The electronic health card, summer 2008 MICHAEL NÜSKEN, DANIEL LOEBENBERGER

3. Exercise sheet Hand in solutions until Monday, 5 May 2008.

Exer	cise 3.1 (Science). (7+1 points)	
(i)	Count the number of elements in \mathbb{Z}_4^{\times} , in \mathbb{Z}_9^{\times} , and in \mathbb{Z}_{25}^{\times} , respectively. Do you recognize a pattern? Can you prove your guess?	1
(ii)	Prove that there are exactly 40 invertible elements in \mathbb{Z}_{100} .	1
(iii)	Prove with the help of Euler's theorem and Fermat's little theorem that we have the equation $3^{3^{160}}=3 \text{ in } \mathbb{Z}_{101}.$	2
(iv)	Prove that we have the equation	3
	$3^{2^{160}}=3^{76} ext{ in } \mathbb{Z}_{101}.$	
Exer	cise 3.2 (Visual Chinese Remainder Theorem). (4+2 points)	
(i)	Consider $21=3\cdot 7$ and, as we did in the course, produce a table indicating the relation betweeen \mathbb{Z}_{21} and $\mathbb{Z}_7\times\mathbb{Z}_3$.	1
(ii)	Pick two elements $x,y\in\mathbb{Z}_{21}$ (to make it interesting: the sum of the representing integers shall be larger than 21). First, add them in \mathbb{Z}_{21} and then map to $\mathbb{Z}_7\times\mathbb{Z}_3$. Second, map both to $\mathbb{Z}_7\times\mathbb{Z}_3$ and add afterwards. What do you observe?	1
(iii)	Pick two elements $x, y \in \mathbb{Z}_{21}$ (to make it interesting: the product of the representing integers shall be larger than 21). First, multiply them in \mathbb{Z}_{21} and then map to $\mathbb{Z}_7 \times \mathbb{Z}_3$. Second, map both to $\mathbb{Z}_7 \times \mathbb{Z}_3$ and multiply afterwards. What do you observe?	1
(iv)	Mark all the invertible elements in \mathbb{Z}_7 , \mathbb{Z}_3 , and \mathbb{Z}_{21} . Do you note a relationship?	1

Now consider $a, b \in \mathbb{Z}_{\geq 2}$ coprime.

(v) Suppose you are given $x \mod ab$, $y \mod ab \in \mathbb{Z}_{ab}$. Prove that

+2

$$(xy \bmod a, xy \bmod b) = ((x \bmod a) \cdot (y \bmod a), (x \bmod b) \cdot (y \bmod b)).$$

(You might want to do, say, the first component first.) For short: the map $\mathbb{Z}_{ab} \to \mathbb{Z}_a \times \mathbb{Z}_b, \ x \bmod ab \mapsto (x \bmod a, x \bmod b)$ preserves the multiplication.

Exercise 3.3 (Touching \mathbb{F}_4).

(4+4 points)

Consider polynomials of degree less than 2 over the field \mathbb{F}_2 . Define addition and multiplication of them modulo the polynomial $X^2 + X + 1$.

- (i) Write down the complete list of elements.
 - (ii) Write down the addition table.
- (iii) Write down the multiplication table.

We can now consider polynomials over \mathbb{F}_4 : $T^2 + T + 1$ is such a polynomial. Factor it (over \mathbb{F}_4).

Exercise 3.4 (Computing in \mathbb{F}_{256}).

(0+4 points)

Let M be your student id. Let

$$a=M \operatorname{rem} 256, b=(M \operatorname{quo} 256) \operatorname{rem} 256, \text{ and } c=(a+b) \operatorname{rem} 256$$

Now interpret a, b and c as elementes of $\mathbb{F}_{256} = \mathbb{F}_2[X]/\langle X^8 + X^4 + X^3 + X + 1 \rangle$, just as in AES. Compute in \mathbb{F}_{256}

- (i) a + b (Attention! Usually the result will not be c!),
- +1 (ii) $a \cdot b$, and

+4

+2 (iii) 1/a (or 1/b in case a = 0).

Note: If $x = x_1 \cdot 256 + x_0$, $0 \le x_0 < 256$, then $x \neq 0$ quo $256 = x_1$ and $x \neq 0$ rem $256 = x_0$.