Classical Cryptography

JOACHIM VON ZUR GATHEN, JÉRÉMIE DETREY

2. Tutorial: Rivest, Shamir and Adleman

As the title says, this tutorial will focus on the RSA cryptosystem, widely used for *asymmetric cryptography*.

Given an integer n as the security parameter, RSA works in three stages:

Key setup Each user (here, Alice) computes her own public and private keys:

- Choose two distinct primes p and q at random, such that $2^{n/2-1} < p, q < 2^{n/2}$ and $2^{n-1} .$
- Compute $N = p \cdot q$ and $\varphi(N) = (p-1)(q-1)$.
- Choose an integer e in $\{2, \ldots, \varphi(N) 2\}$ at random, coprime to $\varphi(N)$.
- Compute $d = e^{-1} \mod \varphi(N)$, the multiplicative inverse of *e* modulo $\varphi(N)$.
- Publish the public key K = (N, e) and securely store the private key S = (N, d).

• Forget
$$p$$
, q and $\varphi(N)$.

- **Encryption** Bob knows Alice's public key (N, e) and wants to send her the plaintext message x, where x is an integer and $x < 2^{n-1}$:
 - Compute and send $y = x^e \mod N$.
- **Decryption** Alice knows her own private key (N, d) and wants to decrypt the ciphertext *y*:

• Compute
$$x^* = y^d \mod N$$
.

Exercise 2.1 (A simple example).

Let's take the security parameter n = 6 bits and choose p = 5 and q = 11. We also pick e = 13.

(i) Finish the key setup: compute Alice's public and private keys.

- (ii) Bob wants to send the plaintext x = 6 to Alice. Compute the corresponding ciphertext y.
- (iii) Decrypt the ciphertext *y* using Alice's private key.

Exercise 2.2 (Correctness of RSA).

We want to prove here that the decrypted plaintext x^* corresponds to the original message x.

- (i) Prove that for any $a \in \mathbb{Z}_p$ and any integer k, we have $a^{k(p-1)+1} = a$. *Hint:* Fermat's Little Theorem.
- (ii) Show that ed 1 is a multiple of p 1 and of q 1.
- (iii) Taking $a \in \mathbb{Z}_p$, prove that $a^{ed} = a$. Same question for $b \in \mathbb{Z}_q$.
- (iv) Compute $x^{ed} \mod p$ and $x^{ed} \mod q$ in function of $a = x \mod p$ and $b = x \mod q$.
- (v) Show that $x^{ed} \equiv x \mod N$. *Hint:* Chinese Remainder Theorem.

Exercise 2.3 (Extending RSA).

For now, RSA works with plaintext messages of n - 1 bits. Suppose now that we have an *M*-bit message to encrypt.

- (i) How can we do that?
- (ii) Is it a good solution?
- (iii) Another idea?

Exercise 2.4 (Security parameter).

As of today, the security of RSA relies on the hardness of factoring N, which is an n-bit number.

Currently, the best known algorithm to factor large integers is the Number Field Sieve, which requires approximately L(n) operations to factor an *n*-bit number, with

 $L(n) = 2^{1.9229 \cdot n^{1/3} \cdot (\log_2 n)^{2/3}}.$

Cryptographic recommendations state that a problem is currently intractable if it requires at least 2⁸0 operations.

- (i) Compute *L*(512), *L*(1024), *L*(2048).
- (ii) What security parameter should you choose?