
The electronic health card, summer 2008
MICHAEL NÜSKEN, DANIEL LOEBENBERGER

4. Exercise sheet

Hand in solutions until Monday, 19 May 2008.

Exercise 4.1 (RSA). (7+1 points)

Using the primes p = 31 and q = 41 an RSA system shall be set up. (In practice
these primes are of course much too small!) We choose e = 17 and N = p · q as
public key.

(i) Use the extended Euclidean algorithm to compute the corresponding se- 3
cret key d such that e · d ≡ 1 mod ϕ(N). Important: Write down all steps
in the extended Euclidean algorithm!

(ii) Encrypt x = 1 190. 2

(iii) Decrypt y = 1 026. 2

If you use a computer algebra system, as for example MuPAD or MAPLE then +1
hand in (a printout of) your program sources and outputs (including inter-
mediate results of the extended Euclidean algorithm), and use the following
values instead:

p = 2 609 899,

q = 3 004 217,

e = 54 323 425 121,

x = 4 364 863 612 562,

y = 850 080 551 629.

Exercise 4.2 (Cracking RSA). (9 points)

Write a program for the following:

(i) Generate random RSA keys with N about 200 Bits. Keep the private key 2
(N, d) secret and tell only the public key. Do not throw away anything
this time. [You may assume that MuPAD’s random(a..b) yields a func-
tion(!) outputting uniformly random numbers in the interval a..b.]

2 Michael Nüsken, Daniel Loebenberger

(ii) Use only N and L to recover the primes. 3

(iii) Compute a second pair (e′, d′) and use the two pairs (and possibly N) to4
recover L.

Exercise 4.3 (ElGamal signatures). (7 points)

Compute an ElGamal signature for your student identification number repre-
sented in binary. Use p = 467 and g = 3 ∈ Z

×
p and work in G = 〈g〉. For simplic-

ity, we take the function HASH : {0, 1}∗ → Z233, x 7→ (
∑

0≤i<|x| xi2
i) mod 233.

(Eg. 18 translates to the string 10010 which in turn translates into the number
18 mod 233.)

(i) Here #G = 233 and thus exp
g
: Z233 → G, a 7→ ga is an isomorphism.1

[Note that 1662 = 3 and thus g233 = 1. Since g 6= 1. . .]

(ii) Setup: Compute Alice’ public key with α = 9.1

(iii) Sign: Sign the hash value of your student identification number.3
(iv) Verify: Verify the signature.2

Exercise 4.4 (RSA Hardcore Bit). (6+6 points)

In this exercise we will examine the question whether an algorithm that gives
you partial information on the plaintext (given the public key and the cipher-
text) already gives you the complete plaintext.

(i) First assume that you are given an algorithm A that on input (N, e, y)6
outputs the least significant bit of the plaintext x (so it says whether x is
even or odd). Construct given A an algorithm B that will give you on
input (N, e, y) the whole plaintext x. [Hint: If A(N, e, y) = 0 then x = 2x′.
Otherwise note that N is odd!]

(ii) Often one has probabilistic algorithms which will not always give the+3
correct answer, but work with a certain error probability. You are now
going to explore how such an algorithm would behave in our setting.
So assume now that the algorithm A has a small error probability of 2−n

where n is the number of bits in N . Compute the probability that your
algorithm B returns the correct plaintext. [Hint: The Bernoulli inequality
states that (1 + x)r ≥ 1 + rx for x > −1 and r ≥ 0.]

(iii) Finally assume that the atticking algorithm has a huge error probability+3
of 40%. Can you still compute the entire plaintext efficiently?

The electronic health card, summer 2008 3

Exercise 4.5 (Encryption and decryption with AES). (0+6 points)

(i) Given the output of the function ByteSub, how can you find the corre- +1
sponding input?

(ii) Compute the inverse of t1 = x4 + x3 + x2 + x + 1 ∈ F256. +1

(iii) Compute the inverse of t2 = z4 + z3 + z2 + z + 1 ∈ F2[z]/ 〈z8 + 1〉. +1

(iv) Verify that the product of the polynomial d = 0By3 + 0Dy2 + 09y + 0E +3
and the polynomial c = 03y3 + 01y2 + 01y + 02 is equal to 1 in the ring
F256[y]/ 〈y4 + 1〉.

