, the leading US cryptographer of his days, says about
Poe: The serious student of cryptography can, if he takes the trouble, see in
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Poe’s essay and in his other writing on this subject many things which are not
apparent to the layman. Against his will he is driven to the conclusion that Poe
was only a dabbler in cryptography. At the same time it is only fair to say that
as compared with the vast majority of other persons of his time in this or in
foreign countries, his knowledge of the subject, as an amateur, was sufficient
to warrant notice. Had he had opportunity to make cryptography a vocation,
there is no doubt that he would have gone far in the profession.

Wimsatt (1943) writes: Legrand’s explanation of how he solved the cipher
is a fine feat of exposition—as anybody will realize who undertakes to write
a few paragraphs about ciphers. As we follow the steps of the argument, we
have the impression of intricacy and precision, of Legrand’s shrewdness and
patience—each detail receives attention—and yet we are never lost, the main
outlines remain clear, the reasoning turns where it should, the momentum, or
rhythm, of the whole is sustained. The writing of this kind of prose was, as I
see it, one of Poe’s most impressive gifts.

Many writers have commented on the intellectual capabilities that are use-
ful for cryptanalysis. quotes van s’Gravesande (1748) goes one step further:
he considers cryptanalysis (of a simple substitution) as part of logic, which in
turn is a branch of philosophy. Indeed, he develops on twelve pages the deci-
pherment of a 109-letter text, first using letter frequencies and repetitions, then
the word structure of Latin. Particularly instructive are his wrong turns and
explanations on how to backtrack from them.

Professionals (then) and amateurs (still today) have burnt a lot of midnight
oil figuring out messages encrypted in this kind of system, which must be
considered perfectly insecure.

A.5. Information theory

Claude Elwood Shannon worked at the Bell Laboratories and published in
1948 and 1949 two treatises on a mathematical theory of communication and on
a communication theory of secrecy systems. The first one became the foundation
for the theory of error-correcting codes. The second one “transformed crypto-
graphy from an art to a science”. He identified the two principal actions that
provide security: confusion and diffusion. The first action is to scramble the
alphabet thoroughly, as in Rijndael’s SubByte operation, and the second one
is to diffuse information throughout the message, as Rijndael’s Mix Column
and ShiftRow do. Furthermore, Shannon quantified the notion of “informa-
tion content” and derived a result saying that an encrypted message has to
have at least a certain length for a cryptanalytic attack to be successful. An
example is the one-time pad of Section 2.1, which is proven to be absolutely
secure.

We now explain some of Shannon’s theory. It only gives a lower bound
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on the required length of ciphertext, but no method for actually decrypting.
However, for the simplest systems, like simple substitutions or de Vigenère
ciphers, the cryptanalytic methods described in Sections C.1 through ?? almost
attain that bound in practice.

We have an alphabet A of s letters. The letter x ∈ A occurs with probability
px, so that px ≥ 0 and

∑
x∈A

px = 1. This can be abbreviated by the probability
distribution p = (px)x∈A. In the Harry Potter example of Table A.2, we have
s = 26, A = {a,b,c, . . . ,z}, and p = (7.94, 1.59, . . . , 2.57, 0.08).

How much “information” do we provide by writing down one letter, or
a long message? One of Shannon’s contributions is to make this notion pre-
cise, in a useful way. Intuitively, his idea is to insist on writing everything in
binary—using only 0 and 1—and to say that the shortest general way of speci-
fying a message in binary is the information provided by the message. That is,
we count the number of “bits”—a word coined by Shannon.

But to have a meaningful notion, we cannot allow any old way of present-
ing letters in binary, but must look at the cleverest one.

EXAMPLE A.5. (i) In Extended ASCII code, each letter is coded by 8 bits,
and an n-letter message requires 8n bits.

(ii) The following is the International Morse code:

letter a b c d e f g h i j k l m

Morse code ·− −··· −·−· −·· · ··−· −−· ···· ·· ·−−− −·− ·−·· −−
length 2 4 4 3 1 4 3 4 2 4 3 4 2

letter n o p q r s t u v w x y z

Morse code −· −−− ·−−· −−·− ·−· ··· − ··− ···− ·−− −··− −·−− −−··
length 2 3 4 4 3 3 1 3 4 3 4 4 4

Besides − and ·, there is actually a third invisible symbol present: the
space between adjacent letters. Without it, one could not distinguish be-
tween the encodings of ee and i. Thus Morse coding is not a binary en-
coding. The property violated is called “prefix-freeness”, meaning that
no letter code may be a prefix (an initial segment) of another code. But
for the sake of illustration, suppose that we had a binary prefix-free en-
coding with the same lengths as above. Then the expected length of the
code for a message of n letters would be

2npa + 4npb + 4npc + · · · = n ·
∑
x∈A

length(x)px,

where A is the English alphabet, and px the frequency of some letter x.
Thus we expect npa ≈ 0.0794n many a’s in the message, which take 2·npa
bits, the first term in the sum.



48 CHAPTER A. SUBSTITUTION CIPHERS AND FREQUENCY ANALYSIS
A.5. INFORMATION THEORY

Thus the expected length is a constant times n, with the constant depend-
ing on the alphabet and its letter frequencies.

(iii) Suppose that we have a 3-letter alphabet A = {a, b, c} with frequency
distribution p = (5/12, 1/3, 1/4). If we use a two-bit code like (00, 01, 10),
then this is prefix-free, and the expected length of an n-letter encoding is

n · (2 · 5

12
+ 2 · 1

3
+ 2 · 1

4
) = 2n.

In the prefix-free code (1, 01, 00), the expected length is

n · (1 · 5

12
+ 2 · 1

3
+ 2 · 1

4
) =

19

12
n ≈ 1.583n < 2n.

This is quite a bit better. To go even further, one of Shannon’s ideas is that
we might also encode bigrams, that is A2 = {aa,ab,ac,ba,bb,bc,ca,cb,cc},
which occur with probabilities

p =
( 25

144
,

20

144
,

15

144
,

20

144
,

16

144
,

12

144
,

15

144
,

12

144
,

9

144

)
,

where we have not simplified the fractions. When we use the prefix-free
code

(000, 001, 010, 011, 100, 101, 110, 1110, 1111),

then a message of n letters will consist of n/2 codewords (for even n) and
have expected length

n

2
·
( 3

144
· (25 + 20 + 15 + 20 + 16 + 12 + 15) +

4

144
· (12 + 9)

)
=

151

96
n ≈ 1.573n <

19

12
n.

When we code trigrams and longer polygrams, it turns out we can get
smaller and smaller constant factors of n, but there is a limit, 1.555 in this
case. ♦

We now define the limit alluded to at the end of the example.

DEFINITION A.6. Let p = (p1, p2, . . . , ps) be a probability distribution. Then its
entropy H(p) is

H(p) =
∑

1≤i≤s

pi log2(p
−1
i ).

(We write p−1
i to make the logarithm nonnegative, and interpret the summand

as 0 when pi = 0.) The entropy has the following property:

(A.7) 0 ≤ H(p) ≤ H(
1

s
,
1

s
, . . . ,

1

s
) = log2 s.
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Figure A.12: The entropy H(p, 1− p) for 0 ≤ p ≤ 1.

For s = 2, we have p2 = 1− p1; H(p1, 1− p1) is shown in Figure A.12.
A prefix-free code c : A −→ {0, 1}∗, or c : A2 −→ {0, 1}∗, or c : Ak −→ {0, 1}∗

for some k ≥ 1, gives an encoding c : A∗ −→ {0, 1}∗ of messages over A of
arbitrary length (padding the messages if necessary). Here,

A
∗ = {x1 · · ·xn : n ≥ 0, x1, . . . , xn ∈ A}

consists of the finite strings over A, and similarly for {0, 1}∗. We denote by
λc(x) the length of c(x) ∈ {0, 1}∗ for any message x ∈ A∗. The expected length
λc(n) for n-letter messages is

λc(n) =
∑
x∈An

λc(x) prob(x),

where prob(x) = px1 · px2 · · · pxn is the probability of x = x1x2 · · ·xn. Shannon
proved the following fundamental theorem.

THEOREM A.8. Let A be an alphabet with probability distribution p.

(i) For any ε > 0 there exists a code c so that λc(n) ≤ n · (H(p) + ε) for all
sufficiently large n.

(ii) For any code c, we have λc(n) ≥ n ·H(p).

We interpret Shannon’s Theorem as saying that an n-letter message contains
nH(p) bits of information, and thus one letter conveys H(p) bits on average.
Huffman I, MV, have added the name-key pair for David A. Huffman in names.bib,
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but I ain´t sure whether I should replace it here ot not. If not required the
name-key pair can be deleted from names.bib. trees provide a reasonable ap-
proximation to the upper bound in (i), namely with ε = 1. The more general
question is data compression, where one tries to get close to Shannon’s bound
under practical constraints; in the form of JPEG, MPEG or MP3 coded files this
theory is now part of daily life.

EXAMPLE A.5 CONTINUED. (ii) The entropy of English is, according to Ta-
ble A.2,

H(pEng) = 4.198.

Thus one letter of an English text contains 4.198 bits of information. How-
ever, this figure is based only on single-letter frequencies and rather mis-
leading. The bigrams th and ht are assumed to be equally likely, and qqqq
occurs with positive probability. Taking better account of the properties
of the language, Shannon arrives at an estimate of

(A.9) HEng ≈?

for the entropy of English. value, source

Note that we ignore spaces, punctuation, foreign words with funny let-
ters, numerals, etc. The maximal entropy of any distribution on 26 letters
is log2 26 ≈ 4.7, according to (A.7). The redundancy of English is the
difference log2 26−4.198 ≈ 0.5. This can be interpreted as saying that we
“lose” half a bit of information per letter when we write English rather
than some artificial 26-letter language with the uniform distribution of
its letters.

(iii) The entropy of this 3-letter alphabet is

H(p) =
5

12
log

12

5
+

1

3
log 3+

1

4
log 4 ≈ 1.555 < 1.585 ≈ log 3 = H(

1

3
,
1

3
,
1

3
).

One letter of this alphabet contains about 1.555 bits of information, and
the redundancy is about 0.03 bits per letter. ♦

Now Shannon applied his theory also to cryptanalysis. We have, as usual,
an alphabet A of size s and with probability distribution p = (px)x∈A, and a
cryptosystem (enc, dec) with keys K in the total key space K. We assume that
encK : An −→ An maps n-letter cleartexts to n-letter ciphertexts, for any K ∈ K.
The ciphertext is supposed to look random and to have

H
(1

s
, . . . ,

1

s

)
= log2 s

bits of information per letter. An n-letter message contains nH(p) bits of in-
formation. We denote by I(K) the average information in one random key. If
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keys are k-bit strings chosen at random (as they should be), then K = {0, 1}k
and I(K) = k. If K consists of k-letter English words, then I(K) = k ·H(pEng) ≈
4.198k.

DEFINITION A.10. The unicity distance of the above cryptosystem is

d =
⌈ I(K)

log2 s−H(p)

⌉
.

THEOREM A.11. Consider a ciphertext of length n.

(i) If n ≥ d, then an exhaustive key search is likely to reveal the plaintext.

(ii) If n < d, then the plaintext cannot be derived.

The idea of the proof is simple. The ciphertext contains n log2 s bits of infor-
mation, the plaintext nH(p), and the key I(K). In order to derive the plaintext
and key from the ciphertext, we need

n log2 s ≥ nH(p) + I(K),

which is the claim.
Exhaustive key search is usually not feasible, but we happily ignore this

fact.

EXAMPLE A.12. (i) We consider arbitrary simple substitutions π : A −→ A,
where A is the English alphabet with probability distribution pEng. The
key space K = S26 is the set of all 26! ≈ 288.382 permutations. Thus I(K) ≈
88.382. The unicity distance is

d =
⌈ 88.382

log2 26−H(pEng)

⌉
≈ 28.

Thus messages of length at least 28 can usually be deciphered, but not
when the length is less. When we have such a short length, then exhaus-
tive key search will sometimes discover two or more pairs (plaintext x,
key K) so that encK(x) equals the given plaintext. Thus the decipher-
ment is not unique below the unicity distance.

(ii) We take our toy example with A = {a, b, c} from Example A.5 (iii), and
the same encryption method as in (i), namely by a random permutation
on three letters. Then I(K) = log2(3!) = log2 6 ≈ 2.585, and the unicity
distance is

d =
⌈ log2 6

log2 3−H(p)

⌉
= 86.

Thus ciphertexts of length at least 86 will usually have a unique solution
(cleartext, key), and shorter ones may have several solutions.
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(iii) In the one-time pad (Section 2.1), we have an n-bit message (in English,
coded in 8-bit Extended ASCII, say) of length n, so that H(p) = H(pEng)/8 ≈
0.525, an n-bit random key, with I(K) = n, and the ciphertext of n bits.
The alphabet is {0, 1}n, so that s = 2n, and the unicity distance is

d =
⌈ n

n− 0.525

⌉
= 2.

Thus the “two-time pad” would be unsafe, and that is why the rules say
you may transmit only a single message with the same key.

(iv) What about a modern system like AES? Suppose we encrypt English
plaintext (small letters only, no spaces, punctuation etc.) by coding it
in 8-bit Extended ASCII and then applying 128-bit AES with a 128-bit
random key. Each letter contains 4.198 bits of information, so that the
ASCII message has 4.198 · 128/8 ≈ 67.17 bits of information per 128-bit
word of the alphabet {0, 1}128. The key has I(K) = 128 bits, so that the
unicity distance is

d =
⌈ 128

log2 2128 − 67.17

⌉
= 3.

Thus three transmitted messages would be enough to determine the key,
if only we could perform an exhaustive key search . . . .

(v) Enigma
♦

In summary, Shannon’s theory tells us that for ciphertexts with a certain min-
imum length, namely his unicity distance, we can expect a single “solution”
(plaintext, key), and below this minimum, we will usually have several solu-
tion. It does not tell us how to find these solutions.

It does not say much about modern cryptosystems with huge alphabets,
say of size 2128 in the smallest version of AES. It does say that very short mes-
sages are not uniquely deciphrable even in easy-to-break systems like short-
keyword-driven alternations between random permutations. But this does not
inspire much confidence.

We will come across two occasions where a decipherment of a codebook
had to be proven correct to a skeptical audience: the English King’s crypt-
analysts confirming Layer’s guilt in 1722 (??), and Room 40 and US President
Wilson convincing American public opinion (and the rest of the world) of the
authenticity of the Zimmermann telegram (Section F.4).

The attentive reader has already realized how to help these cryptanalysts:
simply show that the message is longer than the unicity distance. Then Theo-
rem A.11 says that the decipherment is unique.
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Chapter 2

Security issues

2.1. Perfect security: the one-time pad

Consider the bit string x = 100110 of length six. Bob and Alice have previously
established the secret key K = 010011 which was randomly chosen among the
strings of six bits. Then Bob forms the bitwise exclusive or (XOR) ⊕, so that
y = x⊕K = 100110⊕010011 = 110101. We have (a⊕b)⊕b = a⊕(b⊕b) = a⊕0 = a
for any bits a, b, and so y⊕K = (x⊕K)⊕K = x⊕ (K ⊕K) = x⊕ (0 · · · 0) = x.
We define encK(x) = x⊕K, decK(y) = y ⊕K. Then decK(encK(x)) = x.

Thesis 2.1. This system is perfectly secure.

What does this mean? Can we make this precise?
First attempt: We have a fixed number n ∈ N. The message space is {0, 1}n,

so that each message x is a string of n bits. The key K is chosen uniformly at
random among the 2n possibilities in {0, 1}n. For each string z ∈ {0, 1}n, we
have

prob(K = z) = 2−n.

Now x and K are chosen. Then y = x ⊕ K is determined, and x = y ⊕ K.
Furthermore, Eve sees y but does not know K.

For how many pairs (x′, K ′) is encK ′(x′) = encK(x) = y? For each x′ ∈
{0, 1}n, there is precisely one K ′ with this property, namely K ′ = x′⊕y. (Check:
x′ ⊕K ′ = x′ ⊕ (x′ ⊕ y) = (x′ ⊕ x′) ⊕ y = y.) Therefore, just given y, each x′ is
equally likely to have been the message. Eve has learnt nothing from y about x.

Second attempt: Each message x ∈ {0, 1}n occurs with some probability px:
So we have px ≥ 0,

∑
x∈{0,1}n px = 1.

Theorem 2.2. Using conditional probabilities, we have for all x, y:

prob(message = x|encryption = y) = px.
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2.1. Perfect security: the one-time pad

Proof. Let M be the message, C its encryption. Then

prob(M = x|C = y) =
prob(M = x ∧ C = y)

prob(C = y)
,

Consider the numerator first:

prob(M = x ∧ C = y) = prob(M = x ∧K = x⊕ y)
∗
= prob(M = x) · prob(K = x⊕ y)

= px · 2−n,

where ∗ holds since K is independent of M , and the last equation since K is
chosen uniformly. Now we calculate the denominator:

prob(C = y) =
∑

z∈{0,1}n

prob(M = z ∧ C = y)

=
∑

z∈{0,1}
prob(K ⊕M = y ∧M = z)

=
∑

z∈{0,1}
prob(K = z ⊕ y) prob(M = z)

= 2−n ·
∑

z∈{0,1}n

prob(M = z)

= 2−n
∑

x

px = 2−n,

where we use again, that K is chosen independently of M .
Thus each encryption is equally likely, independent of the message. We find

prob(M = x|C = y) =
px · 2−n

2−n
= px. �

The claim depends critically on the uniform random choice of the keys K. Oth-
erwise, it is false.

Remark 2.3. Should there be also two-time pads? Suppose that two messages
x, x′ are encrypted with the same key K:

y = x⊕K, y′ = x′ ⊕K.

Then

y ⊕ y′ = (x⊕K)⊕ (x′ ⊕K)

= x⊕ x′ ⊕K ⊕K = x⊕ x′.

Hence, . . .
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You are not convinced? So consider images, coded as strings of bits. The
exlusive or of two images x, x′ clearly contains still a lot of information:

Now the conclusion is clear . . .
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Chapter B

Key addition and modular
arithmetic

his chapter presents some historical examples of key-addition sys-
tems. These are easy to describe with our modern notion of mod-
ular arithmetic. Already in 1690, a rather obscure French author,
Claude Comiers, had the right intuition about the arithmetic na-
ture of such systems. But without the proper notions and nota-

tions, it is very strenuous to express these things. Remove repetitions Sections
1+2

B.1. Key addition systems

In a key addition system, given a message, one produces a key of the same
length and adds the two together, letter by letter, to obtain the encryption.
This is then transmitted, and the legitimate receiver only has to subtract the
key, again letter by letter, to find the original message. This can be described
as

(B.1)
ciphertext = plaintext + key,

plaintext = ciphertext − key.

More formally, we have letters from a fixed alphabet of some size m (in
modern English, m = 26), and then the plaintext x = (x0, x1, . . .), the key
k = (k0, k1, . . .), and the ciphertext y = (y0, y1, . . .) are related as

yi = xi + ki, xi = yi − ki
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for all i. Here addition and subtraction take place in the additive group Zm =
{0, 1, . . . , m− 1}, that is, by doing arithmetic modulo m. The relation between
the alphabet and Zm is taken in the natural way: a←→ 0, b←→ 1, . . ..

A simple example is to encrypt vigenere cipher with the key caesar, using
Table A.1 for the letter-to-number conversion.

Table B.1: A de Vigenère encryption
clear v i g e n e r e c i p h e r

21 8 6 4 13 4 17 4 2 8 15 7 4 17

key c a e s a r c a e s a r c a
2 0 4 18 0 17 2 0 4 18 0 17 2 0

cipher 23 8 10 22 13 21 19 4 6 0 15 24 6 17
x i k w n v t e g a p y g r

Thus the ciphertext xikwn vtega pygr would be transmitted. Many
ways of producing the required key have been employed. We have seen the
Caeser cipher, where one uses a single letter and repeats it as often as nec-
essary: ki = k0 for all i. Caeser used k0 = 3, and Augustus k0 = 1 (with
z + k0 = aa). The abbot Iohannes Trithemius . published in 1518 his Poly-
graphia, the first printed book about cryptography; ?? describes some details.
It contains, among other things, his Recta transpositionis tabula1 (??) consist-
ing of the 24 Caeser substitutions on his 24-letter alphabet {a, b, c, d, e, f, g, h, i,
k, �, m, n, o, p, q, r, s, t, u, x, y, z, w}. Trithemius . suggested to use these sub-
stitutions one after the other. But together with the idea from Blaise de de Vi-
genère’s 1586 Traicté des Chiffres of using a keyword-driven alternation between
the various Caeser ciphers, this gives the de Vigenère cipher, which was famous
as the chiffre indéchiffrable or unbreakable cipher for centuries. Formally, one has a
keyword k0, . . . , k�−1 of some length �, and repeats this as necessary: ki = ki rem �

for all i. This is illustrated in Table B.1 with the keyword k0k1k2k3k4k5 = Cae-
sar of � = 6 letters, and the encryption is yi = xi + ki.

The autokey systems proposed by de Vigenère are discussed in ??.
Modern variants, usually over the binary alphabet, are the one-time pad

(Section 2.1) where the key k is a random sequence of the same length as the
message, and variations where one has an initial segment of the key (possibly
random) and generates the remaining key letters in a pseudorandom fashion.
Modern pseudorandom generation is discussed in ??. There were electrome-
chanical machines implementing this principle already during World War II:
the Siemens Geheimschreiber in Germany, and the British Typex.

1square table of substitutions
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A systematic method for breaking the de Vigenère system was published
by Kasiski (1863) and is explained in Chapter C. Charles Babbage had found a
solution method earlier, in February or March of 1846, but never published it.
His notes were discovered in the early 1980s in the British Library; Franksen
(1984) narrates the story. The central part of Babbage’s success is his discovery
of (B.1), which he writes as

Cypher = Key + Translation− 1,

Translation = Cypher−Key + 1.

The±1 comes from the fact that he starts his alphabet with a = 1 instead of
a = 0, as we do.

Was Babbage the first to discover the key equation (B.1)?



60 Chapter B. Key addition and modular arithmetic

B.1. Key addition systems
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Chapter C

Breaking the unbreakable

steemed as “le chiffre indéchiffrable”, the de Vigenère system was
considered unbreakable for over three centuries. Its workings
and arithmetic nature have been explained in Chapter B. We now
present an attack from 1863 which brings the system to its knees.
However, it did not really diminish the system’s popularity, and it

was reinvented again and again by people unaware of this attack. first popular
acct of Kasiski? Combine Figures C.3, C.4, C.5 into one? Bugeaud & Mignotte
has appeared? End of C.3: calculate mc’s! C.4: color Playfair! Porta table

In fact, the British scientist Charles Babbage (1792-1870), inventor of the
mechanical computer, seems to have broken the de Vigenère system (see Franksen
1993), but his work was kept secret. The first published attack on the de Vi-
genère was a 95-page booklet written by the Prussian officer Wilhelm Kasiski
(1805-1881). We present his cryptanalysis, and also a tool later developed by
the US cryptographer William Friedman (1891-1969): the index of coincidence.

C.1. Kasiski’s attack on de Vigenère

In this section, we discuss the attack by Kasiski (1863) on the de Vigenère cryp-
tosystem, and in fact on a generalization of it with arbitrary simple substitu-
tions instead of just Caeser ciphers.

We have an alphabet A of s letters and a secret key k = (π0, . . . , πm−1)
consisting of m permutations π0, . . . , πm−1 of A. The encryption is by apply-
ing π0, . . . , πm−1, π0, . . . , πm−1, π0, . . . to the consecutive letters of the plaintext
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x = (x0, x1, . . .), so that the ciphertext is

y = (y0, y1, . . .) = (π0(x0), . . . , πm−1(xm−1), π0(xm), . . . , πm−1(x2m−1), π0(x2m), . . .).

In other words, we have yi = πi rem m(xi) for each i. The de Vigenère system is
the special case where an alphabetical key (k0, . . . , km−1) ∈ Am is given and

πi(x) = x + ki,

where addition in A is addition modulo s. Thus each πi is the Caeser cipher
with shift by ki. An example is given in Table B.1.

Kasiski’s cryptanalysis, that is, finding the message x and key k from y,
proceeds in two stages:

◦ find the key length m,

◦ determine each permutation π0, . . . , πm−1.

As our running example, we take the following ciphertext of 348 letters,
generated by a de Vigenère system:

0 5 10 15 20 25

0 KODGD UCXEM XGMFQ PUEUX DDOVA ZXLOE
30 HSMVY YEJRV YPAMC LWGAQ YXYSK CFOKI
60 VKYIN CSLAC BLJGW HDQXN GMMGA NJRVM
90 FQRNC GNYDE CSTXF MNPIV UWFHN RWVIN

120 UCRGM RULUC GNYDE MISWZ GTHSM TPQTX
150 FWVSF DXAFT JUVNE FWWAU AFGPC XSCST
180 XRMKN RGNRM NMFMK LFBNJ GKCKO DVXTA
210 QYXYJ ACMDR WLHZQ SNZWK CPFAS ERMGR
240 KSVRY ZDHSM KZADH XGUCP IEMVX BUNCS
270 XHSDQ DEJMC DSJRV MFMTH SMKFQ AMEFW
300 OGAAX WKQNE MMKIM EEMSX PFQRN LALKM
330 JNWLR QTAUP LAGZK OML

M N X S A G F C R K D E W
8.62 5.46 5.17 5.17 5.17 4.89 4.89 4.89 4.6 4.6 4.31 4.02 3.74

V U Q L Y T P J H Z O I B
3.74 3.45 3.45 3.45 3.16 2.59 2.59 2.59 2.59 2.01 2.01 2.01 0.86

Table C.1: Frequency table for cryptogram

In any classical cryptanalysis, the first thing is to count how often each
encrypting symbol occurs, as was done in Figure A.9 for the Gold-Bug cryp-
togram. Figure C.1 shows the frequency-ordered frequency tables for English



Cryptography, July 14, 2008, c©2008 J. von zur Gathen 63

M N X S A G F C R K D E W V U Q L Y T P J H Z O I B
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Figure C.1: English frequencies (Harry Potter, in red) and ciphertext (in blue),
both ordered by frequency.
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and for our cryptogram. The two curves differ sufficiently for us to conclude
that we are not dealing with a simple substitution. No wonder—we set it up
as a de Vigenère encryption.

For the first step in his cryptanalysis, Kasiski looks at all polygrams (= se-
quences of two or more letters) that occur repeatedly in the ciphertext, then
factors the differences of their initial positions, and determines m as the most
frequently occurring factor. He says: Jetzt sucht man zuerst zu ermitteln,
aus wieviel Buchstaben der Schlüssel besteht. Zu diesem Zweck sucht man
in der aufgeschriebenen Chiffre=Schrift alle Wiederholungen von zwei und
mehreren Chiffern auf, zählt dann die Entfernung der gleichen Wiederholun-
gen von einander, schreibt diese mit der Zahl ihrer Entfernung von einander
unter die Chiffre=Schrift und sucht diese Zahl in ihre Faktoren zu zerlegen.1

The idea is that, with sufficiently long plaintext and short key, there will a
repeated polygram like . . . you . . . you . . . in the plaintext which happens to be
encrypted by the same piece of the key:

. . . y o u . . . y o u . . .
. . . m a j . . . m a j . . .
. . .K O D . . . K O D . . .

In fact, this is precisely what takes place at positions 0 and 203 of our ex-
ample. Of course, it may also occur that unrelated pieces of plaintext and key
happen to add up to the same ciphertext. In the example, the repeated TXF at
positions 102 and 148 is of this nature. But we will see that these accidents are
not a serious obstacle.

We now turn to Kasiski’s suggestion: Look at repeated polygrams! The
polygrams of length at least three that occur repeatedly are given in the fol-
lowing list, together with the factorization of the difference in positions of
occurrences. The column “rep” gives the number of repetitions; a polygram
repeated four times gives rise to six pairwise differences. The column “first” is
the first occurrence.

Furthermore, there are 73 repeated bigrams, three of them five times, five of
them four times, fifteen thrice and fifty twice. Their statistics are in the follow-
ing table which shows for each prime power how many positional differences
it divides. Thus the factor 4 for the pentagram JRVMF gives a contribution of
one for the prime powers 2 and 22.

Furthermore, the prime powers 25, 26, 27, 132, 17, 41, 62, 71, 73, 89, 113, 137,
179, 197, 229, and 241 divide exactly one bigram difference. This table strongly

1Now one first tries to determine of how many letters the key consists. To this end, one
finds all repetitions in the ciphertext of two or more letters, counts the relative distances of
repetitions of the same polygram, writes these with their distance below the ciphertext, and
tries to factor these distances.
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polygram rep first distance
CGNYDE 2 94 5 · 7

AQYXY 2 48 7 · 23
JRVMF 2 86 22 · 72

CGNYD 2 94 5 · 7
GNYDE 2 95 5 · 7

AQYX 2 48 7 · 23
QYXY 2 49 7 · 23
JRVM 2 86 22 · 72

RVMF 2 87 22 · 72

FQRN 2 90 3 · 7 · 11
CGNY 2 94 5 · 7
GNYD 2 95 5 · 7
NYDE 2 96 5 · 7
CSTX 2 100 7 · 11

THSM 2 141 3 · 72

HSMK 2 247 2 · 3 · 7
KOD 2 0 7 · 29
MFQ 2 12 7 · 11
HSM 4 30 24 · 7, 7 · 31, 7 · 37

3 · 5 · 7, 3 · 72, 2 · 3 · 7

polygram rep first distance
JRV 3 37 72, 5 · 72, 22 · 72

AQY 2 48 7 · 23
QYX 2 49 7 · 23
YXY 2 50 7 · 23
NCS 2 64 7 · 29
RVM 2 87 22 · 72

VMF 2 88 22 · 72

FQR 2 90 3 · 7 · 11
QRN 2 91 3 · 7 · 11
CGN 2 94 5 · 7
GNY 2 95 5 · 7
NYD 2 96 5 · 7
YDE 2 97 5 · 7
CST 2 100 7 · 11
STX 2 101 7 · 11
TXF 2 102 2 · 23
THS 2 141 3 · 72

EFW 2 164 7 · 19
MFM 2 191 2 · 47
SMK 2 248 2 · 3 · 7

Table C.2: Repeated polygrams of length at least three.

prime total length of polygram
power 6 5 4 3 2

2 72 1 3 8 60
22 42 1 2 4 35
23 21 1 20
24 10 1 9
3 53 3 7 43

32 6 6
5 40 1 2 3 6 28

52 2 2
7 129 1 4 11 28 85

72 28 1 3 7 17
11 26 2 5 19

prime total length of polygram
power 6 5 4 3 2

13 10 10
19 5 1 4
23 18 1 2 4 11
29 10 2 8
31 6 1 5
37 4 1 3
43 7 7
47 6 1 5
59 2 2

109 2 2
127 4 4

Figure C.2: The number of times that prime powers divide distances between
repetitions.
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indicates a key length of seven, and we take seven as our first guess for the key
length. We split y into seven blocks z0, . . . , z6, consisting of each seventh letter,
so that

(C.1) zi = (yi, yi+7, yi+14, ...).

z0 : KXQDOYAQFIBQAQDMFNUDGQFUAXMMFKQMQPGZAPUDDMQGNEQMTZ
z1 : EPOEEMYONLXNRENHULETTDVUSKNBOYDSFRDDINQSTAAEERJAK
z2 : DMUVHJCXKCJNJNCPNCUMHXXNACNMNDXRNAKHHECDJHMAMMNNUO
z3 : GXEASRLYISGGRCSIRRCISFAEFSRFJVYWZSSSXMSERSEXMSLWPM
z4 : DGUZMVWSVLWMVGTVWGGSMWFFGTGMGXJLWEVMGVXJVMFWKXALLL
z5 : UMXXVYGKKAHMMNXUVMNWTVTWPXNKKTAHKRRKUXHMMKWKIPLRA
z6 : CFDLYPACYCDGFYFWIRYZPSJWCRRLCACZCMYZCBSCFFOQMFKQG

Depending on the system used, each block zi is either enciphered with a
Caeser system, or by some arbitrary permutation πi. We start with the first
case, corresponding to the de Vigenère system, and which is indeed used in
our example.

The cleartext corresponding to a block zi is made up of each seventh letter
of some English text. Thus it does not consist of English words, but can still
be expected to follow the frequency distribution of English letters. The same
holds for zi, except that it is translated by a Caeser shift, and we can expect to
solve it by frequency analysis. An inconvenience is that the available cipher-
text is much shorter, namely only one seventh of the original length, which
comes to about 50 letters in our case.

We set up the seven frequency tables:

z0 :
Q M D F A U G Z X P N K Y T O I E B M
9 6 5 4 4 3 3 2 2 2 2 2 1 1 1 1 1 1

z1 :
E N O D T S R A Y U L K X V Q P M J I H F B A
7 5 4 4 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1

z2 :
N M C H X J U D A K V R P O E J
9 6 6 5 4 4 3 3 3 2 1 1 1 1 1

z3 :
S R E X M I G F Y W L C A Z V P J O
11 6 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1

z4 :
G V W M L X F T S J Z U K E D A C
8 7 6 6 5 3 3 2 2 2 1 1 1 1 1 1

z5 :
K M X W V U T R N H A P Y L I G G
8 6 5 3 3 3 3 3 3 3 3 2 1 1 1 1
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z6 :
C F Y Z R W S Q P M L G D A O K J I B Y
9 6 5 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1

The letters that do not occur in zi are not shown. Now the easiest approach
is to assume that the most frequent letter represents E. For z0 we take Q and
obtain the key as k0 = Q − E = M . The seven key letters obtained by this
crude guess are given in the last column. But Kasiski (1863) warns: Man wird
jedoch nur in seltenen Fällen so glücklich sein, aus einigen Zeilen alle richtigen
Buchstaben des Schlüssels durch die Schlüssel-Tabelle zu ermitteln, [. . . ] weil
die Buchstaben der Schrift zwar im Allgemeinen in dem [üblichen] Verhältniß
vorkommen; in kürzern Schriften jedoch sehr auffallende Abweichungen statt-
finden können.2 And indeed ours is not one of those rare cases. When we
decipher with the key MAJOCGY, we find:

YOUSB OELED JEGHE PLQSR FROMM XRNCE
YEKPA MEADT SROMT XUACE YOKQE ETOBU
TEAWN TEJUE PLASU BFEXE SKGIO NADTG
HEREO EHARE TERRH ANGUT OYTHE DUPKB
UTDEG TILLO EHARE DUQQB UTYEK NRETO
RUPUT DOMDN LIVEQ DQYOU RREJE LSTER
RTAKE DEHTA NDRKE NTBEV EEEYO UHVNC
EYOKH UEADI IJBBE SELUE EDFRE CLOUR
BETLA NDYEK EBODY JEOED IVYTR DINTE
VBURQ UQHGE RSADT GHATY EKEHE ADQDQ
QUARJ UESBE DYICO SEDEV JHERE XYFMA
JEIJL SHALB JUINK FYJ

We recognize some English-looking pieces of text, but clearly we have not
deciphered the message.

A more successful method is not to rely just on E as occurring most fre-
quently, but to try to match visually the English frequencies with a shift of the
ciphertext frequencies. We only do this for the fourth block z3. According to
the categories in the small figure on page 38, the most frequent ciphertext let-
ter S (= 18) is likely to stand for e, t, a, or o (= 4, 19, 1, 14). This corresponds to
shifts by O, Z, S, or E (= 14, 25, 18, 4).

In Figures C.3, C.4, and C.5 we display English frequencies and those of z3,
shifted by −O, −E, and −A, respectively.

3 figures on one double page
In which of the three figures do you see the better match? The shift −E

looks calmer than the others because the black and colored lines cross each
2Only in rare cases will one be so lucky as to determine all key letters correctly by this table,

given a ciphertext of a few lines. The reason is that the cleartext letters occur in general with
the usual frequencies, but that there can be considerable fluctuations in short texts.



68 CHAPTER C. BREAKING THE UNBREAKABLE
C.1. KASISKI’S ATTACK ON DE VIGENÈRE
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Figure C.3: English frequencies (in black) and the frequencies in z3 shifted by
−O (in red).
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Figure C.4: English frequencies (in black) and the frequencies in z3 shifted by
−E (in green).
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Figure C.5: English frequencies (in black) and the frequencies in z3 shifted by
−A (in green).
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other least often. Two standard measures, namely the sum of the absolute val-
ues of the differences and the sum of their squares, confirm this impression:

shift −O −E −A∑ |diff| 75.73 60.75 73.42∑
diff2 366.15 273.81 418.22

In ??, we will learn a computational method, called the index of coinci-
dence, that implements such a visual approach quite reliably.

This visual analysis, applied to all seven subtexts, reveals the correct key-
word MAJESTY. The plaintext is the sentence of the British conspirator Layer
in 1722 (page ??), and you can check that the “English-looking” parts of the
incomplete decipherment on page 67 agree with the plaintext in the four con-
secutive positions −1, 0, 1, 2, corresponding to the correct key letters YMAJ.
Somewhat informally, we can describe this cryptanalytic method as follows.

ALGORITHM C.2. Kasiski attack on de Vigenère cipher.
Input: ciphertext y, assumed to be de Vigenère-encrypted.
Output: key length �, key k and cleartext x, hopefully. Otherwise “no Vi-

genère”.

1. Set up the table of repeated polygrams and their factored positional differ-
ences, as on page 64.

2. For each prime power, determine how many positional differences it di-
vides, as on page 65.

3. Guess � as the product of some of the most frequently occurring prime
powers in step 2.

4. Form � ciphertexts z0, . . . , z�−1 by taking each �th letter from y, as in (C.1).
5. Assume that each zi is a simple substitution, and cryptanalyze it with Al-

gorithm ?? simple substitution algorithm. If one of these return “no simple
substitution”, then go to step 3.

6. Try to match the various answers returned in step 5.

The de Vigenère cipher was considered unbreakable (“chiffre indéchiffrable”)
for several centuries. Even Kasiski’s successful attack in 1863 took quite some
time to become widely known. But the basic idea of Kasiski’s method had
already been glimpsed in the Renaissance!

Giovanni Battista della della Porta (1535–1615) published in 1563 his De
Furtivis Literarum Notis3. He describes a large variety of cryptosystems, many
of them beautifully illustrated and quite impractical to use. Included is an
imaginative representation of a skytale, and the della Porta disk (see ?). In the
second edition, from 1602, della Porta proudly starts his Chapter 17 on “how

3On secret encryptions of messages
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a message prepared with a key may be solved and read without the key” with
NVNC rem arduam & magnam molimur4.

He deciphers the following message of 77 letters, which he has set up him-
self:

0

mmmbt
5

xco px
10

b dfbv
15

gst in
20

rgtn g
25

tc cc c
30

tg amh
35

cm aht
40

o

xtmo
45

q slqp
50

r mmmb
55

tth mh
60

v, aceo
65

hg lll
70

li nxi
75

og.

della Porta’s original text shows some word divisions, but not the position
numbers that we put on top. della Porta makes several observations, most
of which are not useful in general. But he points to the repetitions of mmm
in positions 0 and 51, and the llll in position 67. And then he says: Since
there are 17 letters between the 3 letters MMM and the 4 letters LLLL and
51 between the first 3 MMM and the same 3 letters repeated in the thirteenth
word, I conclude that the key has been given 3 times, and decide correctly that
it consists of 17 letters.

For the repeated mmm, this is Kasiski’s argument! della Porta fails to say that
he has to take the second l of llll. He does not look at arbitrary repeated
polygrams, as Kasiski does, but only at consecutive repetitions of the same
letter in the ciphertext. These arise, for example, when there are arithmetic
progressions in the plaintext and the key, one with the negative increment of
the other.

He then guesses the 17-letter keyword, first studens sic deficio and studium
sic deficio incorrectly, then studium hic deficit5 correctly, to find the plaintext

0

ponti
5

ane, es
10

t uxor
15

tua mo
20

rtua, v
25

ix ut s
30

it nom
35

en suu
40

m,

nihi
45

l mane
50

t, pont
55

ius cu
60

r stud
65

et non
70

me lat
75

et.6

We note that della Porta has taken great care to include the arithmetic se-
quences cdef, pon and [r]stu for plaintext and key. He has encrypted four letters
incorrectly.

della Porta’s observations do not yield a general method for breaking de Vi-
genère systems. The key ingredient of Kasiski’s approach is present: the key
length is likely to divide positional differences of repeated polygrams. But
neither della Porta nor any other cryptographer took up this insight at the
time—as far as we know—and the de Vigenère remained secure for another
250 years.

4We will now undertake a great and difficult enterprise.
5eagerness is missing here
6della Porta presumably had a hard time making up a phrase that displays his arithmetic

progressions in the right places, and it is not easy to make sense of the cleartext: Pontiane is
your wife, recently deceased; let her name be [praised], no [tears] shed; it is not hidden to me
why Pontius makes an effort.
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Chapter D

Codebooks

Simple substitutions generalize the Caeser cipher. One step further are the
nomenclators and codebooks, which we present in this chapter. They work
like simple substitions, except that they have much larger alphabets: not just
letters, but also bigrams, syllables, words, and names of people and places.
Examples exist already from the 14th century, and a century later we find code
factories at work that output series of codebooks by minor variation of a gen-
eral template. In the First World War, top secret dipolomatic messages were
encrypted in this way, for example the Zimmermann telegram discussed in
Chapter F. These nomenclators encode many frequently occurring words with
individual encryptions. We will see examples of their use by British and by
Cuban conspirators (Sections ?? and ??), and in private correspondence (Sec-
tions ?? and ??). The idea was employed in a different way when the telegraph
came into use, namely in the form of commercial codebooks for reduced tele-
graph costs. If secrecy was needed, they could be superenciphered.

D.1. Nomenclators

A codebook (or code) is a list of frequently used terms (plus individual letters
and, sometimes, syllables) and a codeword for each of them. They have been
used since the Renaissance, and had their own renaissance with the rise of
telegraphic correspondence, in particular the trans-Atlantic cable in 1866.

Historically, they were called nomenclators. This was originally the designa-
tion of the ushers who called out (calamare) the name (nomen) of a dignitary en-
tering a party, and carried over to those secret books that contained the names
of many dignitaries.

We do not know when codeboooks of substantial size came into use, but an
example from 1377 claims to be an original invention by the King of Navarra,
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and seems to be the oldest surviving sample. During the hundred-year war,
the Spaniards were allied with the English against the French. King Charles of
Navarra used a codebook to communicate with his agent Pierre du du Tertre at
Bernay in Normandy, and with his English allies. Both the complete codebook
and the story of its invention have survived in the Chronique Normande, written
when?.

En l’an mil .CCC. LXXvij., en Karesme, fu aprocheue une soutille
maniere de faire du roy de Navarre devant dit contre le roy de
France, en maniere de traison, d’escripre couvertement et muer les
nomz des prinches, des chastiax et bonnes villes en aultres nomz
que les euz propres, si comme il aperra cy après, et fais par la sutil-
ité mestre Pierre du Tuetre, conseillier du dit roy de Navarre.1

When Charles de de Valois, King of France, captured the city of Bernay, du
du Tertre was caught, and he and another councillor ourent les colz trenchez2 on
28 June 1378. The codebook of 124 words includes the following:

Rex Francie, Nummularius;
Imperator, Agrippa;
Rex Anglie, Laceratus;
Rex Arragonie, Possessor;
Rex Castelle, Instrusor;
Rex Navarre, Callidus;
...
Dominus Karolus Navarre infans, Repertus;
Dominus Petrus, Restaurator;
...
Cesarisburgum, Capitolium;
Mare, Planicies;
Naves, Aquatice;
Monspessulanus, Bipennis;
Burdegalis, Ambrosia;
...
Burgundia, Detenta;
Normannia, Bispartita;
Britannia, Vulnerata;

1Before Easter 1377, a subtle method of acting secretly against the King of France was de-
vised by the King of Navarra. This was by writing covertly and moving the names of princes,
castles and larger cities to other names, not their own, as apparent below, and it was made by
the subtlety of Master Pierre du du Tertre, councillor to the King of Navarra.

2had their necks cut
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...

The cleartext words shown here are: the King of France, the (German) Em-
peror, the Kings of England, Aragon, Castille, and Navarra; the sons Charles
and Peter of the King of Navarra; Cherbourg, sea, ships, Montpellier, and Bor-
deaux; Burgundy, Normandy, and Brittany.

The King’s two sons were held hostages by their uncle, the King of France.
A sample letter from the King, written on 1 May 1378 at Pamplona, begins as
follows:

S’il estoit ensy que Nommularius ne laissast partir de luy Repertum,
il est de neccessité que Vexatus pense et ymagine aucune voie com-
ment Repertus puist venir en Bispartie vers Capitolium.3

The King of France later did release the two sons and gave them back their
lands in Normandy, now as fief of the King of France.

One century later, the new invention has become routine business. Fig-
ure D.1 exhibits an example from 1463. It comes from the records of the Mi-
lanese Cancelleria segreta4 which were mainly produced by Francesco Tranchedino
(1441–c. 1496). They show an early Renaissance code factory at work. Since
1450, Cicco Simonetta had been First Secretary of the Secret Chancellery at the
court of the Sforza Dukes in Milan. He wrote in 1474 the oldest Western text
on cryptanalysis that has been conserved. (The Arab cryptographers like Al-
Kindi had been centuries earlier; see ??) Nicodemo Tranchedino (1411-1481)
was a well-known humanist and occupied a high position in the government.
His son Francesco worked for Simonetta and produced in 1475 a catalog of 159
Milanese codebooks up to that time. This forms the nucleus of the manuscript
which was continued by other officials and gives 297 such ciphers in total.

The cipher in Figure D.1 is quite typical. It starts with the date 23 August
1463 and the recipient D. [Dominus = Mr.] Antonio de Besana. Then the cipher
begins with either two or three encryptions of the 21 letters plus &, con, and ex.
The letters A, e, h, l, and q get three possibilities, the others two. Then come 12
dummies (Nulle) and 12 signs for doubled letters (Duplicate), from bb to tt. The
center part has 63 signs for bigrams of the form ‘vowel plus consonant’. The
last part is the nomenclator proper and has encryptions of 31 codewords:

Pope, King of France, René d’Anjou (titular King of Naples), King
Ferrante of Naples, Duke Philip the Beautiful of Burgundy, Duke
Johannes (?), Duke of Milan, Venetians, Florentinians, Saona, Gen-
ova, Genovese, Santa Liga ? federatore ?, your government (La S.ria

3If the king of France will not release my son, it is necessary that du du Tertre think and
imagine a way how my son can come to Cherbourg in Normandy.

4Italian for MSA = Municipal Security Agency
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Vra = La Signoria Vuestra),Liga, Johannes, Saona
soldiers, cavallery, footsoldiers, dollars, ships, galleons, King Al-
fonso VI of Aragon, Count Iacobo Picinino, Italy, Germany, Duke
of Savoy, council of cardinals, France, D. Phillip of Savoy,
that, because, not.

The total comes to 165 signs.hideFerrante was an illegitimate son of Alphonse
the Generous (der Grossmütige). Johannes? Liga federatore?

Some of the encrypting symbols resemble letters or digits, but most are
phantasy signs. It takes a careful and patient hand, experienced in this kind of
cryptTEX, to put down long messages with such contrived symbols. The diffi-
culty in reading them may have suggested a false sense of security, but in fact,
a legitimate user faced the same problem, at least initially. Most of the code-
books in Tranchedini’s compilation are dated, from 1450 to 1496. The longest
one has 283 symbols. The various codebooks all follow the same structure but
use varying symbols, with plenty of room for the designer’s fancy.

These records form an impressive display of the power of Northern Italian
cryptography in the early Renaissance.

We now jump another hundred years ahead. Henry III. (?), a calvinist King
of France, had as powerful enemies the family of Guise. They formed the
Catholic Holy League in 1576, with the goal of putting one of their bloodline
on the throne. Henry III. had the two leading brothers murdered in 1588; the
narrow passage in the Blois castle on the Loire, where Henri de de Guise was
assassinated at 8 am on 23 December 1588, is now a favorite tourist sight. A
third brother, Charles de de Lorraine, Duke of Mayenne, took over leader-
ship of the League. After the murder of Henry III. by a Catholic priest in 1589,
the Protestant King Henri IV. quickly gained the upper hand militarily. The
Duke of Mayenne’s ambition was still to become King himself. When it be-
came apparent that the Ligue’s military power was not sufficient, he schemed
to involve II (1527-1598), the King of Spain and Portugal, in his plans. Besides
invoking their common religion—then as now a major excuse for killing the
others—he offered a substantial prize: large parts of France, namely the Rous-
sillon in the South, and the Picardie bordering on the Spanish Netherlands.
Their possession had been a Spanish goal for some time.

Commander Juan Moreo was delegated in 1589 to the Spanish army ready
to aide the Ligue. For his communication with the Spanish court, he had a
codebook of 423 terms, plus dummies and signs for doubling letters and for
numbers. Figure D.2 shows its initial part in modern type. The original seems
to have been lost, but the Spanish archives at Simancas contain another code-
book with striking similarities. This was issued for use with John Baptist of
Taxis around 1590. Its beginning is shown in Figure D.3; in the original, this
is just one column (out of seven in total) which we have split into two for the
reproduction.
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Figure D.1: One of Tranchedini’s nomenclators.
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The cleartext words are the same in both codebooks, but the encryptions
are different. For Moreo’s book, they are the underlined numbers from 0 on
(and going to 99, not shown here), while in Taxis’ cipher they are three-letter
syllables “consonant + vowel + m”. The consonants are used in descending
order: s, r, qu, p, n, m, l, j, h, g, f, d (and continuing to b on another page).
For each consonant (except s) the five vowels are used, for example towards
the end: fum, fom, fim, fem, fam. In other parts, Moreo’s cipher has such
two- and three-letter syllables, and Taxis’ has underlined numerals.

We see a well-organized cipher factory at work. They have a list of clear-
text words, which may be copied for the different ciphers, and standardized
(but not identical) types of cipher equivalents, mainly certain two- and three-
letter syllables and over/underlined or dotted numerals. These are inserted in
several sections, with an alphabetical or numerical order (or reversed order) in
each section. The use of standard signs is progress over the contrived symbols
in Tranchedini’s codebooks.

Both codebooks contain provisions for dummies, double letters and num-
bers. In Taxis’ cipher, this reads in the bottom lines of Figure D.3: Las Nullas

tendran una raya enzima exemplo 19, y las dupplicis un 0, como esto
0

46
0

25 y

todos los que fueron num.os tendran una cruz encima
+

10
+

20.5

Henri IV, King of France and Philipp’s adversary, had in his services the
lawyer François Viète (1540-1603), who also happened to be one of the leading
mathematicians of his times. He introduced the use of letters for known quan-
tities in algebra, and expressed by Viète’s formula the coefficients of a polyno-
mial in terms of its roots; we use this for the elliptic curve addition rules in ??.
Viète deciphered Moreo’s codebook; this was a major cryptanalytic achieve-
ment. After such a success, one usually keeps mum about it, expecting the
enemy to continue using it and so to provide more secret messages which can
then be deciphered. But here something unusual happened: Viète published
a lengthy letter, sent by Moreo from Anvers (Amveres, Antwerp) to Madrid
and which he had deciphered, in a booklet pages ?. Figure D.4 shows its title
page:

Decipherment of a letter written by Captain Moreo to his chief-in-
command, the King of Spain, on 28 October 1589

To the King our Lord
in the hands of Don Martin de Idiaquez, his secretary of state.
Sir. From Rouen I sent a letter to Y. M. with the message whose du-
plicate goes with the present one. I mentioned that, after returning

5The dummies will have an overlining bar, for example 19, and double letters a 0, as
0
46 and

0
25, and those that signify numbers have a cross above them:

+
10,

+
20.
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Figure D.2: The initial part of the Spanish codebook for Juan Moreo, from
Devos (1950), page 329.
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Figure D.3: The initial part of the original codebook for Taxis, from the Spanish
archives at Simancas.
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to where the Duke of Mayenne was, I found him in open and dan-
gerous territory. This obliged me to drop everything and to come
here for help, and to give the Duke of Parma an account of the state
of affairs. . . .

Throughout the Spanish text, Viète gives his marginal precis in French, as on
the title page:

Moreo has written to the Duke of Parma to induce him to relieve,
with his forces from Flanders, the Duke of Mayenne.

We can only speculate about the reason for going public, but it had the ef-
fect of rallying the French nobility around Henri IV, enraged about the Duke’s
proposed betrayal of French territories. II had been so convinced of the se-
curity of his nomenclator that he complained to Pope Sixtus V. popes: Gre-
gory XIII 1572— May 1585, Sixtus V 1585—1590, Urban VII 1590, Gregory XIV
1590—1591 that Viète’s successful cryptanalysis could only have been possible
through black magic. His complaint made him the laughing-stock of all those
in the know. Viète’s biography mocks the Spanish qui ad odium & invidiam ni-
hil non comminiscuntur, magicis artibus, nam aliter fieri non potuisse, à Rege
id factum, passim & Romæ præcipuè non sine risu & indignatione rectiùs sen-
tientium per emissarios suos publicabant.6

And what happened to King and Duke? Henri IV. eventually became
Catholic: Paris vaut bien une messe.7 The Duke of Mayenne gave up his fight
for the crown and Henry treated him generously, praising him for not having
permitted, in good or bad luck, the dismembering of France.

Viète was a successful cryptanalyst, but his vanity was counter-productive.
He bragged in front of Giovanni Mocenigo, the Venetian ambassador in France,
about his abilities in code-breaking. The wily diplomat teased him into admit-
ting that he also solved Venetian codes, and even into exhibiting an example.
When the Council of Ten, back home in Venice, learnt about this, they imme-
diately changed their codes.

When designing a codebook, one starts with an alphabetical list of the
words to be encoded. The number of words may range from a few dozen
in the early Renaissance to 10 000 and more in the 20th century. ref for 10 000
words Furthermore, one fixes the type of encryption to be used; underlined
numbers and three-letter syllables in Figures D.2 and D.3, respectively, and 5-
digit numbers plus 3-letter codes in the German naval codebook from 1913 in
Figure F.1. These encodings also have a natural order.

6who never stop from making up any slander and bad-mouthing, announced everywhere
and to Rome in particular through their emissaries that the King’s achievement had been done
with magic arts, because it was not possible otherwise, to the amusement and indignation of
those in the know.

7Paris is well worth a mass.
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Now in a one-part codebook one simply associates the codes in the words in
natural order. This is the case in the three examples mentioned. In Figure D.3,
the “natural order” of the codes is s, r, q, p, n, m, l, j, h, g, f, d, that is, the
reverse of the alphabetic order. Then the syllables are completed by appending
-um, -om, -im, -em, and -am.

This construction provides a great help to the cryptanalyst. In Figure D.2,
if catolico=48 and christiandad=52 are already known, then the code for cavallo8

must be 49, 50 or 51. On the other hand, if he encounters the unknown cipher-
text 50, then its cleartext is guaranteed to lie between católico and christiandad in
any (contemporary) dictionary. The advantage for the legitimate user is that a
single list permits an “alphabetic search” both for encryption and decryption.

In a two-part codebook, the codes are assigned to the codewords in random
order. This provides much higher security, because now encryptions cannot be
inferred from neighboring words, but has the disadvantage of requiring two
separate lists for easy encryption and decryption.

An intermediate amount of randomness is used in codebooks that con-
sist of pages of alphabetically ordered words, say numbered from 0 to 99,
but where the pages themselves are randomly shuffled. We might call them
one-and-a-half-part codebooks. The German diplomatic codebook 13040, in
which the Zimmermann telegram (Chapter F) was sent in 1917, was of this
type, while the other codebook used in that affair, called 0075, was of the two-
part variety.

D.2. Commercial codebooks

The introduction of the telegraph and its rate structure made it desirable to
shorten message. Commercial codebooks catered to this need. Words and
whole phrases are replaced by short codewords, regulated by the International
Telecommunications Union in 1932 to be at most five letters long. (For the
younger reader: Once upon a time there was neither email nor SMS, and peo-
ple had to rely on primitive forerunners called telegram and telex.)

The first telegraphic code book was published in 1845, just one year after
the start of commercial telegraphic operations.

These codes safeguard against accidental reading, but provide no real se-
curity. As an example, Lieber’s 1896 Standard Telegraphic Code presents on its
800 pages about 75 000 entries. Each entry associates both a 5-digit number
and a (phantasy) word of at most ten letters, beginning with a letter from A to
F, to a phrase. The words and the phrases are sorted alphabetically, the latter
by keywords. In this code, the message

(D.1) 27556 03529 09715 00029 24695 04305 22454 28909

8horse
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Figure D.4: Viète’s decipherment of a Spanish missive.9
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of eight words is synonymous with

Babishly, Acerquen, Aggiunsero, Aalkasten, Atortolar, Acontiadae,
Arrozzendo, Barbarizo.

Both encode the less than cheerful (fictitious) message of 70 words:

A great panic prevails here, caused by the news [that] | there has
been a very heavy bank failure here to-day which will seriously
affect our market. | Present acting officers of this corporation |
have absconded; [we] are on their track, utmost secrecy necessary.
| Money market is in a panic. | Bonds are depressed on rumors
that they will default on the interest. | [We] have suffered heavy
losses. | Send immediately for best physician.

The words in brackets have been added, and the vertical strokes separate
phrases.

These codebooks serve no cryptographic purpose, being publicly available.
A certain level of secrecy can be gained through superencipherment, by choos-
ing a secret key and using it in a (carryless) key-addition scheme. This was
proposed (in a slightly different context) by the German cipher bureau during
the First World War page?. With their key 718, the message (D.1) would be
superenciphered as

98327 80606 17423 71890 01772 12013 93225 05086.

D.3∗. Unicity distance for codebooks

So we have a codebook σ : X −→ Y, with s = #X codewords. The “words”
in X form the vocabulary of the messages and may be letters, syllables, words,
personal names, etc. An attacker will have a reasonable idea of the relevant
words, and be able to construct a bigger vocabulary X′ so that almost all words
of X are in X′. The two extremes are when nothing is known about X, so that X′

consists of all conceivable words, and when X′ = X, which might occur when
a codebook with the same vocabulary has already been broken; see Section F.1.
To quantify this scenario, we let X′ have at most cs elements, among them at
least (1−ε)s elements of X, for some c ≥ 1 and ε ≥ 0. In the two extreme cases,
we would have ε = 0, and c = (number of all words)/s or c = 1, respectively.
When the number of all conceivable words is L, we have

(D.2) m =

(
cs

(1− ε)s

)(
L

εs

)

many choices for X, given s, L, ε, c and X′. The first factor stands for the (1−ε)s
elements of X in X′, and the second factor for the other elements of X. When
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ε = 0 and c ≥ 3.6, then (D.2) simplifies to

(D.3) m ≈ ((c− 1)e1+ 1
c−1 )s ≤ (4(c− 1))s.

The set Y of encodings (or a close superset of it) can be guessed from the
ciphertext.

Now if the codebook is ordered (“one-part”), then the only secret part of Y

is its offset, the place that encodes the first codeword in X. There are � choices
for this, and so there are m · s many keys.

If the codebook is random (“two-part”), then there are s! possibilities for σ,
given X and Y, and thus m · s! many keys. one-part def’d?

In a mixed codebook, the ordered encodings Y are split into b blocks of
length s/b each, these blocks are shuffled randomly and then assigned to the
codewords. Thus the order within each block is conserved, but not globally.
The codebook in Figure which code book is of this nature: The number of keys
then is m · b!.

Simplifying somewhat, the information content I(K) of a key is log2(#K)
for the random keys that we consider, and thus

I(K) ≈
⎧⎨
⎩

s · logc ordered,
s · log(sc) random,
s · logc +b · logb b blocks.

The alphabet size is s, and for the entropy of a single word we have the
following measurements:
We can now calculate the unicity distance for some codes:

Moreo Layer Signalbuch 13040
s
c
b

I(K)
H(p)
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D.3
∗
. Unicity distance for codebooks
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HistChapter Head missingChapter E

Transposition ciphers

ieces of text—say, a letter or a word—are changed by a substi-
tution into a different piece. This creates “confusion”. A com-
pletely different effect is obtained by transpositions, which move
the pieces around in a text without changing them individually;
this creates “diffusion”. Suitably combined and generalized, these

two operations form the basis of almost any strong cryptosystem. We dis-
cuss three types of transpositions in this chapter: the Greek skytale, columnar
transpositions and grilles. Get image of 9th c columnar transposition? Quote
Friedman/Mendelsohn/Beiler on Verne. Ex of columnar transposition in Sec-
tion E.3: Wilkins quote in 5 columns? Who is Lysandrs Roman partner? Quote
book + transl. Skytale: etymology, quote Birds and Gellius precisely

E.1. The skytale tale

Our civilization owes much to the classical culture of the Greeks. Among them,
the Spartans contributed little to improving human existence; their forte was
warfare. It is not surprising that one of their few novelties was a military cryp-
tosystem, based on transposition and called a σκυταλη (skytale, rhymes with
Italy). The historian Plutarch (c. 45–c. 125) cite Plutarch describes in his Parallel
Lives the unscrupolous Spartan general Lysandros (died 395 BC) whose motto
was: You cheat children with dice, and men with oaths. When Lysandros’ bru-
tal and corrupt reign over the Greek cities that he had subdued became too
much for the rulers of Sparta, they sent him an encrypted message ordering
him back to Sparta. Plutarch writes:

When the ephores, Sparta’s rulers, send out a military expedition, they
have two round wooden sticks made, exactly equal in length and thickness
and whose ends fit together. One of them they keep, the other they give to
the expedition leader. They call this wooden piece a skytale. If they have a
secret important message, they prepare a long strip of papyrus or leather like
a belt and wind it around their skytale. They leave no spaces, but the surface
is covered everywhere with the strip. When this is done, they write their mes-
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sage on the strip wound around the skytale. After writing, they remove the
strip and send it without the piece of wood to the expedition leader. When he
receives it, he cannot read anything, because the letters are not connected but
torn apart. So he takes his own skytale and winds the strip around it. If this is
done properly as before, the eye can detect the connection of the letters.

Back home in Sparta, Lysandros was able to appease the rulers, went on a
pilgrimage, later became a general again and fell in battle some years later.

skytale! This is a very weak form of cryptography, and a few trials with the
“strip of papyrus” give away the secret.

In fact, the story is weak as well. Besides Plutarch, several authors includ-
ing ?Gellius from the third century BC or later mention the skytale’s use in
the fifth century or before. But in the older writings, up to the fifth century
BC, the skytale usually plays the role of a “message stick”, around which a
(plaintext) message is wound for convenient long-distance transportation, but
no cryptographic purpose is ever mentioned.

Thus it is quite possible that the cryptographic use of the skytale is a fig-
ment of the imagination of later ancient writers, which has been perpetuated
in many cryptographic writings to this day. However, there is no final proof
one way or the other.

The famous cryptosystems of Caeser and Augustus (Section A.3) are in a
similar state of limbo. The later writers tell us profusely about them, but we
have no contemporary documents exhibiting their actual use.

skytale etymology. Skytale in 1341?? Journal des Scavans 20 July 1676.
Aristophane’s dates, check Kuhoff, insert skytale pix from Porta

E.2. Columnar transpositions

These transpositions were briefly described in Example A.2 (ii): one writes
message in rows which are then read columnwise. Such ciphers were used in
the Layer conspiracy (??, see page ??). In fact, there exist medieval examples
of text written in columns (and read rowwise), already from the 9th century.

The example given of a 3× 2 columnar transposition is easy to generalize.
For a closed formula for the general r × c transposition, we put the numbers
0, . . . , �− 1 with � = rc row by row in an r × c array:

0 1 2 . . . c − 1
c c + 1 c + 2 . . . 2c − 1
...

...
...

...
(r − 1)c (r − 1)c + 1 (r − 1)c + 2 . . . rc − 1

=

0, 0 0, 1 0, 2 . . . 0, c − 1
1, 0 1, 1 1, 2 . . . 1, c − 1

...
...

...
...

r − 1, 0 r − 1, 1 r − 1, 2 . . . r − 1, c − 1

Then the row index u and the column index v on the right corresponding to i
on the left are given by

u = �i/c�, v = i− cu.
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For example, the third entry in the second row corresponds to i = c + 2 and to

(u, v) = (1, 2) =
(�(c + 2)/c)�, c + 2− c · 1),

provided that c ≥ 3.
Similarly, we put them column by column into the same array:

0 r 2r . . . (c − 1)r
1 r + 1 2r + 1 . . . (c − 1)r + 1
...

...
...

...
r − 1 2r − 1 3r − 1 . . . rc − 1

=

0, 0 0, 1 0, 2 . . . 0, c − 1
1, 0 1, 1 1, 2 . . . 1, c − 1

...
...

...
...

r − 1, 0 r − 1, 1 r − 1, 2 . . . r − 1, c − 1

Now we have for the row and column indices u
′ and v

′ corresponding to j:

v
′
= �j/r�, u′

= j − rv
′
,

for j = 0, 1, . . . , cr − 1.
Thus the transposition i �→ j is given by

j = u
′
+ rv

′
= �i/c�+ r(i− c�i/c�) = ri− (rc− 1)�i/c�.

More generally, the letters of the message may be arranged in some geo-
metrical pattern which has to be read according to previously fixed rules (the
key), as in Figure E.1. Can you discover the message? Wilkins describes sev-
eral others, and concludes: All these kinds may be varied unto divers other
more intricate transpositions, according as a man’s fancy or occasion shall lead
him.

Figure E.1: A transposition cipher by Wilkins.

Just before its final defeat in the Second World War, the German military
used a columnar transposition system they called Rasterschlüssel 44, from Au-
gust 1944 to the end in May 1945. It was hard to use and error-prone, but
also much more difficult to break than the Enigma by the cryptanalysts in the
US and at Bletchley Park, who called it “practically unbreakable” and said “it
defeated our cryptographers”. Columnar transpositions have appeared in lit-
erary works. In Jules Verne’s classic Voyage to the Centre of the Earth, the hero,
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Figure E.2: The Runic columnar transposition in Verne’s Voyage to the Centre of
the Earth.

a German professor named Lidenbrock, has discovered by chance a piece of
parchment with Runic writing on it (Figure E.2). He first transcribes it into our
letters

m.rnlls esreuel seecJde
sgtssmf unteief niedrke
kt,samn atrateS Saodrrn
emtnaeI nuaect rrilSa
Atvaar .nscrc ieaabs
ccdrmi eeutul frantu
dt,iac oseibo KediiI

and then begins his guessed plaintext attack, assuming the presumed author’s
name Arne Saknussem to appear in the cryptogram. Lo and behold, we see
it indeed in the first letters, starting with the S in the third line of the last
column, and then reading against the usual direction. Particularly convenient
is Lidenbrock’s capital S, while Runic writing does not distinguish between
small and capital letters. With this much help from the author (Verne, not
Saknussem), the brilliant Lidenbrock cannot help but recover the plaintext:

In Sneffels Yoculis craterem kem delibat umbra Scartaris Julii intra calendas de-

scende, audas viator, et terrestre centrum attinges. Kod feci. Arne Saknussem.1

1Audacious traveller, descend into the crater of Sneffels Yokul which the shadow of Scar-
taris caresses during the first days of July, and you will reach the centre of the earth. Which I
did. Arne Saknussem.
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These instructions by Saknussem send Lidenbrock, his young nephew and a
tough Icelandic guide off to a fantastic trip towards the centre of the earth—
one of the voyages announced by Verne Holidays but still not available for book-
ing.

E.3. Breaking a columnar transposition

When the frequency distribution of some ciphertext y is close to that of En-
glish, one may suspect that it was produced from some English plaintext x by
a transposition. If it comes indeed from a r × c columnar transposition, this
is easy to find out. Namely, a bigram (= two adjacent letters) xixi+1 in x is
mapped to ciphertext letters yj and yj+r for some unknown j.

r

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi xi+1

yj−1

= yj

yj+1

yj+r−1

= yj+r

yj+r+1

The first step is to prepare a list of bigram frequencies fb,Eng in percent (includ-
ing contacts across words) for all bigrams b. Thus fth,Eng = z means that the
bigram b = (t, h) occurs z

100
· 335006 many times in Harry Potter, since the text

consists of 335007 letters and one fewer bigram. ?? shows this list based on
Harry Potter; see Section A.4 for details. The next step is to guess the number
r = 2, 3, . . . of rows, and for each bigram b = (b1, b2) ∈ A2, where A is the
alphabet, to note how often it occurs with distance r:

f ∗
b,y = # {j : yj = b1 and yj+r = b2} .

This is normalized into percent as fb,y = 100f ∗
b,y/(�− 1), when y has � letters in

total. Finally, one computes the Euclidean distance

dbigram(y, Eng) =
∑
b∈A2

(fb,Eng − fb,y)
2
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of the two bigram frequencies. This distance will be small at the value of r
which was the actual number of rows, and also at its integer multiples. Some
minor disturbances are created by bigrams that are split onto two (consecutive)
rows in the plaintext, and by possible divisions of the plaintext into blocks
that were encrypted separately. But these vagaries do not seriously affect the
method.

Generally speaking, the combination of substitution and transposition can
increase security drastically. However, a columnar substitution plus a simple
transposition can still be solved by the method above. Namely, the nine most
frequent letters etaonirsh in English account for of the top 100 bigrams, and
for % in all. After guessing the value substituted for e, one uses the bigram
frequencies among the nine most frequent ciphertext letters to guess the sub-
stitutions for some of the letters. Of course, the number of possibilities for
c and r is usually quite small, say at most 20 or 100 for each of them. This
corresponds to a key space of 400 or 10000 elements, which is easy to search
exhaustively by any computer at hand.

This cryptanalytic method can also be applied to grilles, with appropriate
modifications, in order to determine (vertically or horizontally) adjacent holes.
And trigrams can be used for holes in one row or one column, separated by a
single space.
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Chapter F

The Zimmermann telegram

HistChapter Init missingNo single event decided the outcome of the World
War I. But the entry of the USA into the war—after long hesitation—certainly
played a major role in the success of the Entente, originally led by France and
Great Britain. And the (in)famous telegram discussed in this chapter was im-
portant in changing the isolationist attitude in large parts of the US population
and thus easing President Wilson’s decision to enter the fray. Its solution has
been called “the greatest intelligence coup of all time”. The telegram is an
instructive display of German failures and British successes, both in crypto-
graphy and in diplomacy.

F.1. Capturing the Magdeburg’s codebooks

We start with a tale from the early stages of the British cryptographic bureau,
concerning a marvellous gift they received and which got them started on their
breaks into the German cipher systems. The story begins less than a month
after the German military had embarked on the adventure that would lead
to their eventual downfall, by attacking Belgium and France. In the middle of
the night of 26 August 1914, the German light cruiser Magdeburg was sailing in
a Baltic Sea flotilla intending to wreak havoc on the Russian ships in the Gulf
of Finland. She followed the leading ship, the light cruiser Augsburg, who

1The cleartext words are: insult, to scold; disgraceful, disgrace; umbrella, to protect
(against); umbrella (folding) anchor; battle; to offer a battle; to accept a battle; to evade a
battle; battle begins; in the battle; after the battle.

1The words mean: (to) blame; dishonorable; umbrella, to protect, umbrella anchor; battle;
to offer battle; to accept battle; to avoid battle; battle begins; during the battle; after the battle.



94 CHAPTER F. THE ZIMMERMANN TELEGRAM
F.1. CAPTURING THE Magdeburg’S CODEBOOKS

Figure F.1: Eleven codewords from the Signalbuch der Kaiserlichen Marine1.

tried to sneak south around a suspected Russian mine field. But she lost visual
contact in a dense fog, and just as she was turning around from a southerly to
an easterly course, she ran aground in shallow waters off the Estonian island
of Odensholm, at 12.37 am. After desperate attempts to get her off, also with
the help of the torpedo boat V-26, her captain Richard Habenicht ordered her
to be blown up, around 9.00 am. By mistake, the fuses were lit too early, and
the men had less then five minutes to abandon ship.

The Magdeburg had four codebooks on board. One was burned in time. One
was jettisoned overboard. Radioman Second Class Neuhaus jumped over-
board with the third one and was not seen again. And the fourth—was for-
gotten.

By then, Russian ships had arrived. Lieutenant Galibin of the torpedo boat
Lejtenant Burakov boarded the Magdeburg and found the codebook in captain
Habenicht’s cabin. Later, Russian divers also recovered the two other code-
books from the clear waters with a depth of less than ten meters.

The Russian military command immediately recognized the importance of
their bounty, and offered it to England, the major naval power of the Entente.
After a trip on board the H.M.S. Theseus from Polyarny (then Alexandrovsk)
to Hull in England, the Russian count Constantine Benckendorff handed the
Signalbuch der Kaiserlichen Marine2 to Winston Churchill, first Lord of the Ad-

2codebook of the (German) Imperial Navy
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miralty, on 13 October 1914. The British cryptographers then put this gift to
good use.

The German military command never recognized the importance of their
loss. The commanding admiral downplayed the possibility of the code having
been recovered. An investigation by Prinz Heinrich von von Preussen, the
German emperor’s younger brother, came to the opposite conclusion, but was
ignored. The very Lieutenant Galibin, retriever of the captain’s codebook, was
captured in August 1915 and told about his feat. He was ignored. On several
occasions, British naval forces happened to be right there where a German fleet
was to steam through. Such circumstantial evidence was ignored as well.

British naval cryptography had been nonexistent at the war’s outbreak. But
an agency was immediately formed. The main player was James Alfred Ew-
ing (1855–1935), an engineer by profession, among whose achievements are
the design of seismic instruments, the discovery of hysteresis in magnetic ma-
terials, and studies of the structure of metals. After teaching in Tokyo, Dundee
and Cambridge UK, he was Director General of Naval Education at the Royal
Naval College in Dartmouth from 1902 on. He came to cryptography by ac-
cident, when on 4 August 1914, just after the start of World War I, his friend
Admiral Sir Henry Oliver showed him some intercepted German cipher tele-
grams. Ewing said he would look at them, and the Admiral interpreted this
quite liberally. Soon after, intercepted cipher messages were pouring into Ew-
ing’s office, often over two thousand per day. He acquired a large room num-
bered “40” in the Admirality building, and even after a move into new quar-
ters his cryptographic office was called “Room 40”—a name that does not give
away much. After some startup difficulties, they broke routinely German mil-
itary and diplomatic ciphers.

The Signalbuch that arrived at Room 40 contained between its heavy lead
covers hundreds of pages with three-column entries as shown in Figure F.1:

Thus Schlacht (battle) would be encoded as QPJ (usually) or 66164 (less of-
ten). But this did not break the intercepts except some items of lesser impor-
tance like weather reports.

The clue arrived in the form of the Handelsschiffsverkehrsbuch3 seized from
a commercial vessel in Australian waters. This also contained a (different) list
of codewords, and in addition a superencipherment by which each individual
letter of a codeword was changed into another letter, via a simple substitution.
Charles Rotter in Room 40 had the flash of insight that the same might be ap-
plied to the Signalbuch codewords. But the usual frequency cryptanalysis is
hard on codewords, for lack of redundancy. But then the Germans helped out
by sending a sequence of messages whose consecutive serial numbers they en-
coded. That was enough to reveal the superencipherment. Alastair Denniston,
a scholar of German in Room 40, commented coolly: “Their folly was greater

3merchant navy codebook
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than our stupidity.”
From then on, Room 40 read most of the German naval signals. However, a

participant like Lieutenant Filson Young, on board the battle cruiser Lion from
November 1914 to May 1915, bitterly complained about the Admiralty’s inef-
ficiency in using this valuable material, only a small portion of which actually
reached the Grand Fleet.

F.2. The telegram

The most spectacular coup of Room 40 gave US President Thomas Woodrow
Wilson the popular and political majority for entry into the war on the side of
the Entente, thus clenching their victory. Hoping to break the stalemate of the
bloody trench battles in Northern France and Belgium, the German military
wanted in January 1917 to force Great Britain into submission by cutting her
lifelines to North America by all-out submarine attacks. A major concern was
that this might lead the USA into the war, while an isolationist attitude had
hitherto kept them out of it.

The Germans tried to create a diversion by dragging the Mexicans into
the fray. Arthur Zimmermann, Secretary of State for Foreign Affairs since 22
November 1916, sent a top secret message to the German minister Heinrich J.
F. von von Eckardt in Mexico, via the German ambassador Graf Johann Hein-
rich Andreas Hermann Albrecht von Bernstorff in Washington. He offered,
if war with the USA broke out, money to the Mexican President Venustiano
Carranza and consent for Mexico to regain the states of Texas, New Mexico,
and Arizona, which had been conquered by the USA in the war of 1848. The
telegram was deciphered by Room 40 and passed to the US ambassador in
London, Walter Hines Page. President Wilson gave it to the US Press for pub-
lication on 1 March 1917, and the ensuing public outcry led the US Congress
to declare war against Germany on 6 April 1917.

In this section, we present the wording of the telegram and a related mes-
sage to von Bernstorff. The next section deals with questions of transmission
and cryptography, then Section F.4 with the political fallout, and Section F.5
with the background and the German reaction.

Figures F.2 through F.4 show the original, from the archives of the German
Foreign Office, of the notorious Zimmermann telegram. Its text, beginning on
line 7 of the right hand column, reads:

Ganz geheim. Selbst entziffern.

[Wir beabsichtigen, am 1. Februar uneingeschränkten U-Boot Krieg
zu beginnen. Es wird versucht werden, Amerika trotzdem neutral
zu halten.

Für den Fall, daß dies nicht gelingen sollte, schlagen wir Mexico
auf folgender Grundlage Bündnis vor: Gemeinsame Kriegführung.
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Figure F.2: The first page of the Zimmermann telegram, as prepared at the
German Foreign Office.
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Figure F.3: The second and final part of the Zimmermann telegram, and the
first part of the separate message to von Bernstorff.
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Figure F.4: The last part for von Bernstorff, and the initials of the officials at the
Foreign Office.



100 CHAPTER F. THE ZIMMERMANN TELEGRAM
F.2. THE TELEGRAM

Gemeinsamer Friedensschluß. Reichlich finanzielle Unterstützung
und Einverständnis unsererseits, daß Mexico in Texas, Neu-Mexico,
Arizona früher verlorenes Gebiet zurückerobert. Regelung im einzel-
nen Euer Hochwohlgeboren überlassen.

Euer Hochwohlgeboren wollen Vorstehendes Präsidenten streng
geheim eröffnen sobald Kriegsausbruch mit Vereinigten Staaten fest-
steht und Anregung hinzufügen, Japan von sich aus zu sofortigem
Beitritt einzuladen und gleichzeitig zwischen uns und Japan zu
vermitteln.

Bitte Präsidenten darauf hinweisen, daß rücksichtslose Anwendung
unserer U-Boote jetzt Aussicht bietet, England in wenigen Monaten
zum Frieden zu zwingen.]

This translates into English as:

Most secret. Decipher yourself.

[We intend to begin on the first of February unrestricted submarine
warfare. We shall endeavour in spite of this to keep the United
States of America neutral.

In the event of this not succeeding, we make Mexico a proposal
of alliance on the following basis: Conduct war jointly. Conclude
peace jointly. Substantial financial support and consent on our part
for Mexico to reconquer lost territory in Texas, New Mexico, and
Arizona. The settlement in detail is left to your Excellency.
Your Excellency will inform the President of the above most se-
cretly as soon as the outbreak of war with the United States of
America is certain, and add the suggestion that he should, on his
own initiative, invite Japan to immediate adherence, and at the
same time mediate between Japan and ourselves.
Please call the President’s attention to the fact that the ruthless em-
ployment of our submarines now offers the prospect of compelling
England in a few months to make peace.]

The original record contains several notes about encryption and transmis-
sion, which we discuss below. Furthermore, there is another note to von Bern-
storff which explains the instructions given to von von Eckardt. It reads:

In Postziffern. Ganz geheim. Selbst entziffern. Zu Euer Hochwohlge-
boren ausschließlich persönlicher Information.

Der Kais. Gesandte in Mexico ist angewiesen, Carranza für den
Fall, daß es zwischen uns und Amerika zum Kriege kommt, ein
Bündnis anzutragen und ihm gleichzeitig nahezulegen, Japan von
sich aus zum Beitritt einzuladen.
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That is:

In cipher. Most secret. Decrypt yourself. Personal information for
your Excellency only.

The Imperial envoy in Mexico is instructed to propose to Carranza
an alliance, in case war breaks out between us and America, and to
suggest to him at the same time to invite Japan to enter, on his own
initiative.

There are two marginal notes expanding on the contents which were not
sent with the telegram. The first, inserted at the German Einverständnis (=
consent), says that no guarantee (for reconquering the three states) is given.
The second one, after the mention of Arizona, reads Californien dürfte für Japan
zu reservieren sein, that is, California should be reserved for Japan. It had also
been taken by the USA in the 1848 war, and its mention indicates a discussion
at the German Foreign Office about whether they should throw in California
as a bonus—it would not increase their cost.

California does not appear in the decryption of the telegram in Figure F.5.
But somewhat mysteriously, Millis (1935) mentions California in the quote
given below on page 111. Friedman & Mendelsohn note this and ask: Is it
possible that the Germans were reserving California as bait for Japan? Good guess!

The initials on the last page are, from bottom up: von von Kemnitz 11/1.,
Montgelas 12/I, Wilhelm August von von Stumm 12. I., Hilmar Freiherr von
dem Bussche-Haddenhausen 13/1, St. S. [Staatssekretär = Secretary of State]
Zimmermann 13/1.

The Zimmermann telegram has always played a major role in the Ameri-
can historiography of the First World War, and a very minor one in the German
view. The basic difference is that on one side it is regarded as an evil and im-
moral plot, and on the other side as a legitimate if stupid diplomatic enterprise
in times of war. Inexact translations of the central phrase have contributed to
this rift; the noncommittal Einverständnis, daß Mexico ... zurückerobert = consent
for Mexico to reconquer ... has usually become the exhortation of an understand-
ing (or even undertaking) that Mexico is to reconquer ...

F.3. Transmission and cryptanalysis

There are several versions of how the Zimmermann telegram was encrypted
and transmitted by the Germans and cryptanalyzed by the British, and some
of the finer points still await clarification.

This much is clear: the telegram was sent from Berlin to Washington, and
then on to Mexico City. The British intercepted it on its first leg, cryptanalyzed
it, and then also obtained a copy of the message in Mexico.
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Figure F.5: The Zimmermann telegram, as forwarded from New York to Mex-
ico.
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This second leg is quite well known: von Bernstorff sent the telegram,
shown in Figure F.5, via Western Union to the German legation in Mexico,
encrypted in the German diplomatic code 13040. It encodes the text in Fig-
ures F.2 and F.3, and von Bernstorff has added at the beginning Nr. 130, 13042,
Auswärtiges Amt telegraphiert am 16. Januar: Nr. 1. Here 130 is the Washing-
ton number of the telegram, the 13042 indicates code 13040, and the rest says
that the Foreign Office has telegraphed on 16 January, Nr. 1. At the end, Zimmer-
mann’s signature is followed by stop end-of-message, and finally Bernstorff in
cleartext.

The first leg of the transmission is less clear. There are four transmission
routes possible: US diplomatic cable, “Swedish roundabout” Berlin – Stock-
holm – Buenos Aires – Washington, radio Nauen-Sayville, or U-boat Deutsch-
land. We will see that there is firm evidence only for the first option. The
Swedish and the radio routes have been put forward in several earlier pub-
lications, but unless new documents come to light, they must be rejected as
being unproven.

On 4 August 1914, one day after England’s declaration of war, the British
ship Telconia severed the transatlantic cables linking Germany to America. Now
how could the Kaiser speak to his most obedient underlings in Washington?

Since the Lusitania crisis in May 1915, the US State Department transmitted
from time to time German code messages on their diplomatic cable Washington–
London–Copenhague–Berlin, in the context of peace initiatives and at the insti-
gation of Colonel Edward Mandell House, an influential advisor of President
Wilson. The Americans did not have the keys to the code, a procedure in con-
travention of accepted practice for neutral nations. This route had been used
several times in January 1917. The Zimmermann transmission also went via
this US diplomatic line, a brazen abuse of American hospitality. A long ci-
pher message registered as Telegram Nr. 157 was delivered to the US embassy
in Berlin at 3 p.m. on 16 January 1917 and thence transmitted via Copenhague
and London to Washington. In it, the German chancellor Theobald von Beth-
mann von Bethmann Hollweg explained to von Bernstorff the German U-boat
decision and instructed the ambassador to inform Wilson on 1 February (later
changed to 31 January). Nr. 158 was attached to it; it is the famous Zimmer-
mann telegram. Both arrived in Washington on 17 January and were handed
to von Bernstorff on the 18th.

A second possiblity is indicated by the “Stockholm” instruction on the
record from the Foreign Office (Figure F.2); it may have been followed or not.
The Swedish government was officially neutral but with a pro-German incli-
nation. They allowed the use of their own diplomatic traffic to the Germans
for their transatlantic communications. These lines passed through the UK
and were read by the British. Even if they could not read the German ciphers,
they could tell their origin, and they protested in Stockholm in the summer of
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1915. The Swedes promised not to allow German messages to Washington any
more. They kept their promise literally, but now allowed the use of their com-
munications with Buenos Aires in South America. The messages were given
to the Germans there, who then forwarded them to their embassy in Wash-
ington. These lines also passed through Great Britain, and Room 40 became
aware of it rather quickly. This time, they kept mum; seeing those messages
was presumably deemed more important than protesting against illegal acts
by a neutral power.

After the foundation of the Second Reich in 1871, Germans felt they had
an inferior position among the world powers for lack of a world-wide pres-
ence. Even though a late-comer, they acquired colonies in Africa, China, and
the Pacific. The brief colonial intermezzo ended in 1914, when all posses-
sions were occupied by the Entente powers. Beginning in 1906, the German
Telefunken company built a giant radio transmitter at Nauen, 30 km west of
Berlin. It was used for broadcasting to the colonies, ships at sea, and also to
the German-owned station at Sayville on the South shore of Long Island NY,
which had been working since 1912. The station was closed in 1914, but from
20 April 1915 on the Germans were allowed to transmit between Nauen and
Sayville. Even encrypted messages were allowed, but only under supervision.
Namely, the German operators had given to the US Navy Department cen-
sors two copies of the codebook used for this traffic. The encrypted messages
were carefully examined, and in some cases refused to be forwarded because
they were not clearly understandable. It seems unlikely that the Zimmermann
telegram, together with the long message No. 127, would have escaped this
scrutiny. A second transatlantic radio connection between Eilvese near Han-
nover and Tuckerton on Hickory Island NJ was also taken over by the US gov-
ernment in 1914.

The US State Department had informed von Bernstorff on 26 January 1915
that radio messages in code or cipher are only permitted to be exchanged be-
tween diplomatic missions in this country and their respective Governments,
and then only when copies of code or cipher used have been deposited with
the Naval Officials in charge of the radio station through which the mesage is
to be sent or received. If the Zimmermann telegram was transmitted by radio,
then the US censors must have ignored the last condition. Radio traffic was
stopped on 10 April 1917, at least for private telegrams.

A major purpose of U-boats is to sink freighters, but the Deutschland was
built to be one herself. As a cargo submarine she was to run the Atlantic
blockade with which the British Navy was preventing international trade with
Germany. After her second trip across the Atlantic, she docked on 2 Novem-
ber 1916 at New London CT. She brought 750 tonnes of paint, chemicals, and
pharmaceuticals—and the 0075 codebook for the German legation in Washing-
ton. A US Customs inspection concluded that she had no weapons or ammu-
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nition on board. Sailing on 17 November she scored her first “hit” by accident,
colliding with a tow ship which then sank, with seven people drowned. The
sturdy U-boat did not suffer any damage. She arrived back home in Bremen
on 10 December 1916, “after a fast trip”. She was to sail again in January
1917, carrying the Zimmermann telegram on board. The marginal note at top
left, lines 4 and 5, in Figure F.2 instructs Mit U-Boot am 15. d. M. über Wash-
ington5, and indeed the note at bottom left says that Items 1. and 2. Entnommen
für U-Boot. 13/1.6 This was a few days after the decision to wage unrestricted
U-boat warfare, her trip was cancelled and she was drafted into active service
on 10 February. She was outfitted with guns and torpedoes, and sortied on 23
May 1917, now as U-cruiser U-155, with Lieutenant Captain Karl Meusel as her
skipper. She sunk 19 Allied vessels, none by accident, before her return on 5
September.

We may conclude the following about the transmission.

The Zimmermann telegram from Berlin to Washington

◦ went via US diplomatic cable,

◦ probably did not go on the Swedish roundabout,

◦ probably was not transmitted by radio,

◦ did not travel by U-boat.

A second question is: in which system was it encrypted? One of the codes
used by the German Foreign Office at the time was called Code 13040. It con-
sisted of about 11000 words, to which 3-, 4-, or 5-digit encryptions were as-
signed. There were 100 words per page, numbered from 00 to 99 in their al-
phabetical order. Four pages were printed on one sheet, and these sheets could
be rearranged to vary the code; the encoding of a word consisted of the page
number plus its number on the page. The shorter codewords served for num-
bers, dates, common phrases, and grammatical inflections. Common words
like Komma or Stop were sprinkled on each page. Some pages were given two
numbers, so that frequencies of words on that page could be halved.

We can see a partial alphabetic order even in the relatively few words of
the Zimmermann telegram:

5By U-boat on the 15th of this month via Washington
6Items 1. and 2. removed for U-boat on 13 January.
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14814 einladen 22049 sich
14936 eingeschränkten 22096 Sie
14991 Einverständnis 22200 stop
15021 einzeln 22260 sobald
15099 Empfang 22284 sollte

22295 sofortiger

Unteutonic alphabetical levity seems to have flipped 14814/14936 and 22284/22295;
frequent words like stop often occur out of order.

The other system used by the Germans was the 10000-word codebook called
0075 (or 7500), which had been brought to the USA in November 1916 by the
U-boat Deutschland. It was a two-part codebook (ciphertext numbers assigned
randomly to cleartext words (see end of Section D.1)), and had not been sent
to Mexico. The German original in Figures F.2 and F.3 gives clear instruc-
tions: send the message to von von Eckardt from Berlin in 13040, and the one
for von Bernstorff in 0075. This is in perfect agreement with the availability of
the codes in the two embassies. In fact, we can even follow the process lead-
ing to this decision: at top right in line 5, the scribe has noted In Postziffern (=
in transmission cipher), and someone else has noted in parentheses Mit geh.
Chiffre vers. (= to be sent with secret cipher), in the centre, crossreferenced to
this note, someone has penned the question: Hat Mexico geh. Chiffre vorliegen?
(= is the secret cipher available in Mexico?), and this interchange leads to the
clear instruction at left to send the missive in 13040:

Chiffrierbüro: Ang. 1 ist mit Chiffre 13040 zu chiffrieren, der in
Mexico vorhanden und, soweit bekannt, nicht kompromittiert ist.7

Similarly in agreement with the availability of the codes is the note 0075 to the
left of the message to von Bernstorff.

A central source about the British cryptanalytic effort against the Zimmer-
mann telegram is a note composed by Nigel de de Grey on 31 October 1945
and published in Kahn (1999). He was the main codebreaker in Room 40 deal-
ing with the telegram, and wrote: The version of the telegram upon which we
worked was the version in 13040, which reached us from the Cable office in
transit [...] we had been at work some time on 13040. Only one person worked
on it for many months then two and later three. It was a long code, our ex-
perience of book building was at its beginnings and there were many gaps
unfilled. [...] We could at once read enough for Knox to see that the telegram
was important. Together he and I worked solidly all the morning upon it. [...]
Work [...] was slow and laborious.

Now de de Grey obfuscated the issue—as befits an able cryptographer—by
writing in the same note that the version that went through Bernstorff’s office

7To the cipher bureau: Document 1 is to be encrypted with code 13040, which is available
in Mexico and, as far as is known, not compromised.



Cryptography, July 14, 2008, c©2008 J. von zur Gathen 107

was in 7500 so far as I recollect. There are two interpretations of this remark:
either the telegram was sent from Berlin to Washington both in 13040 and in
0075 (a capital crime in cryptography), possibly over different channels, or de
de Grey’s recollection failed him and only the second message to von Bern-
storff was sent in 0075. The further text of de de Grey’s note makes it clear that
the 13040 version is definitely not the copy obtained by the British in Mexico
sometime later, also in 13040. De de Grey also explains the ensuing cloak-and
dagger action: Although we had the 13040 version and knew von Eckardt had
no 7500 book, without disclosing our drop copy source, we could not produce
it. Nor could we prove that the telegram had actually been delivered in Mex-
ico to the German Legation and had not been faked in London. The only thing
therefore was to steal a copy in Mexico City in the form delivered to the Ger-
man Legation. We had two chances (a) the cable copy (b) the copy sent from
Washington by Bernstorff which we banked on being also in 13040. Hence the
delay till the end of February. How we succeeded in stealing the copy I never
knew but money goes a long way in Mexico and steal it we did.

An affidavit by Hall, dated 28 December 1926, includes a message from
Berlin to Washington dated 26 January 1915 that was sent in code 13040 and
decrypted. This can be taken as an indication that Room 40 had broken 13040
already in early 1915, in contradiction to de de Grey’s statement. However,
Hall also presents the cock-and-bull story of the German agent in Persia ar-
rested while he was cutting an oil pipeline with the 13040 codebook in his lug-
gage. In the conflict between de de Grey and Hall, the former’s professional
statements carry more weight, in my opinion, than Hall’s affidavit which may
still be colored by a desire for secrecy or obfuscation. Berlin knew that the
Zimmermann telegram would go from Washington to Mexico in code 13040.
Good practice would have forbidden to send it in code 0075 from Berlin to
Washington. A further consideration is that the telegram had been transmit-
ted in code, and its cleartext published. A professional cipher bureau would
have considered the possibility that the encrypted version was also known to
the enemy cryptanalysts and inferred that the code was then insecure. How-
ever, the German Foreign Office considered code 0075 secure still in February
1918. We may conclude that either the telegram was not sent in 0075, or else
the German cryptographers were not good professionals. We may conclude
the following.

The Zimmermann telegram was encrypted

◦ in code 13040 Berlin-Washington and Washington-
Mexico,

◦ not in code 0075.

On 1 March Secretary of State Robert L. Lansing had the two cipher tele-
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9 January Imperial U-boat decision
13 January Zimmermann signs message
16 January telegram(s) from Berlin to Washington in 13040 (and 0075?)
17 January partial decrypt of 13040 message at Room 40
19 January telegram from Washington to Mexico in 13040
31 January Germany declares unrestricted U-boat warfare

3 February Wilson breaks diplomatic relations with Germany
10 February Room 40 receives 13040 message from Mexico
22 February Hall gives complete decrypt to Page
24 February Wilson receives the telegram

1 March story published in US newspapers
3 March Zimmermann admits responsibility by a press communiqué
6 April US congress declares war on Germany

Table F.1: The Zimmermann chronology in early 1917.

grams to and from von Bernstorff in his hands (which differed in the address
line), but presumably not the copy obtained by the British in Mexico. He ca-
bled the original message to London; it was the 13040 cable from Washing-
ton to Mexico and deciphered by de de Grey (see below). Now if the Berlin
to Washington message had been in 0075, would Lansing have referred in a
definitive way to the original message?

The US cryptographers of the Signal Security Agency (MI-8) reviewed in
1945 the German codes of World War I and concluded: in spite of [some] de-
fects the German codes were distinctly better than those of other governments
which MI-8 studied during the war [... They] were much better, it must be
admitted, than the corresponding systems in use by the United States Army at
the beginning of the war.

F.4. The drama unfolds

The salient dates in the history of the Zimmermann telegram are given in
Table F.1. At an Imperial war conference, the “ruthless” employment of total
U-boat warfare was decided on 9 January, and the foreign minister Zimmer-
mann signed the message on 13 January.

The two British cryptographers, Dillwyn Knox and Nigel de de Grey, deal-
ing with the telegram worked feverishly on their task, but progress was slow.
The first partial decrypt was handed to Admiral Sir Reginald Hall, the head of
Room 40, around 10.30 a.m. on 17 January. Right away, it was clear to every-
body that the telegram was a bombshell that could serve to draw the US into
the war—on the Entente side, of course. Three problems had to be addressed:
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◦ how to prove authenticity of the telegram,

◦ how to prove correctness of the decryption,

◦ how to safeguard the secret of Room 40.

Admiral Hall had a brilliant idea. He charged a British agent—only known
as Agent T—in Mexico City with obtaining copies of all recent telegrams to the
local German embassy. T became friends with a Mexican telegraph office clerk.
He may have paid for it, or “stole it he did”, as de de Grey says—in any case,
Hall had the Zimmermann telegram as received in Mexico City in his hands
on 10 February. The clever move paid off handsomely.

Now it was time for a series of subtle diplomatic moves. How to hand this
god-sent message to the US government without raising suspicion about its
authenticity? There was a sense of urgency. At the German announcement of
unrestricted U-boat attacks, President Wilson had broken off diplomatic rela-
tions and sent ambassador von Bernstorff packing. But he kept stalling with
the declaration of war that the Entente hoped for.

Finally, on 22 February 1917, Hall gave the telegram and its decipherment,
completed on 19 February, to Page, the US ambassador in London. Hall re-
cruited the British Foreign Secretary Arthur James Balfour for an official act
of passing the document to Page, the next day. He had been First Lord and
Prime Minister in his long career, and was the most respected British politician
at this time. President Wilson had the message on 24 February. The US State
Department found at the Washington office of Western Union the encrypted
Zimmermann telegram that had travelled over its own lines. Indignation ran
high in the White House at this abuse of American generosity. On 28 Febru-
ary, they obtained from Western Union a copy of the Washington to Mexico
message, shown in Figure F.5.

US Secretary of State Robert Lansing gave the story to E. M. Hood of As-
sociated Press, and it hit the newspaper headlines on 1 March. A wave of
patriotism swept through the nation, as even the South-Westerners and West-
erners realized that the war was not as far away as they had thought. But
some skeptics still thought this might all be a British ruse. On 1 March, Lans-
ing cabled to Page in London the original message which we secured from the
telegraph office in Washington, and de de Grey deciphered it at the Admiralty
under the eyes of Edward Bell, a secretary at the American embassy. Actually,
this almost ended in desaster. De de Grey had brought an incomplete version
of the codebook, and had to extemporize many codewords—which he knew
by heart and, luckily for him, Bell did not ask to check in the codebook. Con-
jurer’s magic in cryptography. It was more than enough to convince Wilson.

But it might not have been enough for a suspicious outsider. However,
Zimmermann obliged again and came to rescue. An official German press
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communiqué appeared on 3 March 1917 in the papers. It stated that the Ger-
man envoy in Mexico had been instructed to offer, in case of a US declaration of
war against Germany, an alliance to Mexico. The communiqué also speculated
how the Americans might have obtained the telegram, and proposed that this
was most likely by treason on US territory. President Wilson had won his elec-
tion on 7 November 1916 with the slogan “He kept us out of war”. Germany’s
declaration of unrestricted U-boat warfare changed his mind, but not yet that
of the population. Zimmermann achieved this with his telegram. Even the
German-Americans “retreated across their hyphen to take their stand, some-
what sullenly, on the American side”. But the USA would most likely have
entered the war anyway, for several reasons:

◦ Germany’s U-boat war was a slap in Wilson’s face, who had dreams of
ending the war in early 1917 with a peace conference, and von Bernstorff
tried honestly and hard to convince his government that this was a more
beneficial solution than the submarines and war with the USA,

◦ pro-British feelings in part of the population, major exceptions being the
German and the Irish immigrants,

◦ the ideological closeness with the Western democracies under attack from
the Old European Emperors. A contradiction here was that the Russian
Tsar was on the Entente side, but the February Revolution in March 1917
corrected this problem. The Tsar resigned on 15 March, Kerenski took
over in July, and Lenin’s October Revolution in November 1917 brought
seventy years of workers’ paradise to Russia and later the Soviet Union.
American public opinion sympathized more with the Russian revolu-
tionaries than with the Tsar.

◦ Pressure from the financial and industrial establishment that had made
massive loans, mainly war materials, to the Entente powers. The French
IOUs stated L’Allemagne paiera8.

One can only speculate how much longer the USA would have hesitated
without the Zimmermann telegram. De de Grey writes that it gave Wilson his
big stick for the West and South West, and America came into the war months
earlier than she would otherwise have done.

The secret of Room 40 was well guarded. Wild speculations abounded
of how the message had been given away by treason or stolen in Mexico, or
a messenger intercepted on the Rio Grande frontier. Nobody suspected the
Berlin-Washington transmission, or deciphering of a code.

The rest is history: the massive deployment of American troops and arms,
effective in early 1918 after almost a year of armament, helped to push the

8Germany will pay
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weakened German military over, enfeebled by a starved economy and disillu-
sioned population.

The Americans were not amused, as Millis writes in his Road to War:

What made it particularly shocking, of course, was the suggestion
that the Japanese (with whom we were about to become allied)
should be invited into the American Continent, or that the princi-
ple upon which many Americans had demanded the restoration of
Alsace-Lorraine (because they had been acquired by force) should
be applied to California and Texas, which we had forcibly detached
from Mexico. Informed Americans understood perfectly well that
the Allies had bribed Japan, Italy and Rumania into the war with
the promise of slices from the enemy carcass; but they were sin-
cerely and profoundly horrified by the thought that Germany could
be so base as to bribe Mexico and Japan with the promise of slices
from the flanks of the United States.

The Entente governments also had a relaxed view on territorial integrity.
On 8 May 1915, Ambassador Page reported to President Wilson that England,
France, and Russia made a bargain with Italy on April 30th [1915], agreeing to
cede to Italy very large parts of Austrian territory [...] if Italy comes into the
war within a month. And indeed, after the war, the losing countries had their
territories cut up and large chunks amputated.

Von Bernstorff was German ambassador in Washington from 1908 to 1917.
He worked hard trying to avoid war between Germany and the USA, mediat-
ing in various peace initiatives and alerting his government to the dire conse-
quences of a US entry into the war. He warned particularly strongly against
unbridled submarine warfare—to no avail. No one who reads Bernstorff’s
telegrams can remain unconvinced of his absolutely sincere desire for peace
between the United States and Germany. Outside business hours, he was a
society lion and successful charmer of the ladies. After the war, he continued
his efforts as president of the German League for the League of Nations, but peace-
ful goals were not really popular at that time. He emigrated in 1933 and died
in Geneva in 1939. His son Albrecht was murdered by the Nazis on 24/25
April 1945.

The literature about the Zimmermann telegram is substantial. Among the
first works were the (auto-) biographies of von Bernstorff (1920), Hendrick
(1922), and House (1926). Next came the cryptographic analysis of Friedman
& Mendelsohn (1938), the political circumstances in Tuchman (1958), and the
comprehensive treatment in Kahn (1967), pages 282-297. Further contributions
were Kahn’s publication of memoranda by Bell and de de Grey, and Nassua
(1992) who studied the reaction of the German press in the USA, and also the
debates in the Reichstag committee.
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Hall’s involvement in the Zimmermann decode was not made public until
1955, when James’s book appeared. He wrote in 1932 an account of his work
in Room 40, but the British Admirality did not permit its publication . . .

James Alfred Ewing, the founder of Room 40, gave a lecture on Some Special
War Work in Room 40 on 13 December 1927 at the University of Edinburgh,
which disturbed the serenity of Admiralty circles so much that they prohibited
publication of even newspaper articles about it. In Strother (1918), the reader
is enticed by the remark that the story of the Zimmermann note cannot yet be
told.

F.5. Wright or wrong, my country

The political background of the Zimmermann telegram is somewhat convo-
luted. The upshot is that it was more likely intended for use in the political
struggle between government and military in Germany rather than as a seri-
ous treaty proposal to Mexico.

One part of the background was the fundamental animosity between Mex-
ico and the United States at the time. Mexican oil was vital for the British Navy.
US troops had occupied the port town of Veracruz on 22 April 1914, leaving
126 Mexicans and 19 US soldiers dead. Carranza had overthrown the elected
president Victoriano Huerta in 1915 and made himself president. The result-
ing civil war was gleefully kindled by the Germans. Francisco “Pancho” Villa,
one of the leaders, attacked the border town of Columbus in New Mexico on
9 March 1916, killing 17 Americans. In response, President Woodrow Wilson
sent a punitive expedition under Colonel (later General) John J. Pershing into
Mexico in order to apprehend Villa. The 12 000-man expedition was a dismal
failure, and the marauding cavalry’s behavior during its one-year rampage in
Northern Mexico increased widespread yanquifobia in Mexico: “Poor Mexico,
so far from God and so close to the United States”, in the words of former
president Porfirio Díaz.

On 15 June 1916, Colonel Gonzalo C. Enrile presented himself in the Ger-
man Foreign Office in Berlin as an emissary of the deposed president Huerta.
He proposed a pact between the two countries, demanding financial support,
offering military action against the United States, and mentioning an agree-
ment with Japan as Mexico’s option. And on 3 November 1916, the Mexican
ambassador in Berlin proposed an alliance, which would include German mil-
itary help to Mexico and the installation of direct radio communications. Some
of these elements reappear in Zimmermann’s telegram. But in 1916, the Ger-
man government was not interested in the Mexican proposals.

A second part of the background was Germany’s political isolation at the
time. The German envoy Hellmuth Freiherr Lucius von von Stoedten had
negotiated in 1916 with the Japanese ambassador ??? Ushida in Stockholm.
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These talks had been broken off unsuccessfully, and in 1917 the German gov-
ernment looked for Mexico’s help as an intermediary to get into contact with
Japan again. Japan was then a member of the Entente, the coalition of Ger-
many’s war enemies.

The major part of the background is the political struggle between govern-
ment and army command in Germany. On 7 May 1915, the German submarine
U-20 had sunk the passenger ship Lusitania, causing a loss of 1400 lives. The
Lusitania was outfitted as an auxiliary cruiser and carried 2160 passengers. The
German government, scared of the prospect of the United States entering the
war, agreed after protracted negotiations to curb their submarine warfare in
the North Atlantic. But the bloody stalemate in the European trench war led
the German military High Command to the conviction that only unrestricted
submarine warfare would bring England to her knees. Chancellor Bethmann
von Bethmann Hollweg opposed this plan resolutely. In turn, the influential
top brass demanded the resignation of Bethmann von Bethmann Hollweg and
his government. Von Bernstorff cautioned from Washington, painting a sce-
nario amazingly close to what was to happen in reality. On 9 January 1917,
the politically unsophisticated military prevailed at a conference in the Impe-
rial headquarters at Pleß in Upper Silesia, and the Kaiser signed the order for
an all-out submarine war. In this atmosphere, Hans Arthur von von Kemnitz,
the ständiger Hilfsarbeiter (Permanent Assistant) directing the Far Eastern and
Latin American (except Mexico) department had the brilliant idea that con-
densed into the infamous telegram. He initialled a first version on 11 January
1917, the official dealing with Mexico, Graf Montgelas, initialled it on 12 Jan-
uary, and Zimmermann on the 13th. The Chancellor was under attack from
the military blockheads, and Zimmermann tried to move out of the line of fire
with his diplomatic initiative, designed to take the fear out of the generals’
hearts of having to face the US as a formidable enemy.

The German Foreign Office was not sufficiently naïve to believe that the
United States of Mexico could make war on the other United States success-
fully. They tried to use Mexico as a pawn in their Weltpolitik rather than as a
partner. This may explain why Zimmermann committed the further blunder
or miracle—depending whose side you’re on—of acknowledging authorship
of the telegram.

The diplomats felt a responsability to procure partners wherever possible
in case of the US entering the war. However, the subtle point that the Ger-
man ambassador in Mexico was carefully instructed to act only after the US
gave up their neutrality was overlooked by the infuriated readers of Ameri-
can newspapers. On 5 February, Zimmermann sent a telegram directly to von
von Eckardt: Sofern nicht Verrat Geheimnisses an Vereinigte Staaten zu be-
fürchten, wollen Euer Hochwohlgeboren Bündnisfrage schon jetzt mit Präsi-
denten erörtern. Jedoch bleibt definitiver Abschluß Bündnisses abhängig von
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Kriegsausbruch zwischen Deutschland und Vereinigten Staaten. Präsident
könnte von sich aus schon jetzt Japan sondieren. Sollte Präsident aus Furcht
vor späterer amerikanischer Rache ablehnen, sind Sie ermächtigt, Defensivbünd-
nis nach Friedensschluß anzubieten, wofern es Mexiko gelingt, Japan in Bünd-
nis einzubeziehen.9

Von von Eckardt presented this offer to the Mexican Foreign Minister Cán-
dido Aguilar Vargas on 20 February. After some deliberation and the US dec-
laration of war against Germany, President Carranza rejected it on 14 April.

In the memorable debate on 5 March 1917 of the 28-member Main Com-
mittee of the German parliament—secret matters were not discussed in full
session—the Social Democrat member Dr. Eduard David gave short shrift to
the foreign ministery: Bezüglich des Inhalts des Schriftstücks betont Redner,
dass es ein gewisses Kopfschütteln erregen müsse, dass wir Mexiko Teile der
Vereinigten Staaten gewissermassen anbieten. Dieser Vorschlag verrate eine
merkwürdige Einschätzung der in betracht kommenden Kräfte. Kein Kenner
der Verhältnisse werde im Ernst glauben, dass Mexiko mit seinen militärischen
Mitteln imstande sei, gegen Amerika einen so erfolgreichen Krieg zu führen,
dass es ihm dauernd Gebietsteile entreissen könne. Ein solches Anerbieten
könne von massgebenden Leuten in Mexiko selbst nicht ernst genommen wer-
den.10 In his reply, Zimmermann admits: Auch ich bin der Ansicht, dass die
Mexikaner nicht in der Lage sind, gegen die Union einen derartigen Krieg
zu führen, dass sie solche Provinzen erobern können. Mir lag aber daran, so
schnell wie möglich Carranza zum Losgehen zu veranlassen. [...] Mir kam
es darauf an, unsern braven Feldgrauen nicht neue Feinde auf den Hals zu
hetzen und wenigstens dafür zu sorgen, dass die amerikanischen Söldner, die
etwa für Europa in Frage kommen sollten, sofort gegen Mexiko Beschäftigung
fanden. Deshalb habe ich gerade auf diese Provinzen hingewiesen, damit die
Mexikaner sofort in amerikanisches Territorium einfielen und die Amerikaner
so verpflichteten, ihre Truppen dort hinzusenden und sie uns fern zu hal-
ten. [...] In diesem Kriege ist die Moral zu den Akten gelegt worden. [...]
Gewiss, Mexiko hat keine Waffen im modernen Sinne, aber die Banden [struck

9Provided no treason of this secret to the United States is to be feared, your Excellency
may already now broach the question of an alliance to the President [Carranza]. However,
the definite conclusion of an alliance depends on the outbreak of war between Germany and
the United States. The President might already now sound out Japan on his own initiative.
Should the President decline for fear of subsequent American revenge, you are empowered
to offer a defensive alliance after conclusion of peace, provided Mexico succeeds in drawing
Japan into the alliance.

10Concerning the contents of the telegram, the speaker [Dr. David] stressed that one cannot
help but wonder how we can essentially offer parts of the United States to Mexico. This pro-
posal suggests a bizarre assessment of the forces involved. Nobody familiar with the situation
would seriously believe that Mexico would be able, given its military strength, to wage a war
against America with sufficient success to occupy parts of its territory for any length of time.
Such an offer could not be taken seriously by the relevant people in Mexico.
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out: Räuberbanden] sind immerhin genügend mit Waffen versehen, um in
den Nachbarprovinzen von Amerika Unbequemlichkeiten und Unruhen her-
vorzurufen.11

The member Dr. Oskar Cohn points out that Zimmermann habe Wilson
eine glänzende Argumentation in die Hand gespielt, um das amerikanische
Volk geschlossen um sich zu scharen.12 Zimmermann explains the arrange-
ment which allowed encrypted German diplomatic traffic on US State Depart-
ment lines: Meine Instruktion ist telegraphisch hinübergegangen, und zwar
durch Vermittlung des hiesigen amerikanischen Botschafters. Der amerikanis-
che Botschafter hatte das Recht vom States Department, gewisse Telegramme
für uns hinüberzubefördern, und andererseits hatte unser Botschafter in Wash-
ington das Recht, gewisse Telegramme an uns durch Vermittlung des States
Department herüberzugeben. Angeblich handelte es sich bei diesen Telegram-
men um solche, die auf allgemeine Friedensbestrebungen hinzielten. An ein
derartiges Telegramm habe ich dieses Telegramm angeschlossen. Es ist selb-
stverständlich, dass ich dabei eine Chiffre benutzt habe, die absolut geheim
war und die der hiesige amerikanische Botschafter jedenfalls nicht kannte;
darüber habe ich keinen Zweifel. Die Sache ist rechtzeitig nach Washington
gekommen. Wie dann nachher die Sache verraten worden ist, ist mir un-
bekannt.13 Quite some chutzpah, sending a war-mongering telegram over
a line that the Americans generously provided for peace efforts. And then
good luck for the British cryptanalysts. In an earlier debate, Zimmermann had
pointed out: Der Präsident hat eben in Amerika eine ganz kolossale Macht.
Wie man in England sagt: wright or wrong my country, so heißt es in Amerika:

11I share the opinion that the Mexicans are unable to wage war successfully against the
United States and conquer provinces. My intention was to convince Carranza to start march-
ing as soon as possible. [...] It was important to me to avoid exposing our faithful field-gray
uniforms to new enemies, and to provide employment against Mexico for the American sol-
diers of fortune who might otherwise go to Europe. That was the reason why I pointed out
precisely these provinces so that the Mexicans immediately invade American territory and
thus oblige the Americans to send their troups there and keep them away from us. [...] In
this war, moral has been filed away. [...] Of course, Mexico has no weapons in the modern
sense, but the gangs [struck out: robbergangs] are sufficiently supplied with weapons to stir
up inconveniences and unrest in the neighboring provinces of America.

12has played a brilliant argument into Wilson’s hands to rally the American people in unison
around him.

13My instruction [the Zimmermann telegram] went out by telegraph, namely with the assis-
tance of the American ambassador here. The State Department had granted their ambassador
the right to transmit certain telegrams of ours over there, and on the other hand, our ambas-
sador in Washington had the right to transmit certain telegrams to us via the State Department.
Allegedly this applied to telegrams that were directed at general efforts for peace. I attached
the telegram under discussion to such a telegram. It goes without saying that I used a cipher
that was absolutely secret and which the American ambassador here certainly did not know;
I have no doubt about this. The matter arrived in Washington on time. How the matter was
then betrayed is unknown to me.
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wright or wrong my president. Der Mann mag Dummheiten machen, wie er
will, die Nation steht immer hinter dem Präsidenten. Ich wünschte, bei uns
wäre das auch so. (Große Heiterkeit.) Das ist natürlich nicht so wörtlich zu
nehmen, denn bei uns macht die Regierung Gott sei Dank keine Dummheiten.
(Heiterkeit.)14 The misspelled English quote in this official document illus-
trates how little the Germans knew their enemies. This ignorance doomed
their military, and their evil successors two decades later repeated such blun-
ders.

14The President actually has enormous power in America. As they say in England: right or
wrong my country, so they say in America: right or wrong my president. The man can commit
stupidities as he likes, the nation will always stand behind the president. I wish it were like
this in this country. (Great amusement.) Of course, this is not to be taken literally, because
thank God our government does not commit stupidities. (Amusement.)
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Chapter G

ENIGMA, Turing, and COLOSSUS

HistChapter Init missingWhat memorable names! How they shine com-
pared to bland technocratic acronyms like RSA, DSA, or AES!

ENIGMA was the cryptographic workhorse of the German military in World
War II. It was originally broken by Polish mathematicians, who then handed
their methods to French and British cryptographers. The latter eventually built
up a large organization, whose most famous member was Alan Turing and
whose cryptanalytic successes helped to shorten the war considerably. The
team also designed COLOSSUS, the world’s first electronic (valve) computer,
for use in cryptanalysis.

G.1. ENIGMA

In Section ?, Alberti’s disk provided a hardware implementation of the set
{σiτ : 0 ≤ i ≤ 23} of substitutions, where σ is the cyclic shift by one (the
Augustus cipher), and τ ∈ SymA arbitrary. Figure? shows three positions of an
Alberti disk.

This can also be implemented with simple electrical wiring. We illustrate
this on the six letter alphabet A = {A, B, C, D, E, F}, with τ = (AFCE)(BD)
in cycle notation. It requires two circular boxes that touch each other at six
contact points, and can be rotated in six positions. The left one has τ hard-
wired, and rotating the right one implements σi for various i.

Figure? rotor τ rotation σ stator
For the illustration, we have pulled apart the two cylinders. In the actual

apparatus, the two would be so close together that there is electrical contact at
the six contact points, and so that the rotor can be turned into the six possible
positions.
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Figure G.1: An Enigma machine.
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Figure G.2: Two Enigma rotors.
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So now we imagine the two cylinders pushed together, and the key “E”
pressed at right. The current flows along the red wires, and the lamp “A”
lights up; we have τ ◦ σ0(E) = τ(E) = A. Now if we turn the rotor in the
direction indicated by one position and press “C”, then the green wires carry
current and “B” lights up; we have

τ ◦ σ1(C) = τ(σ(C)) = τ(D) = B.

Now this electrical implementation has a problem: the wires connecting the
lamps to the minus pole have to be flexible. It would be hard to build this
contraption without those wires suffering after thousands of rotations. The
remedy is genially simple. Instead of two we take three such cylinders, fix the
two outer ones, and only rotate the middle one. Then the only wear is at the
contact points between two adjacent cylinders; this is manageable.

Figure?
The null position of the rotor still implements τ . What happens if we rotate

it by one turn? The movement between the rotor and the right stator still
implements σ, but between the left stator and the rotor, the “opposite” rotation
is implemented, that is, the inverse σ−1 = (A F E D C B) if σ = (A B C D E F ).
If we press the key “C”, then the lamp “A” lights up; we have

σ−1τσ(C) = σ−1(τ(σ(C))) = σ−1(τ(D)) = σ−1(B) = A.

Thus this machine implements the set {σ−iτσi : 0 ≤ i ≤ 5} of six permutations
of {A, B, C, D, E, F}.

As is often the case in the history of ideas, the time was ripe and the pos-
sibilities of such a cryptosystem were realized by four men in four countries
around the same time. Apparently the US American Edward Hugh Hebern
(1869–1952) was the first to have the idea, in 1917, but he made a US Patent ap-
plication only in 1924. The German Arthur Scherbius (?) applied for a patent
on 23 February 1918, the Dutch Hugo Alexander Koch (1870–1928) on 7 Octo-
ber 1919, and the Swede Arvid Gerhard Damm three days later.

Their common idea was to use the apparatus as described above, but with
several rotors instead of one. Hebern took five, and Scherbius four rotors. He
called his machine the ENIGMA. It was initially sold to the same clientele that
was using commercial codebooks (Chapter D). The German military adopted
it as a major cryptographic tool starting in 1926. Eventually the ENIGMA was
used by various government agencies, including the post office, the railroad
system and the police. It went through several stages of development, some
of which increased security and others decreased it, unwittingly. Our descrip-
tion in the following applies to one specific model. The estimated number of
ENIGMA machines built is around 200 000. Like Ford’s Tin Lizzy, it could be
had in any color, provided the color was black.

The main parts of an ENIGMA are as follows:
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◦ steckerbrett,1

◦ key board,

◦ lamp board,

◦ wheels.

After pressing a key on the key board, say E, current flows to the E connec-
tor on the steckerbrett. The latter consists of 26 connectors, some of which
may be connected in pairs. In the early days of the war, up to five pairs were
connected, later exactly ten pairs. If E was not connected (“steckered”), then
current would continue to flow to the E connector on the right-hand wheel.
But if E was steckered, say to X , then current would go to the X plug on the
right-hand wheel. Then it transits the wheels to and fro, and exits at some
point, say P , on the right-hand wheel. Steckerbrett? This causes the P lamps
to light up, and then the electrical circuit closes. Two operators are required:
FRITZ reads out the cleartext aloud (ALICE seems inappropriate). EMIL types
it into the Enigma, which he has set up with the current keys, and reads the
ciphertext letter by letter back to FRITZ, who taps it in Morse code into his ra-
dio transmission unit. The recipients have to set up their ENIGMA in the same
way, type in the ciphertext, and the cleartext lights up, letter by letter, to be
copied down.

The setting used for encryption also serves for decryption, for the following
reason. The encryption process can be viewed as a composition

π = � ◦ σ−1
r ◦ σ−1

m ◦ σ−1
� ◦ σu ◦ σ� ◦ σm ◦ σr ◦ �

of the steckerbrett permutation �, the three wheel permutations σr, σm, and σ�,
and the umkehrwheel permutation σu. Now if E is sent to X on the stecker-
brett, that is, �(E) = X , then also �(X) = E. That means that applying � twice
does not change anything: � ◦ � is the identity. This also holds for the four
wheel permutations involved, in particular, for σu. When we take the compo-
sition π ◦ π, adjacent terms cancel one after the other, and we also find π ◦ π to
be the identity.

According to Kerckhoff’s Principle ? (and the early commercial availabil-
ity), the ENIGMA system must be assumed to be known to the enemy. Security
only relies on the secret key. This consists of three parts:

◦ sequence of wheels,

◦ setting of wheels,

◦ stecker connections.
1also stecker board in English, Steckerbrett in German
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Initially, a further secret ingredient was the internal wiring of the rotors.
It would be unwise to rely on this for security, because then a single stolen
or captured machine would jeopardize the whole system. Furthermore, Sec-
tion G.3 presents in detail how Polish mathematicians figured out the wheel
wiring from intercepts and an espionnage coup.

The wheels came in a wooden box. Initially, there were three to choose
from, which allows six possible permutations. A later version had five to
choose from, giving 5 · 4 · 3 = 60 possibilities. Each wheel could be set in
one out of 26 positions. Furthermore, the stepping position of the middle
and rightmost-hand wheel could be chosen out of 26 positions, giving in total
265 = 11881376 possibilities. The stecker board, with five steckered pairs, gives

1

5!

(
26

2

)(
24

2

)(
22

2

)(
20

2

)(
18

2

)
≈ 5 · 109

possibilities, and about 1.5 · 1014 with ten connected pairs.
With the latter value, the total number of possibilities comes to about

1.1 · 1023.

This is a very large key space, whose exhaustive search would not have
been possible (at least at the time). But the second most common mistake of
crypto system designers is to take a large key space as a guarantee of security.
This particular system fell prey to a combination of implementation errors and
known plaintext attacks. (The most common mistake is to take the designer’s
failure to break his own system as proof that everybody else will fail, too.)

The three rotors of the German Navy ENIGMA could be chosen from a set
of eight. This rotor setting was first changed monthly, later daily, and from
mid-1942 on every eight hours.

The ENIGMA rotors advanced after the encryption of each letter by various
amounts. In the 1923 ENIGMA A the four rotors moved by 11, 15, 17, and 19
positions, respectively. correct?

G.2∗. Bletchley Park

No single event can be pinpointed that brought about Allied victory in the
Second World War, but the British cryptanalysts at Bletchley Park played a
vital role in many battles whose outcome eventually saved the world from
brutal Nazi domination.

Alan Turing (1912–1954), a famous British mathematician and computer
scientist, had proposed in 1937 a precise mathematical model of computers—
the Turing machine—invented the idea that programms could be stored as data
(namely, for his universal Turing machine), and proved that deceptively simple
questions cannot be solved by any algorithm. For example: as input you
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take a string which represents a program in any reasonable programming lan-
guage, and as output you want to know whether it does not go on working for-
ever (with all variables initially set to zero, say). Turing undecidability result
about this Halting Problem is devastating. It says that there exists no algorith-
mic method that can answer this question correctly. None at all! Not because
programmers are stupid, but because it is inherently impossible! It resembles
somewhat Heisenberg’s uncertainty principle, which also says that some reason-
ably posed problems have no solution. After the war, he devised the Turing
test of artificial intelligence: can you tell whether you are interacting with a
human or a machine? If you cannot, then you are interacting with artificial
intelligence. Half a century later, this remains an unfulfilled hope (or despair,
depending on your outlook). Our distinguishers between pseudorandom and
truly random generators in ?? apply the same principle in a different setting.

The cryptanalytic success against the ENIGMA was started by a team of Pol-
ish cryptographers, including the mathematician Marian Rejewski. They had
completely solved the then standard machine in 1939. Section G.3 describes
in full detail their cryptanalysis of the Enigma rotors, which was completed
in 1932. later! In August 1939, just a month before Hitler’s blitzkrieg attack
on Poland and while most people were still happy with the seeming success
of appeasement politics at München, they were wise enough to share their se-
crets and machinery with French and British cryptographers. Later, they were
treated in a cavalier way: while in exile in England, they were not allowed to
participate in the British cryptanalytic effort.

One of their main inventions was the bombe, an electromagnetic device.
A vital ingredient to the initial Polish Enigma break was a classical espi-

onnage coup by the French Secret Service. Hans-Thilo Schmidt, working in
the Chistelle of the Reichswehrministerium (cipher bureau of the Reich’s Defense
Ministery) offered his services in October 1932. Directed by Colonel Gustave
Bertrand and under the codename Asché, he divulged many secrets. Among
them were complete key schedules for certain periods, as discussed in Sec-
tion G.3 below. The French secret agent Lemoine, captured and interrogated
by the Germans, betrayed Asché, who was arrested at home in Fürstenwalde
and executed in July 1943.

The British Foreign Office set up a team of cryptographers at Bletchley Park
on 4 September 1939, one day after Hitler attacked Poland. A little later, Turing
joined the team. One of their main task became the breaking of the Enigma-
encrypted communication between the German Navy headquarters at Kiel
and the submarines in the North Atlantic. These inflicted crippling losses on
Allied transports from North America to Europe. After a long struggle, Bletch-
ley Park started deciphering Enigma messages regularly in 1942.

The unfortunate U-Boot captain who had just radioed his coordinates to
headquarters did not know that the P-2’s dropping depth charges all around
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Figure G.3: The main building at Bletchley Park manor?, used by the admin-
istration. Umbrella and shorts illustrate the versatile weather of a Bucking-
hamshire summer day.
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him were secretly directed by the brain of a mathematical genius.
expand Ultra
At the highest level of secrecy, German military messages were enciphered

on a different system, the Siemens Geheimschreiber. It also used rotors, in one
version ten of them. But the principle differed from the Enigma’s: the ro-
tors generated a pseudorandom bit string (see ??), and each letter of the mes-
sage was encoded by five bits, according to the standard Baudot code. These
two bit streams were then added bitwise (XORed), just as one does in a one-
time pad (Section 2.1). By a brilliant stroke of cryptanalytic genius, who? Bill
Tutte? discovered this principle. And then Bletchley Park, in collaboration
with British Post Office engineers, set out for one of their main achievements:
the world’s first computer. This COLOSSUS had about 1500 valves. Its input
was fed on rapidly moving paper tape, at right in Figure ? showing the replica
now standing in the Bletchley Park museum. The 1943 model was replaced
on 1 June 1944, just before D-day, by the 2500-valve COLOSSUS MARK I. Their
main purpose was to decipher radio traffic between the Berlin headquarters
and German armies in Greece, North Africa, and Russia.

photo Bletchley Park, Colossus rebuild
Swedish breaking of Siemens Geheimschreiber; Ulfving

G.3. Rotor cryptanalysis

The Polish cryptanalytic success against the Enigma was the basis for all sub-
sequent work, and quite possibly the major effort at Bletchley Park would not
even have been started without the previous results.

Marjan Reweski conceived the basic mathematical ideas required for this
cryptanalysis, and was later aided by other Polish mathematicians. In 1932,
he reconstructed the secret interior wiring of the Enigma rotors, and then they
could read the German messages. We present in detail the discovery of the ro-
tor wirings, a clever piece of applied mathematics. It is sufficiently simple to be
presented here, and sufficiently complicated to given an idea of the ingenuity
required. The success of the approach is based on

◦ interception of many encrypted messages,

◦ systematic cryptographic mistakes by the Germans,

◦ a French espionnage coup,

◦ Polish mathematical ingenuity.

The Enigma instructions, valid until 15 September 1938, provided a daily
setting for the three rotors and the plugboard. Then the operator had to choose
a three-letter message key, say XIX, type it twice: XIX XIX, and read off the result:
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0 1 2 3 4 5
0 AJUOEZ AOCORQ AZUOFZ BPTNXY CLZHTK CQJHPL
6 DDOUKH DKIUGU DZVUFA EAAXCG ECLXSB FTXQLF

12 GGRIBW GMYIYS HYJLJL ITMJLV IWAJDG JAGZCI
18 JERZVW JZTZFY KANMCE KSAMZG LLMDTV MVUFHZ
24 NXSPOX ONDBUC PDGKKI PICKWQ QUGYNI RSIAZU
30 SCPCSD SCQCST SRPCQD TVLRHB UCYGSS VHFTMO
36 WSHEZN XCSSSX XFWSAJ YLZVTK ZDBWKM ZLKWTR

Table G.1: 42 intercepts, sorted alphabetically, of the six-letter beginnings of
messages with identical daily key.

AJUOEZ. Then he set the three rotors to the corresponding positions X , I , and
X , typed the message, and finally sent as ciphertext AJUOEZ followed by the
encryption of the message. On a given day, all operators in a given net started
in the same position, so that the permutation A : A → A corresponding to the
first key stroke was identical for all of them. Here, A = {A, B, C, . . . , Y, Z} is the
26-letter alphabet and in our example we have A(X) = A. And also the next
five permutations B, C, D, E, F : A→ A are identical for everyone.

Table G.1 shows a list of six-letter beginnings of intercepts from a single
day. We will now deduce one Enigma rotor wiring from these intercepts.

Some terminology relating to permutations of the alphabet A is useful for
our cryptanalysis. Two such permutations ρ and σ can be composed, so that
if ρ(a) = b and σ(b) = c, then (σρ)(a) = σ(ρ(a)) = σ(b) = c. (This operation
provides the structure of a group on the set of permutations.) The inverse ρ−1

of ρ is again a permutation, with ρ−1(b) = a if and only if ρ(a) = b. If ρ and
ρ−1 happen to coincide, so that ρ(a) = ρ−1(a) for all letters a ∈ A, then ρ2(a) =
ρρ(a) = ρρ−1(a) = a and hence ρ2 = id is the identical permutation, which
maps each letter into itself. Then ρ is called an involution. The permutations
given by the Enigma rotors and plugboard are involutions, in particular our
A, B, C, D, E, and F . We note that (ρσ)−1 = σ−1ρ−1, since

σ−1ρ−1(ρσ) = σ−1ρ−1ρσ = σ−1σ = id;

we have used the associativity, and the uniqueness of an inverse. In other
words, the inverse of a product is the product of the inverses, but in the inverse
order! There are two useful data structures to represent a permutation σ. The
first is a table of values of σ:

(G.1)
a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

σ(a) C I S K V A B M W E G T Y U R X P Q Z L N H D O J F

The second one is the cycle decomposition. It is obtained by taking the first
letter A, then σ(A), then σ2(A), and so on until we come back to A : σi(A) = A.
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These values form the first cycle (A σ(A) σ2(A) · · ·σi(A)). Then the first letter
not occurring here is taken, say B, and the cycle generated by B is formed. This
is continued until all elements are exhausted.

We usually write the cycles in order of decreasing length, and order those
of the same length alphabetically by the smallest element occurring in them.
Thus σ as in (G.1) has the cycle decomposition

(G.2) (BIWDKG)(EVHMYJ)(ACSZF)(ORQPX)(LT)(NU)

The cycle structure of σ is the sequence of cycle lengths in this representation,
(6, 6, 5, 5, 2, 2) in the example.

A cycle (a) of length 1 is a fixed point of σ. A cycle (ab) of length 2 is called
a transposition and has the special property that (ab)2 = id. More generally, the
permutations σ with cycle structure (2, . . . , 2, 1, . . . , 1), so that only transposi-
tions and fixed points occur, are precisely those with the property that σ2 = id,
that is, the involutions σ.

Now we suppose that we see the encryption DZVUFA in some intercepted
message, as recorded as number 8 among the 42 messages numbered 0, . . . , 41
in Table G.1. Then D and U are encodings of the same (unknown) letter x by
the two permutations A and D, respectively. Here x is the first letter of the
message key. In other words, A(x) = D and D(x) = U for some unknown letter
x. But then also A(D) = x, and DA(D) = U. Thus any intercepted message
DZVUFA tells us that

DA(D) = U, EB(Z) = F, FC(V) = A.

We have thus obtained one value each of the three compositions DA, EB, and
FC. If we have sufficiently many of these single values, we have the three
permutations DA, EB, and FC completely in our hands. This is called the
characteristic of the given day. Its determination from intercepts was the first
step in the Polish solution of the rotor wirings.

As an example, we determine the first cycle of DA as follows:

x A O B N P K M F Q Y V T R
DA(x) O B N P K M F Q Y V T R A

k 0 25 3 24 26 20 23 11 28 39 35 33 29

An entry corresponds to the message number k; thus the second entry
DA(0) = B is derived from message number 25. One finds the second cycle in
the same way, as well as the cycle representations of the other two permuta-
tions:

DA = (AOBNPKMFQYVTR)(CHLDUGIJZWEXS),

EB = (BIWDKG)(EVHMYJ)(ACSZF)(ORQPX)(LT)(NU),(G.3)
FC = (AGIUZKRWJLBMV)(CQTYSXFOHNEPD).



128 CHAPTER G. ENIGMA, TURING, AND COLOSSUS
G.3. ROTOR CRYPTANALYSIS

The cycle lengths are (13, 13) for DA and FC, and (6, 6, 5, 5, 2, 2) for EB
which is the permutation (G.1). A general theorem of Rejewski says that in
any such product of involutions each cycle length appears an even number of
times; this certainly happens for our three permutations.

How can we get the individual permutations, like A, from the character-
istic? If the system is properly used, then there is no easy way of doing so.
But—fortunately for the Polish mathematicians—the German operators did
not follow the rule of choosing message keys at random, but had a small set of
preferred keys: three repeated letters, like JJJ, or three letters adjacent on the
keyboard, usually from the outside towards the inside, like SDF, or three-letter
female names like EVA. In a sufficiently large set of intercepts, there would then
be repetitions: two operators had chosen the same key. The cryptanalyst takes
one of those repetitions and assumes it to be one of the “preferred” keys. We
will now see how to compute the involutions A, . . . , F from this assumption,
and also that we get a way of checking its correctness.

This approach illustrates an important tool of the Polish and (later) British
cryptanalysis: the known-plaintext attack, called a crib in those days. Here the
3-letter message key was not chosen at random, but with heavy preference
on particular keys. At later stages of the decryption, there were stereotyped
beginnings or endings of messages, such as salutations, signatures, or texts
such as weather messages or ship positions. In fact, at some point the British
laid mines near the German-occupied French coast just in order to intercept
Enigma-encrypted messages from German minesweepers. Their text could be
guessed, and then decipherment of these (uninteresting) messages yielded the
(highly interesting) daily Enigma keys.

So suppose that some of the intercepts in Table G.1 have been intercepted
several times, say the PICKWQ. The cryptanalyst now makes the assumption
that it corresponds to one of the “popular” keys, say that the message key
generating them is JJJ. Thus A(J) = P. From this simple assumption about
just a single value, the whole permutations unravel by magic. Namely, we also
have A(P) = J, by the involutory property of A, and hence D(P) = DA2(P) =
DA(J) = Z. We present the start of the unravelling in the following diagram.
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A D
1 J P
2 P J
3 J Z
4 P Z
5 Z P
6 N P
7 N Z
8 Z N
9 Z W

10 N W

Lines 1 through 4 have been explained. Lines 5 and 8 follow from 4 and 7,
respectively, because A and D are involutions. Lines 3, 6, and 9 are part of the
characteristics, with lines 3 and 9 occurring in the second cycle of DA, and line
6 in the first one; see (G.3). Lines 7 and 10 are new; line 7 is deduced as above:

A(N) = D2A(N) = D(DA(N)) = D(P) = Z.

This process can now be repeated, and concludes the second step of the crypt-
analysis. The first four permutations are determined as:

A=(AX)(BW)(CT)(DQ)(EO)(FU)(GM)(HV)(IK)(JP)(LY)(NZ)(RS)
B=(AQ)(BE)(CR)(DM)(FP)(GV)(HK)(IJ)(LN)(OS)(TU)(WY)(XZ)
C=(AH)(BP)(CJ)(DL)(EM)(FI)(GO)(KY)(NV)(QW)(RT)(SZ)(UX)
D=(AS)(BE)(CR)(DY)(FG)(HT)(IM)(JK)(LV)(NW)(OX)(PZ)(QU)

As an example, we can verify the first entry of DA in (G.3):

DA(A) = D(A(A)) = D(X) = O.

We now know the six permutations A, . . . , F , and next see how we can deter-
mine the wiring of the rightmost Enigma rotor. In the Enigma block diagram
(Figure?), if one of the keyboard keys in k is struck, current flows through the
plugboard (Steckerbrett) S, then through the three movable rotors N , M , and L,
is reflected at the fixed rotor R, goes back through L, M , N , and S, and finally
lights a lamp

⊗
. Using the same letters for the corresponding permutations

on A, we have

(G.4) A = S−1N−1M−1L−1RLMNS.

The rotor N turns by 1 after every key stroke, the rotor M after 26 strokes, and
L after 262 strokes—as in an odometer. The positions where this happens are
set by the daily key, in a random fashion. For the cryptanalysis, we assume
that the first five key strokes do not provoke a movement of M , and therefore
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not of L, either. This happens for 21 out of the 26 possibilities, which is good
enough for our purposes. We can therefore abbreviate

(G.5) Q = M−1L−1RLM,

and have

(G.6) A = S−1N−1QNS.

Figure ? shows the flow A of current through the whole system at the top,
when J is typed on the keyboard. At the bottom is the same picture for the
second permutation B. Now the rotor N has moved by one position, and we
show again the keystroke J. Figure? shows the same situation, but now using
our abbreviation Q. We can describe B easily using the cyclic shift

P = (ABCDEFGHIJKLMNOPQRSTUVWXYZ).

Namely, after S comes P , then the old rotor N , then the downshift P−1, and
the similarly on the way back. That is,

(G.7) B = S−1P−1N−1PQP−1NPS.

In the same way, we have

C = S−1P−2N−1P 2QP−2NP 2S,

D = S−1P−3N−1P 3QP−3NP 3S.
(G.8)

There are two more equations, for E and F , which we do not need at the mo-
ment. We know the left-hand sides of the four equations (G.6) – (G.8), but it is
not clear how to determine S, N , and Q efficiently from them.

Next comes a further non-mathematical tool in cryptanalysis, besides the
cribs. Namely, old-fashioned espionnage.

The story of the German traitor Asché is related in ?. He provided much
secret material to Colonel? Bertrand of the French Secret Service. Among it
were the daily Enigma keys for some period in 1932, including the plugboard
connections S. Enough intercepted mesages were available from those days,
and now S, and also P , can be brought to the left-hand side of the equations
for A, B, C, and D :

(G.9)

U = SAS−1 = N−1QN,
V = PSBS−1P−1 = N−1PQP−1N,
W = P 2SCS−1P−2 = N−1P 2QP−2N,
X = P 3SDS−1P−3 = N−1P 3QP−3N.

The left-hand sides are known, as is P , and we want to determine N . The
solution requires some further notions about permutations, which we now in-
troduce.
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If ρ, σ, and τ are permutations of the alphabet A with ρ = τστ−1, then ρ is a
conjugate of σ. Suppose that σ(a) = b. Then

ρ(τ(a)) = ρτ(a) = τστ−1τ(a) = τσ(a) = τ(b).

Thus if (x1, x2, . . . , xk) is a cycle of σ, so that σ(xi) = xi+1 for all i, including
σ(xk) = x1, then (τ(x1), τ(x2), . . . , τ(xk)) is a cycle of ρ. In particular, ρ and σ
have the same cycle structure.

The cycle structure of an involution consists of some transpositions, like
(ab), and fixed points, like (c). If six connecting cables are used for the plug-
board, then S is the product of six transpositions and 26 − 2 · 6 = 14 fixed
points.

Example!
The Enigma rotors did not have any fixed points, so that they consist of 13

transpositions. Equations (G.4) through (G.8) imply that A, B, C, D and Q are
conjugates of R, and hence also products of 13 (disjoint) transpositions.

Pretending that we knew Q, the four equations (G.9) are of the form

(G.10) ρ = τ−1στ,

where ρ and σ are known and τ = N is unknown. Our solution will be by enu-
merating all possibilities for τ . How many are there? To start with the worst
case, if ρ = σ = id, then (G.10) collapses to nothing and all 26! permutations
are possible for τ . If ρ and σ are products of 13 disjoint transpositions, there
are 213 · 13! = 51 011 754 393 600 ≈ 5 · 1013 possibilities for τ (see ??), far too
many for our purposes. However, a simple trick both eliminates the unknown
Q and cuts down substantially the number of possible τ .

Namely, we multiply the equations in (G.9) together in sequence:

UV = N−1 QPQP−1N,
V W = N−1P QPQP−2N,
WX = N−1P 2QPQP−3N.

We eliminate the unknown QPQ by plugging in UV and V W :

V W = N−1PNUV N−1P−1N = (N−1PN)(UV )(N−1PN)−1,
WX = N−1PNV WN−1P−1N = (N−1PN)(V W )(N−1PN)−1.

Thus V W = τUV τ−1 is a conjugate of UV , and we determine all possible
conjugations τ . For each τ , we also check whether WX = τV Wτ−1, and keep
only those which pass the test. There are two further equations—which we
did not write down—that can be used as tests.

Only a few values, often a single value, of τ will survive those tests. We
solve τ = N−1PN for N . Since P is a single cycle of length 26, there are exactly
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26 solutions. There will be a few, often just one, values of N that are a product
of 13 disjoint transpositions. This is then the wiring of the right-hand Enigma
rotor!

The German procedures for the Enigma included a random placement of
the three (later five and eight) rotors into the three (later four) positions. Thus
each rotor occurred reasonably often as the rightmost one, and they could all
be broken by Rejewski’s method.

In the course of the war, several Enigma machines were captured by the
British (and by the Russians at Stalingrad), and their rotor wiring was no secret
anymore. But Rejewski’s early break into the rotors was an important link in
the chain leading to Ultra.
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Acronyms

AES Advanced Encryption Standard

ATM Automatic Teller Machine

CBC Cipher Block Chaining

CESG Communications-Electronics Security
Group

CFB Cipher Feedback

DEC Digital Equipment Corporation

DES Data Encryption Standard

DSA Digital Signature Algorithm

DSS Digital Signature Standard

ECB Electronic Codebook

EFF Electronic Frontiers Foundation

FIPS Federal Information Processing
Standard

IBM International Business Machines

IDEA International Data Encryption
Algorithm

MARS A candidate cipher for AES. missing
long name

MD4 Message Digest 4

MD5 Message Digest 5

NBS National Bureau of Standards

NIST National Institute of Standards and
Technology

NSA National Security Agency

OFB Output Feedback

PIN Personal Identification Number

PKCS Public Key Cryptography Standard
RSA Inc. issued some of these.

PRG Pseudo Random number Generator

RSA Rivest, Shamir and Adleman
Cryptosystem

RC6

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDEA Triple Data Encryption Algorithm
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G.3. Rotor cryptanalysis
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