Classical Cryptography

Joachim von zur Gathen, Jérémie Detrey

2. Tutorial: Rivest, Shamir and Adleman

As the title says, this tutorial will focus on the RSA cryptosystem, widely used for asymmetric cryptography.

Given an integer n as the security parameter, RSA works in three stages:

Key setup Each user (here, Alice) computes her own public and private keys:

- Choose two distinct primes p and q at random, such that $2^{n / 2-1}<$ $p, q<2^{n / 2}$ and $2^{n-1}<p \cdot q<2^{n}$.
- Compute $N=p \cdot q$ and $\varphi(N)=(p-1)(q-1)$.
- Choose an integer e in $\{2, \ldots, \varphi(N)-2\}$ at random, coprime to $\varphi(N)$.
- Compute $d=e^{-1} \bmod \varphi(N)$, the multiplicative inverse of e modulo $\varphi(N)$.
- Publish the public key $K=(N, e)$ and securely store the private key $S=(N, d)$.
- Forget p, q and $\varphi(N)$.

Encryption Bob knows Alice's public key (N, e) and wants to send her the plaintext message x, where x is an integer and $x<2^{n-1}$:

- Compute and send $y=x^{e} \bmod N$.

Decryption Alice knows her own private key (N, d) and wants to decrypt the ciphertext y :

- Compute $x^{*}=y^{d} \bmod N$.

Exercise 2.1 (A simple example).
Let's take the security parameter $n=6$ bits and choose $p=5$ and $q=11$. We also pick $e=13$.
(i) Finish the key setup: compute Alice's public and private keys.
(ii) Bob wants to send the plaintext $x=6$ to Alice. Compute the corresponding ciphertext y.
(iii) Decrypt the ciphertext y using Alice's private key.

Exercise 2.2 (Correctness of RSA).
We want to prove here that the decrypted plaintext x^{*} corresponds to the original message x.
(i) Prove that for any $a \in \mathbb{Z}_{p}$ and any integer k, we have $a^{k(p-1)+1}=a$. Hint: Fermat's Little Theorem.
(ii) Show that $e d-1$ is a multiple of $p-1$ and of $q-1$.
(iii) Taking $a \in \mathbb{Z}_{p}$, prove that $a^{e d}=a$. Same question for $b \in \mathbb{Z}_{q}$.
(iv) Compute $x^{e d} \bmod p$ and $x^{e d} \bmod q$ in function of $a=x \bmod p$ and $b=$ $x \bmod q$.
(v) Show that $x^{e d} \equiv x \bmod N$.

Hint: Chinese Remainder Theorem.

Exercise 2.3 (Extending RSA).

For now, RSA works with plaintext messages of $n-1$ bits. Suppose now that we have an M-bit message to encrypt.
(i) How can we do that?
(ii) Is it a good solution?
(iii) Another idea?

Exercise 2.4 (Security parameter).
As of today, the security of RSA relies on the hardness of factoring N, which is an n-bit number.

Currently, the best known algorithm to factor large integers is the Number Field Sieve, which requires approximately $L(n)$ operations to factor an n-bit number, with

$$
L(n)=2^{1.9229 \cdot n^{1 / 3} \cdot\left(\log _{2} n\right)^{2 / 3}} .
$$

Cryptographic recommendations state that a problem is currently intractable if it requires at least $2^{8} 0$ operations.
(i) Compute $L(512), L(1024), L(2048)$.
(ii) What security parameter should you choose?

