Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/08us/08us-bridgingcourse.html

B-IT, Bonn, Winter semester 2008/09

Part II

Context-Free Languages

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata
(6) Closure Properties of CFLs
(7) Outlook

Introductory Example I

Example II. 1

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

$$
\begin{array}{rcl}
\langle\text { Expression }\rangle & ::= & 0 \\
& \mid & 1 \\
& \mid & \langle\text { Expression }\rangle+\langle\text { Expression }\rangle \\
& \mid & \langle\text { Expression }\rangle *\langle\text { Expression }\rangle \\
& \mid\langle\text { Expression }\rangle)
\end{array}
$$

Meaning:
An expression is either 0 or 1 , or it is of the form $u+v$, $u * v$, or (u) where u, v are again expressions

Introductory Example II

Example II. 2 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Introductory Example II

Example II. 2 (continued)

Here we abbreviate \langle Expression〉 as E, and use " \rightarrow " instead of "::=". Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by applying rules to the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E \\
& \Rightarrow(E) * 1 \\
& \Rightarrow(E+E) * 1 \\
& \Rightarrow(0+E) * 1 \\
& \Rightarrow(0+1) * 1
\end{aligned}
$$

Context-Free Grammars I

Definition II. 3

A context-free grammar (CFG) is a quadruple

$$
G=\langle N, \Sigma, P, S\rangle
$$

where

- N is a finite set of nonterminal symbols
- Σ is the (finite) alphabet of terminal symbols (disjoint from N)
- P is a finite set of production rules of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in(N \cup \Sigma)^{*}$
- $S \in N$ is a start symbol

Context-Free Grammars II

Example II. 4

For the above example, we have:

- $N=\{E\}$
- $\Sigma=\{0,1,+, *,()$,
- $P=\{E \rightarrow 0, E \rightarrow 1, E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E)\}$
- $S=E$

Context-Free Grammars II

Example II. 4

For the above example, we have:

- $N=\{E\}$
- $\Sigma=\{0,1,+, *,()$,
- $P=\{E \rightarrow 0, E \rightarrow 1, E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E)\}$
- $S=E$

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol $=$ symbol on LHS of first production
\Longrightarrow grammar completely defined by productions

Context-Free Languages I

Definition II. 5

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} A \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length n) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta$, $\delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $1 \leq i \leq n$ (notation: $\beta \Rightarrow^{*} \gamma$).
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.
- The language generated by G is $L(G):=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$.
- A language $L \subseteq \Sigma^{*}$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_{1}, G_{2} are equivalent if $L\left(G_{1}\right)=L\left(G_{2}\right)$.

Context-Free Languages II

Example II. 6

The language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is context-free (but not regular - see Ex. I.51). It is generated by the grammar $G=\langle N, \Sigma, P, S\rangle$ with

- $N=\{S\}$
- $\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S b \mid \varepsilon\}$
(proof: on the board)

Context-Free Languages II

Example II. 6

The language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is context-free (but not regular - see Ex. I.51). It is generated by the grammar $G=\langle N, \Sigma, P, S\rangle$ with

- $N=\{S\}$
- $\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S b \mid \varepsilon\}$
(proof: on the board)

Remark: illustration of derivations by derivation trees

- root labeled by start symbol
- leafs labeled by terminal symbols
- successors of node labeled according to right-hand side of production rule
(example on the board)

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Open:

- Relation between context-free and regular languages

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata
(6) Closure Properties of CFLs
(7) Outlook

Context-Free and Regular Languages

Theorem II. 7

(1) Every regular language is context-free.
(2) There exist CFLs which are not regular.
(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Context-Free and Regular Languages

Theorem II. 7

(1) Every regular language is context-free.
(2) There exist CFLs which are not regular.
(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Proof.

(1) Let L be a regular language, and let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA which recognizes $L . G:=\langle N, \Sigma, P, S\rangle$ is defined as follows:

- $N:=Q, S:=q_{0}$
- if $\delta(q, a)=q^{\prime}$, then $q \rightarrow a q^{\prime} \in P$
- if $q \in F$, then $q \rightarrow \varepsilon \in P$

Obviously a w-labeled run in \mathfrak{A} from q_{0} to F corresponds to a derivation of w in G, and vice versa. Thus $L(\mathfrak{A})=L(G)$ (example on the board).
(2) A counterexample is $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ (see Ex. I. 51 and II.6).

Context-Free Grammars and Languages

Seen:

- CFLs are more expressive than regular languages

Context-Free Grammars and Languages

Seen:

- CFLs are more expressive than regular languages

Open:

- Decidability of word problem

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata
(6) Closure Properties of CFLs
(7) Outlook

- Goal: given $G=\langle N, \Sigma, P, S\rangle$ and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- Solution: establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol \Longrightarrow only finitely many combinations to be inspected

Chomsky Normal Form I

Definition II. 8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow a .
$$

Chomsky Normal Form I

Definition II. 8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow a .
$$

Example II. 9

Let $S \rightarrow a b \mid a S b$ be the grammar which generates $L:=\left\{a^{n} b^{n} \mid n \geq 1\right\}$. An equivalent grammar in Chomsky NF is

$$
\begin{array}{ll}
S \rightarrow A B \mid A C & \text { (generates } L \text {) } \\
A \rightarrow a & \text { (generates }\{a\} \text {) } \\
B \rightarrow b & \text { (generates }\{b\} \text {) } \\
C \rightarrow S B & \text { (generates }\left\{a^{n} b^{n+1} \mid n \geq 1\right\} \text {) }
\end{array}
$$

Chomsky Normal Form II

Theorem II. 10

Every CFL L with $\varepsilon \notin L$ is generatable by a CFG in Chomsky NF.

Chomsky Normal Form II

Theorem II. 10

Every CFL L with $\varepsilon \notin L$ is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let $G=\langle N, \Sigma, P, S\rangle$ be some CFG which generates L. The transformation of P into rules of the form $A \rightarrow B C$ and $A \rightarrow a$ proceeds in three steps:
(1) terminal symbols only in rules of the form $A \rightarrow a$
(thus all other rules have the shape $A \rightarrow A_{1} \ldots A_{n}$)
(2) elimination of "chain rules" of the form $A \rightarrow B$
(3) elimination of rules of the form $A \rightarrow A_{1} \ldots A_{n}$ where $n>2$

Chomsky Normal Form III

Proof of Theorem II. 10 (continued).

Step 1: (only $A \rightarrow a$)
(1) let $N^{\prime}:=\left\{B_{a} \mid a \in \Sigma\right\}$
(2) let $P^{\prime}:=\left\{A \rightarrow \alpha^{\prime} \mid A \rightarrow \alpha \in P\right\} \cup\left\{B_{a} \rightarrow a \mid a \in \Sigma\right\}$ where α^{\prime} is obtained from α by replacing every $a \in \Sigma$ with B_{a}
This yields G^{\prime} (example: on the board)

Chomsky Normal Form III

Proof of Theorem II. 10 (continued).

Step 1: (only $A \rightarrow a)$
(1) let $N^{\prime}:=\left\{B_{a} \mid a \in \Sigma\right\}$
(2) let $P^{\prime}:=\left\{A \rightarrow \alpha^{\prime} \mid A \rightarrow \alpha \in P\right\} \cup\left\{B_{a} \rightarrow a \mid a \in \Sigma\right\}$ where α^{\prime} is obtained from α by replacing every $a \in \Sigma$ with B_{a}
This yields G^{\prime} (example: on the board)
Step 2: (elimination of $A \rightarrow B$)
(1) determine all derivations $A_{1} \Rightarrow \ldots \Rightarrow A_{n}$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\Longrightarrow only finitely many!)
(2) let $P^{\prime \prime}:=\left(P \cup\left\{A_{1} \rightarrow \alpha \mid A_{1} \Rightarrow \ldots \Rightarrow A_{n} \Rightarrow \alpha\right.\right.$, $\alpha \notin N\})$
$\backslash\left\{A \rightarrow B \mid A \rightarrow B \in P^{\prime}\right\}$
This yields $G^{\prime \prime}$ (example: on the board)

Chomsky Normal Form IV

Proof of Theorem II. 10 (continued).

Step 3: for every $A \rightarrow A_{1} \ldots A_{n}$ with $n>2$:
(1) add new symbols B_{1}, \ldots, B_{n-2} to $N^{\prime \prime}$
(2) replace $A \rightarrow A_{1} \ldots A_{n}$ by

$$
\begin{aligned}
A & \rightarrow A_{1} B_{1} \\
B_{1} & \rightarrow A_{2} B_{2} \\
& \vdots \\
B_{n-3} & \rightarrow A_{n-2} B_{n-2} \\
B_{n-2} & \rightarrow A_{n-1} A_{n}
\end{aligned}
$$

This yields $G^{\prime \prime \prime}$ (example: on the board)
One can show: $G, G^{\prime}, G^{\prime \prime}, G^{\prime \prime \prime}$ are equivalent

The Word Problem Revisited

Goal: given $w \in \Sigma^{+}$and $G=\langle N, \Sigma, P, S\rangle$ such that $\varepsilon \notin L(G)$, decide if $w \in L(G)$ or not
(If $w=\varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)
Approach by Cocke, Younger, Kasami (CYK algorithm):
(1) transform G into Chomsky NF
(2) let $w=a_{1} \ldots a_{n} \quad(n \geq 1)$
(3) let $w[i, j]:=a_{i} \ldots a_{j}$ for every $1 \leq i \leq j \leq n$
(1) consider segments $w[i, j]$ in order of increasing length, starting with $w[i, i]$ (i.e., single letters)
(0) in each case, determine $N_{i, j}:=\left\{A \in N \mid A \Rightarrow^{*} w[i, j]\right\}$
(6) test whether $S \in N_{1, n}$ (and thus, whether $S \Rightarrow^{*} w[1, n]=w$)

The CYK Algorithm I

Algorithm II. 11 (CYK Algorithm)

Input: $G=\langle N, \Sigma, P, S\rangle, w=a_{1} \ldots a_{n} \in \Sigma^{+}$
Question: $w \in L(G)$?
Procedure: for $i:=1$ to n do

$$
N_{i, i}:=\left\{A \in N \mid A \rightarrow a_{i} \in P\right\}
$$

next i
for $d:=1$ to $n-1$ do $\%$ compute $N_{i, i+d}$
for $i:=1$ to $n-d$ do

$$
j:=i+d ; N_{i, j}:=\emptyset ;
$$

$$
\text { for } k:=i \text { to } j-1 \text { do }
$$

$$
N_{i, j}:=N_{i, j} \cup\{A \in N \mid \text { there is } A \rightarrow B C \in P
$$

$$
\text { with } \left.B \in N_{i, k}, C \in N_{k+1, j}\right\}
$$

next k
next i
next d
Output: "yes" if $S \in N_{1, n}$, otherwise " $n o$ "

The CYK Algorithm II

Example II. 12

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$
- Matrix representation of $N_{i, j}$
(on the board)

The Word Problem for Context-Free Languages

Seen:

- Word problem decidable using CYK algorithm

The Word Problem for Context-Free Languages

Seen:

- Word problem decidable using CYK algorithm

Open:

- Emptiness problem

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata

6 Closure Properties of CFLs
(7) Outlook

- Goal: given $G=\langle N, \Sigma, P, S\rangle$, decide whether $L(G)=\emptyset$ or not
- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

Algorithm II. 13 (Productivity Test)

Input: $G=\langle N, \Sigma, P, S\rangle$
Question: $L(G)=\emptyset$?
Procedure: let $i:=0, X_{0}:=\emptyset, X_{1}:=\Sigma ; \quad\left({ }^{*}\right.$ productive symbols $\left.{ }^{*}\right)$ while $X_{i+1} \neq X_{i}$ do
let $i:=i+1$;
let $X_{i+1}:=X_{i} \cup\left\{A \in N \mid A \rightarrow \alpha \in P, \alpha \in X_{i}^{*}\right\}$
od
Output: "yes" if $S \notin X_{i}$, otherwise "no"

The Productivity Test

Algorithm II. 13 (Productivity Test)

Input: $G=\langle N, \Sigma, P, S\rangle$
Question: $L(G)=\emptyset$?
Procedure: let $i:=0, X_{0}:=\emptyset, X_{1}:=\Sigma ; \quad\left({ }^{*}\right.$ productive symbols $\left.{ }^{*}\right)$ while $X_{i+1} \neq X_{i}$ do
let $i:=i+1$;
let $X_{i+1}:=X_{i} \cup\left\{A \in N \mid A \rightarrow \alpha \in P, \alpha \in X_{i}^{*}\right\}$ od
Output: "yes" if $S \notin X_{i}$, otherwise "no"

Example II. 14

$$
\begin{aligned}
G: & S \rightarrow A B \mid C A \\
& A \rightarrow a \\
B & \rightarrow B C \mid A B \\
& C a B \mid b
\end{aligned}
$$

(on the board)

The Emptiness Problem for CFLs

Seen:

- Emptiness problem decidable using productivity test

Seen:

- Emptiness problem decidable using productivity test

Open:

- Characterizing automata model

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata

6 Closure Properties of CFLs
(7) Outlook

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$)
- DFA will be extended to pushdown automata by
- adding a pushdown store which stores symbols from a pushdown alphabet and uses a specific bottom symbol
- adding push and pop operations to transitions

Pushdown Automata II

Definition II. 15

A pushdown automaton (PDA) is of the form $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq\left(Q \times \Gamma \times \Sigma_{\varepsilon}\right) \times\left(Q \times \Gamma^{*}\right)$ is a finite set of transitions
- $q_{0} \in Q$ is the initial state
- Z_{0} is the (pushdown) bottom symbol
- $F \subseteq Q$ is a set of final states

Pushdown Automata II

Definition II. 15

A pushdown automaton (PDA) is of the form $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq\left(Q \times \Gamma \times \Sigma_{\varepsilon}\right) \times\left(Q \times \Gamma^{*}\right)$ is a finite set of transitions
- $q_{0} \in Q$ is the initial state
- Z_{0} is the (pushdown) bottom symbol
- $F \subseteq Q$ is a set of final states

Interpretation of $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$: if the PDA \mathfrak{A} is in state q where Z is on top of the stack and x is the next input symbol (or empty), then \mathfrak{A} reads x, replaces Z by δ, and changes into the state q^{\prime}.

Configurations, Runs, Acceptance

Definition II. 16

Let $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ be a PDA.

- An element of $Q \times \Gamma^{*} \times \Sigma^{*}$ is called a configuration of \mathfrak{A}.
- The initial configuration for input $w \in \Sigma^{*}$ is given by $\left(q_{0}, Z_{0}, w\right)$.
- The set of final configurations is given by $F \times \Gamma^{*} \times\{\varepsilon\}$.
- If $\left((q, Z, x),\left(q^{\prime}, \delta\right)\right) \in \Delta$, then $(q, Z \gamma, x w) \vdash\left(q^{\prime}, \delta \gamma, w\right)$ for every $\gamma \in \Gamma^{*}, w \in \Sigma^{*}$.
- \mathfrak{A} accepts $w \in \Sigma^{*}$ if $\left(q_{0}, Z_{0}, w\right) \vdash^{*}(q, \gamma, \varepsilon)$ for some $q \in F, \gamma \in \Gamma^{*}$.
- The language accepted by \mathfrak{A} is $L(\mathfrak{A}):=\left\{w \in \Sigma^{*} \mid \mathfrak{A}\right.$ accepts $\left.w\right\}$.
- A language L is called PDA-recognizable if $L=L(\mathfrak{A})$ for some PDA \mathfrak{A}.
- Two PDA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ are called equivalent if $L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right)$.

Example II. 17

(1) PDA which recognizes $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ (on the board)

Example II. 17

(1) PDA which recognizes $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ (on the board)
(2) PDA which recognizes $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length; on the board)

Example II. 17

(1) PDA which recognizes $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ (on the board)
(3) PDA which recognizes $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ (palindromes of even length; on the board)

Observation: \mathfrak{A}_{2} is nondeterministic: whenever a construction step is applicable, the pushdown could also be deconstructed

Definition II. 18

A PDA $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

- for every $x \in \Sigma_{\varepsilon}$, at most one (q, Z, x)-step in Δ and
- if there is a (q, Z, a)-step in Δ for some $a \in \Sigma$, then no (q, Z, ε)-step is possible.

Deterministic PDA

Definition II. 18

A PDA $\mathfrak{A}=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

- for every $x \in \Sigma_{\varepsilon}$, at most one (q, Z, x)-step in Δ and
- if there is a (q, Z, a)-step in Δ for some $a \in \Sigma$, then no (q, Z, ε)-step is possible.

Corollary II. 19

In a DPDA, every configuration has at most one \vdash-successor.

One can show: determinism restricts the set of acceptable languages (DPDA-recognizable languages are closed under complement, which is generally not true for PDA-recognizable languages)

Example II. 20

The set of palindromes of even length is PDA-recognizable, but not DPDA-recognizable (without proof).

Theorem II. 21
 A language is context-free iff it is PDA-recognizable.

Theorem II. 21

A language is context-free iff it is PDA-recognizable.

Proof.

\Longleftarrow omitted

\Longrightarrow let $G=\langle N, \Sigma, P, S\rangle$ be a CFG. Construction of PDA \mathfrak{A}_{G} recognizing $L(G)$:

- \mathfrak{A}_{G} simulates a derivation of G where the leftmost nonterminal of a sentence form is replaced ("leftmost derivation")
- begin with S on pushdown
- if nonterminal on top: apply a corresponding production rule
- if terminal on top: match with next input symbol

Proof of Theorem II. 21 (continued).
\Longrightarrow Formally: $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- $\Gamma:=N \cup \Sigma$
- if $A \rightarrow \alpha \in P$, then $\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$
- if $a \in \Sigma$, then $\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$
- $Z_{0}:=S$
- $F:=Q$

Proof of Theorem II. 21 (continued).

\Longrightarrow Formally: $\mathfrak{A}_{G}:=\left\langle Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right\rangle$ is given by

- $Q:=\left\{q_{0}\right\}$
- $\Gamma:=N \cup \Sigma$
- if $A \rightarrow \alpha \in P$, then $\left(\left(q_{0}, A, \varepsilon\right),\left(q_{0}, \alpha\right)\right) \in \Delta$
- if $a \in \Sigma$, then $\left(\left(q_{0}, a, a\right),\left(q_{0}, \varepsilon\right)\right) \in \Delta$
- $Z_{0}:=S$
- $F:=Q$

Example II. 22
"Bracket language", given by G :

$$
S \rightarrow\rangle|\langle S\rangle \mid S S
$$

(on the board)

Seen:

- Definition of PDA
- Equivalence of PDA-recognizable and context-free languages

Seen:

- Definition of PDA
- Equivalence of PDA-recognizable and context-free languages

Open:

- Closure and decidability properties of CFLs

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata
(6) Closure Properties of CFLs
(7) Outlook

Theorem II. 23
The set of CFLs is closed under concatenation, union, and iteration.

Theorem II. 23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

Theorem II. 23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cdot L_{2} ;$

Theorem II. 23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cdot L_{2} ;$
- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} \mid S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cup L_{2}$; and

Theorem II. 23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cdot L_{2} ;$
- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} \mid S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cup L_{2}$; and
- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1}$ and $P:=\left\{S \rightarrow \varepsilon \mid S_{1} S\right\} \cup P_{1}$ generates L_{1}^{*}.

Negative Results

Theorem II. 24

The set of CFLs is not closed under intersection and complement.

Negative Results

Theorem II. 24

The set of CFLs is not closed under intersection and complement.

Proof.

- Both $L_{1}:=\left\{a^{k} b^{k} c^{l} \mid k, l \in \mathbb{N}\right\}$ and $L_{2}:=\left\{a^{k} b^{l} c^{l} \mid k, l \in \mathbb{N}\right\}$ are CFLs, but not $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$ (without proof).

Negative Results

Theorem II. 24

The set of CFLs is not closed under intersection and complement.

Proof.

- Both $L_{1}:=\left\{a^{k} b^{k} c^{l} \mid k, l \in \mathbb{N}\right\}$ and $L_{2}:=\left\{a^{k} b^{l} c^{l} \mid k, l \in \mathbb{N}\right\}$ are CFLs, but not $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$ (without proof).
- If CFLs would be closed under complement, then also under intersection (as $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$).

Overview of Decidability and Closure Results

Decidability Results			
	$w \in L$	$L=\emptyset$	$L_{1}=L_{2}$
Reg	+ (I.38)	+ (I.40)	$+($ I.42 $)$
CFL	+ (II.11)	+ (II.13)	-

Overview of Decidability and Closure Results

Decidability Results			
	$w \in L$	$L=\emptyset$	$L_{1}=L_{2}$
Reg	+ (I.38)	+ (I.40)	$+($ I.42 $)$
CFL	+ (II.11)	+ (II.13)	-

Closure Results					
	$L_{1} \cdot L_{2}$	$L_{1} \cup L_{2}$	$L_{1} \cap L_{2}$	\bar{L}	L^{*}
Reg	+ (I.28)	+ (I.18)	+ (I.16)	+ (I.14)	+ (I.29)
CFL	+ (II.23)	+ (II.23)	- (II.24)	- (II.24)	+ (II.23)

Outline

(1) Context-Free Grammars and Languages
(2) Context-Free and Regular Languages
(3) The Word Problem for Context-Free Languages

4 The Emptiness Problem for CFLs
(5) Pushdown Automata

6 Closure Properties of CFLs
(7) Outlook

- Equivalence problem for CFG and PDA (" $L\left(X_{1}\right)=L\left(X_{2}\right)$?") (generally undecidable, decidable for DPDA)
- Pumping Lemma for CFL
- Greibach Normal Form for CFG
- Construction of parsers for compilers
- Non-context-free grammars and languages (context-sensitive and recursively enumerable languages, Turing machines-see Week 4)

