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2. Exercise sheet

Prepare exercises 2.3, 2.4 for the tutorial on Tuesday, 22 April!

Hand in solutions until Monday, 28 April 2008.

Exercise 2.1 (Playing with modular arithmetic). (5 points)

Consider the additive group Z
+

N := (ZN , +) of the ring ZN = (ZN , +, ·) of inte-
gers modulo N and the unit group Z

×
N := (Z×

N , ·) of the ring ZN = (Zp, +, ·) of
integers modulo N . Compute (fast):

(i) 17 + 13 in Z
+

21. 0

(ii) 17 · 5 in Z12. 0

(iii) −5 in Z
+

15. 1

(iv) 5−1 in Z
×
19. 2

(v) 517 := 5 · . . . · 5
︸ ︷︷ ︸

17

in Z
×
19. 1

(vi) 17 ·5 := 5 + · · · + 5
︸ ︷︷ ︸

17

in Z
+

12. (Note that there is no multiplication available!) 1

Exercise 2.2 (Science). (6+5 points)

(i) Count the number of elements in Z
×
4 , in Z

×
9 , and in Z

×
25, respectively. 1

Do you recognize a pattern? Can you prove your guess? +1

(ii) Prove that there are exactly 40 invertible elements in Z100. 2

(iii) Prove with the help of Euler’s theorem and Fermat’s little theorem that 3
we have the equation

33160

= 3 in Z101.

(iv) Prove that we have the equation +4

32160

= 376 in Z101.
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Exercise 2.3 (More on the Extended Euclidean Algorithm). (6+8 points)

Integers: We can add, subtract and multiply them. And there is a division
with remainder: Given any a, b ∈ Z with b 6= 0 there is a quotient q ∈ Z and a
remainder r ∈ Z such that a = q · b + r and 0 ≤ r < |b|. (We write a quo b := q,
a rem b := r ∈ Z. If we want to calculate with the remainder in its natural
domain we write a mod b := r ∈ Zb.) Using that we give an answer to the
problem to find s, t ∈ Z with sa + tb = 1. Allowed answers are: "There is no
solution." or "A solution is s = ... and t = ...." Any answer needs a proof (or at
least a good argument).

We start with one example: Consider a = 35 ∈ Z and b = 22 ∈ Z. Our aim is
to find s, t ∈ Z such that sa + tb is positive and as small as possible. By taking
s0 = 1 and t0 = 0 we get s0a + t0b = a (identity

0
) and by taking s1 = 0 and

t1 = 1 we get s1a + t1b = b (identity
1
). Given that we can combine the two

identities with a smaller outcome if we use a = q1b + r2 with r smaller than b

(in a suitable sense); namely we form 1(identity
0
) − q1(identity

1
) and obtain

(s0 − q1s1)
︸ ︷︷ ︸

=:s2

a + (t0 − q1t1)
︸ ︷︷ ︸

=:t2

b = a − q1b
︸ ︷︷ ︸

=r2

.

We arrange this in a table and continue with identity
1

and the newly found
identity

2
until we obtain 0. This might be one step more than you think neces-

sary, but the last identity is very easy to check and so gives us a cross-check of
the entire calculation. For the example we obtain:

i ri qi si ti comment
0 a = 35 1 0 1a + 0b = 35
1 b = 22 1 0 1 0a + 1b = 22, 35 = 1 · 22 + 13
2 13 1 1 −1 1a − 1b = 13, 22 = 1 · 13 + 9
3 9 1 −1 2 −1a + 2b = 9, 13 = 1 · 9 + 4
4 4 2 2 −3 2a − 3b = 4, 9 = 2 · 4 + 1
5 1 4 −5 8 −5a + 8b = 1, 4 = 4 · 1 + 0
6 0 22 −35 22a − 35b = 0, DONE, check ok!

We read off (marked in blue) that 1 = −5a + 8b and the greatest common
divisor of a and b is 1. This implies that 8 · 22 = 1 in Z35, in other words:
the multiplicative inverse of 22, often denoted 22−1 or 1

22
, in the ring Z35 of

integers modulo 35 is 8. (Brute force is no solution! That is, guessing or trying
all possibilities is not allowed here!)

(i) Find s, t ∈ Z such that s · 17 + t · 35 = 1.1



The electronic health card, summer 2008 3

(ii) Find s, t ∈ Z such that s · 14 + t · 35 = 1.1

Actually, there are other things which can be added, subtracted, multiplied,
and allow a division with remainder. For example, univariate polynomials
with coefficients in a field form a euclidean ring. A concrete example is the ring
F2[X] of univariate polynomials with coefficients in the two element field F2.
(The elements of F2 are 0 and 1, addition and multiplication are modulo 2, so
1 + 1 = 0. The expression 1 + X + X3 + X4 + X8 is a typical polynomial with
coefficients in F2; note that the coefficients know that ‘1 + 1 = 0’ where they
live. It’s square is 1 + X2 + X6 + X8 + X16, any occurance of 1 + 1 during
squaring yields 0.)

(iii) Find s, t ∈ F2[X] such that s · (1 + X) + t · (1 + X + X3 + X4 + X8) = 1. 4

To know why the EEA works prove the following statements. [Notation: We
assume that the first column contains remainders ri, the second column quo-
tients qi and the other two coefficients si and ti. The top row has i = 0, and the
bottom row (the first with ri = 0 and thus the last one) is row ℓ+1. There is no
q0 and no qℓ+1, r0 = a, r1 = b. A division with remainder produces qi, ri+1 ∈ Z

with ri−1 = qiri + ri+1 with 0 ≤ ri+1 < |ri| (0 < i < ℓ).]

(iv) For any row in the scheme we have ri = sia + tib (0 ≤ i ≤ ℓ + 1). +1

(v) For any two neighbouring rows in the scheme we have that the greatest +2
common divisor of ri and ri+1 is the same (0 ≤ i ≤ ℓ). [A step leading
there is gcd(ri, ri+1) = gcd(ri−1, ri).]

(vi) The greatest common divisor of rℓ and 0 is rℓ. +1

(vii) We have |ri+1| < |ri| (1 ≤ i ≤ ℓ), so the algorithm terminates. +1

(viii) We have |ri+1| < 1

2
|ri−1| (2 ≤ i ≤ ℓ), so the algorithm is fast, ie. ℓ ∈ O(n) +1

when a, b have at most n bits, ie. |a|, |b| < 2n.

(ix) Put everything together and prove: +2

Theorem. The EEA computes given a, b ∈ Z with at most n bits with at
most O(n3) bit operations the greatest common divisor g of a and b and
a representation g = sa + tb of it. In case g = 1 we thus have a solution of
the equation 1 = sa + tb. In case g > 1 there is no such solution.

[Hint: A single multiplication or a single division with remainder of n bit
numbers needs at most O(n2) bit operations.]
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Exercise 2.4 (Euler totient function). (0 points)

Euler totient function is defined by

ϕ :
N≥2 −→ N,

N 7−→ #Z
×
N .

Let p ∈ N be a prime number and m, n ∈ N≥2. Prove:

(i) If p ∈ N is prime then ϕ(p) = p − 1.

(ii) If p ∈ N is prime and e ∈ N≥1 then ϕ(pe) = pe−1(p − 1).

(iii) If m, n ∈ N and gcd(m, n) = 1 then ϕ(m · n) = ϕ(m) · ϕ(n).


