Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/08us/08us-bridgingcourse.html

B-IT, Bonn, Winter semester 2008/09

Part II

Context-Free Languages

Outline

- 1 Context-Free Grammars and Languages
- 2 Context–Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 1 The Emptiness Problem for CFLs
- 6 Pushdown Automata
- 6 Closure Properties of CFLs
- Outlook

Introductory Example I

Example II.1

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

$$\begin{array}{cccc} \langle Expression \rangle & ::= & 0 \\ & | & 1 \\ & | & \langle Expression \rangle + \langle Expression \rangle \\ & | & \langle Expression \rangle * \langle Expression \rangle \\ & | & (\langle Expression \rangle) \end{array}$$

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v are again expressions

Introductory Example II

Example II.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=".

Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

Introductory Example II

Example II.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=".

Thus:

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

Now expressions can be generated by applying rules to the start symbol E:

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (0 + E) * 1$$

$$\Rightarrow (0 + 1) * 1$$

Context-Free Grammars I

Definition II.3

A context-free grammar (CFG) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

- N is a finite set of nonterminal symbols
- Σ is the (finite) alphabet of terminal symbols (disjoint from N)
- P is a finite set of production rules of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup \Sigma)^*$
- $S \in N$ is a start symbol

Context-Free Grammars II

Example II.4

For the above example, we have:

- $N = \{E\}$
- $\Sigma = \{0, 1, +, *, (,)\}$
- $\bullet \ P = \{E \rightarrow 0, E \rightarrow 1, E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E)\}$
- \bullet S = E

Context-Free Grammars II

Example II.4

For the above example, we have:

- $N = \{E\}$
- $\Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \to 0, E \to 1, E \to E + E, E \to E * E, E \to (E)\}$
- \bullet S = E

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol = symbol on LHS of first production
- ⇒ grammar completely defined by productions

Context-Free Languages I

Definition II.5

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

- A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \to \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length n) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $1 \leq i \leq n$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in G if $S \Rightarrow^* w$.
- The language generated by G is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.
- A language $L \subseteq \Sigma^*$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_1, G_2 are equivalent if $L(G_1) = L(G_2)$.

Context-Free Languages II

Example II.6

The language $\{a^nb^n \mid n \in \mathbb{N}\}$ is context-free (but not regular—see Ex. I.51). It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with

- $N = \{S\}$
- $\bullet \ \Sigma = \{a, b\}$
- $\bullet \ P = \{S \to aSb \mid \varepsilon\}$

(proof: on the board)

Context-Free Languages II

Example II.6

The language $\{a^nb^n \mid n \in \mathbb{N}\}$ is context-free (but not regular—see Ex. I.51). It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with

- $N = \{S\}$
- $\bullet \ \Sigma = \{a, b\}$
- $\bullet \ P = \{S \to aSb \mid \varepsilon\}$

(proof: on the board)

Remark: illustration of derivations by derivation trees

- root labeled by start symbol
- leafs labeled by terminal symbols
- successors of node labeled according to right-hand side of production rule

(example on the board)

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Open:

• Relation between context-free and regular languages

Outline

- 1 Context-Free Grammars and Languages
- 2 Context–Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 1 The Emptiness Problem for CFLs
- 6 Pushdown Automata
- 6 Closure Properties of CFLs
- Outlook

Context-Free and Regular Languages

Theorem II.7

- Every regular language is context-free.
- 2 There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Context-Free and Regular Languages

Theorem II.7

- Every regular language is context-free.
- 2 There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Proof.

- Let L be a regular language, and let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA which recognizes L. $G := \langle N, \Sigma, P, S \rangle$ is defined as follows:
 - $N := Q, S := q_0$
 - if $\delta(q, a) = q'$, then $q \to aq' \in P$
 - if $q \in F$, then $q \to \varepsilon \in P$

Obviously a w-labeled run in \mathfrak{A} from q_0 to F corresponds to a derivation of w in G, and vice versa. Thus $L(\mathfrak{A}) = L(G)$ (example on the board).

② A counterexample is $\{a^nb^n \mid n \in \mathbb{N}\}$ (see Ex. I.51 and II.6).

Context-Free Grammars and Languages

Seen:

• CFLs are more expressive than regular languages

Context-Free Grammars and Languages

Seen:

• CFLs are more expressive than regular languages

Open:

• Decidability of word problem

Outline

- 1 Context-Free Grammars and Languages
- 2 Context—Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 1 The Emptiness Problem for CFLs
- 5 Pushdown Automata
- 6 Closure Properties of CFLs
- Outlook

The Word Problem

- Goal: given $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not
- ullet For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- Solution: establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol
- ⇒ only finitely many combinations to be inspected

Chomsky Normal Form I

Definition II.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A \to BC$$
 or $A \to a$.

Chomsky Normal Form I

Definition II.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A \to BC$$
 or $A \to a$.

Example II.9

Let $S \to ab \mid aSb$ be the grammar which generates $L := \{a^nb^n \mid n \ge 1\}$. An equivalent grammar in Chomsky NF is

$$\begin{array}{ll} S \rightarrow AB \mid AC & \text{ (generates L)} \\ A \rightarrow a & \text{ (generates $\{a\}$)} \\ B \rightarrow b & \text{ (generates $\{b\}$)} \\ C \rightarrow SB & \text{ (generates $\{a^nb^{n+1} \mid n \geq 1\}$)} \end{array}$$

Chomsky Normal Form II

Theorem II.10

Every CFL L with $\varepsilon \notin L$ is generatable by a CFG in Chomsky NF.

Chomsky Normal Form II

Theorem II.10

Every CFL L with $\varepsilon \notin L$ is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let $G = \langle N, \Sigma, P, S \rangle$ be some CFG which generates L. The transformation of P into rules of the form $A \to BC$ and $A \to a$ proceeds in three steps:

- terminal symbols only in rules of the form $A \to a$ (thus all other rules have the shape $A \to A_1 \dots A_n$)
- 2 elimination of "chain rules" of the form $A \to B$
- 3 elimination of rules of the form $A \to A_1 \dots A_n$ where n > 2

Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only $A \to a$)

- $\bullet \quad \text{let } N' := \{B_a \mid a \in \Sigma\}$
- ② let $P' := \{A \to \alpha' \mid A \to \alpha \in P\} \cup \{B_a \to a \mid a \in \Sigma\}$ where α' is obtained from α by replacing every $a \in \Sigma$ with B_a

This yields G' (example: on the board)

Chomsky Normal Form III

Proof of Theorem II.10 (continued).

Step 1: (only
$$A \to a$$
)

- $\bullet \quad \text{let } N' := \{B_a \mid a \in \Sigma\}$
- ② let $P' := \{A \to \alpha' \mid A \to \alpha \in P\} \cup \{B_a \to a \mid a \in \Sigma\}$ where α' is obtained from α by replacing every $a \in \Sigma$ with B_a

This yields G' (example: on the board)

- Step 2: (elimination of $A \to B$)
 - determine all derivations $A_1 \Rightarrow ... \Rightarrow A_n$ with rules of the form $A \to B$ without repetition of nonterminals (\Longrightarrow only finitely many!)
 - ② let $P'' := (P \cup \{A_1 \to \alpha \mid A_1 \Rightarrow \dots \Rightarrow A_n \Rightarrow \alpha, \alpha \notin N\})$ \\{A \to B \cap A \to B \in P'\}

This yields G'' (example: on the board)

Chomsky Normal Form IV

Proof of Theorem II.10 (continued).

Step 3: for every $A \to A_1 \dots A_n$ with n > 2:

- \bullet add new symbols B_1, \ldots, B_{n-2} to N''

$$A \rightarrow A_1B_1$$

$$B_1 \rightarrow A_2B_2$$

$$\vdots$$

$$B_{n-3} \rightarrow A_{n-2}B_{n-2}$$

$$B_{n-2} \rightarrow A_{n-1}A_n$$

This yields G''' (example: on the board)

One can show: G, G', G'', G''' are equivalent

The Word Problem Revisited

Goal: given $w \in \Sigma^+$ and $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$, decide if $w \in L(G)$ or not

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

- lacktriangledown transform G into Chomsky NF
- ② let $w = a_1 \dots a_n \ (n \ge 1)$
- \bullet let $w[i,j] := a_i \dots a_j$ for every $1 \le i \le j \le n$
- consider segments w[i, j] in order of increasing length, starting with w[i, i] (i.e., single letters)
- **1** in each case, determine $N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i,j]\}$
- test whether $S \in N_{1,n}$ (and thus, whether $S \Rightarrow^* w[1,n] = w$)

The CYK Algorithm I

Algorithm II.11 (CYK Algorithm)

```
Input: G = \langle N, \Sigma, P, S \rangle, w = a_1 \dots a_n \in \Sigma^+
 Question: w \in L(G)?
Procedure: for i := 1 to n do
                  N_{i,i} := \{A \in N \mid A \to a_i \in P\}
               next i
               for d := 1 to n-1 do \% compute N_{i,i+d}
                  for i := 1 to n - d do
                     j := i + d; N_{i,j} := \emptyset;
                     for k := i to i - 1 do
                        N_{i,j} := N_{i,j} \cup \{A \in N \mid there \ is \ A \rightarrow BC \in P\}
                                                      with B \in N_{i,k}, C \in N_{k+1,i}
                     next k
                  next i
```

Output: "yes" if $S \in N_{1,n}$, otherwise "no"

next d

The CYK Algorithm II

Example II.12

$$\begin{array}{ccc} \bullet & G: & S \rightarrow SA \mid a \\ & A \rightarrow BS \\ & B \rightarrow BB \mid BS \mid b \mid c \end{array}$$

- \bullet w = abaaba
- Matrix representation of $N_{i,j}$

(on the board)

The Word Problem for Context-Free Languages

Seen:

• Word problem decidable using CYK algorithm

The Word Problem for Context-Free Languages

Seen:

• Word problem decidable using CYK algorithm

Open:

• Emptiness problem

Outline

- Context-Free Grammars and Languages
- 2 Context–Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 4 The Emptiness Problem for CFLs
- 6 Pushdown Automata
- 6 Closure Properties of CFLs
- Outlook

The Emptiness Problem

- Goal: given $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not
- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

The Productivity Test

Algorithm II.13 (Productivity Test)

```
Input: G = \langle N, \Sigma, P, S \rangle
Question: L(G) = \emptyset?

Procedure: let i := 0, X_0 := \emptyset, X_1 := \Sigma; (* productive symbols *)

while X_{i+1} \neq X_i do

let i := i+1;

let X_{i+1} := X_i \cup \{A \in N \mid A \to \alpha \in P, \alpha \in X_i^*\}

od

Output: "yes" if S \notin X_i, otherwise "no"
```

The Productivity Test

Algorithm II.13 (Productivity Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: let i := 0, X_0 := \emptyset, X_1 := \Sigma; (* productive symbols *)

while X_{i+1} \neq X_i do

let i := i+1;

let X_{i+1} := X_i \cup \{A \in N \mid A \to \alpha \in P, \alpha \in X_i^*\}

od

Output: "yes" if S \notin X_i, otherwise "no"
```

Example II.14

$$G: S \to AB \mid CA$$

$$A \to a$$

$$B \to BC \mid AB$$

$$C \to aB \mid b$$

(on the board)

The Emptiness Problem for CFLs

Seen:

• Emptiness problem decidable using productivity test

The Emptiness Problem for CFLs

Seen:

• Emptiness problem decidable using productivity test

Open:

• Characterizing automata model

Outline

- 1 Context-Free Grammars and Languages
- 2 Context–Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 1 The Emptiness Problem for CFLs
- 6 Pushdown Automata
- 6 Closure Properties of CFLs
- 7 Outlook

Pushdown Automata I

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for $\{a^nb^n \mid n \in \mathbb{N}\}$)
- DFA will be extended to pushdown automata by
 - adding a pushdown store which stores symbols from a pushdown alphabet and uses a specific bottom symbol
 - adding push and pop operations to transitions

Pushdown Automata II

Definition II.15

A pushdown automaton (PDA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$$
 where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq (Q \times \Gamma \times \Sigma_{\varepsilon}) \times (Q \times \Gamma^*)$ is a finite set of transitions
- $q_0 \in Q$ is the initial state
- Z_0 is the (pushdown) bottom symbol
- $F \subseteq Q$ is a set of final states

Pushdown Automata II

Definition II.15

A pushdown automaton (PDA) is of the form

 $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq (Q \times \Gamma \times \Sigma_{\varepsilon}) \times (Q \times \Gamma^*)$ is a finite set of transitions
- $q_0 \in Q$ is the initial state
- Z_0 is the (pushdown) bottom symbol
- $F \subseteq Q$ is a set of final states

Interpretation of $((q, Z, x), (q', \delta)) \in \Delta$: if the PDA $\mathfrak A$ is in state q where Z is on top of the stack and x is the next input symbol (or empty), then $\mathfrak A$ reads x, replaces Z by δ , and changes into the state q'.

Configurations, Runs, Acceptance

Definition II.16

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

- An element of $Q \times \Gamma^* \times \Sigma^*$ is called a configuration of \mathfrak{A} .
- The initial configuration for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .
- The set of final configurations is given by $F \times \Gamma^* \times \{\varepsilon\}$.
- If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.
- \mathfrak{A} accepts $w \in \Sigma^*$ if $(q_0, Z_0, w) \vdash^* (q, \gamma, \varepsilon)$ for some $q \in F, \gamma \in \Gamma^*$.
- The language accepted by $\mathfrak A$ is $L(\mathfrak A) := \{ w \in \Sigma^* \mid \mathfrak A \text{ accepts } w \}.$
- A language L is called PDA-recognizable if $L = L(\mathfrak{A})$ for some PDA \mathfrak{A} .
- Two PDA $\mathfrak{A}_1, \mathfrak{A}_2$ are called equivalent if $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Examples

Example II.17

1 PDA which recognizes $L = \{a^n b^n \mid n \in \mathbb{N}\}$ (on the board)

Examples

Example II.17

- **1** PDA which recognizes $L = \{a^n b^n \mid n \in \mathbb{N}\}$ (on the board)
- ② PDA which recognizes $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length; on the board)

Examples

Example II.17

- **1** PDA which recognizes $L = \{a^n b^n \mid n \in \mathbb{N}\}$ (on the board)
- ② PDA which recognizes $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length; on the board)

Observation: \mathfrak{A}_2 is nondeterministic: whenever a construction step is applicable, the pushdown could also be deconstructed

Deterministic PDA

Definition II.18

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called **deterministic** (DPDA) if for every $q \in Q, Z \in \Gamma$,

- for every $x \in \Sigma_{\varepsilon}$, at most one (q, Z, x)-step in Δ and
- if there is a (q, Z, a)-step in Δ for some $a \in \Sigma$, then no (q, Z, ε) -step is possible.

Deterministic PDA

Definition II.18

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called **deterministic** (DPDA) if for every $q \in Q, Z \in \Gamma$,

- for every $x \in \Sigma_{\varepsilon}$, at most one (q, Z, x)-step in Δ and
- if there is a (q, Z, a)-step in Δ for some $a \in \Sigma$, then no (q, Z, ε) -step is possible.

Corollary II.19

In a DPDA, every configuration has at most one \vdash -successor.

Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages (DPDA-recognizable languages are closed under complement, which is generally not true for PDA-recognizable languages)

Example II.20

The set of palindromes of even length is PDA-recognizable, but not DPDA-recognizable (without proof).

PDA and Context-Free Languages I

Theorem II.21

A language is context-free iff it is PDA-recognizable.

PDA and Context-Free Languages I

Theorem II.21

A language is context-free iff it is PDA-recognizable.

Proof.

 \leftarrow omitted

- \implies let $G = \langle N, \Sigma, P, S \rangle$ be a CFG. Construction of PDA \mathfrak{A}_G recognizing L(G):
 - \mathfrak{A}_G simulates a derivation of G where the leftmost nonterminal of a sentence form is replaced ("leftmost derivation")
 - \bullet begin with S on pushdown
 - if nonterminal on top: apply a corresponding production rule
 - if terminal on top: match with next input symbol

PDA and Context-Free Languages II

Proof of Theorem II.21 (continued).

- \implies Formally: $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by
 - $Q := \{q_0\}$
 - $\bullet \ \Gamma := N \cup \Sigma$
 - if $A \to \alpha \in P$, then $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$
 - if $a \in \Sigma$, then $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$
 - $Z_0 := S$
 - \bullet F := Q

PDA and Context-Free Languages II

Proof of Theorem II.21 (continued).

$$\implies$$
 Formally: $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by

- $Q := \{q_0\}$
- $\bullet \ \Gamma := N \cup \Sigma$
- if $A \to \alpha \in P$, then $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$
- if $a \in \Sigma$, then $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$
- $Z_0 := S$
- \bullet F := Q

Example II.22

"Bracket language", given by G:

$$S \to \langle \rangle \mid \langle S \rangle \mid SS$$

(on the board)

Pushdown Automata

Seen:

- Definition of PDA
- Equivalence of PDA-recognizable and context-free languages

Pushdown Automata

Seen:

- Definition of PDA
- Equivalence of PDA-recognizable and context-free languages

Open:

• Closure and decidability properties of CFLs

Outline

- 1 Context-Free Grammars and Languages
- 2 Context–Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 1 The Emptiness Problem for CFLs
- 6 Pushdown Automata
- 6 Closure Properties of CFLs
- 7 Outlook

Theorem II.23

The set of CFLs is closed under concatenation, union, and iteration.

Theorem II.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

Theorem II.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

• $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;

Theorem II.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \to S_1 \mid S_2\} \cup P_1 \cup P_2$ generates $L_1 \cup L_2$; and

Theorem II.23

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \to S_1 S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;
 - $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \to S_1 \mid S_2\} \cup P_1 \cup P_2$ generates $L_1 \cup L_2$; and
 - $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1$ and $P := \{S \to \varepsilon \mid S_1S\} \cup P_1$ generates L_1^* .

Negative Results

Theorem II.24

The set of CFLs is not closed under intersection and complement.

Negative Results

Theorem II.24

The set of CFLs is not closed under intersection and complement.

Proof.

• Both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).

Negative Results

Theorem II.24

The set of CFLs is not closed under intersection and complement.

Proof.

- Both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).
- If CFLs would be closed under complement, then also under intersection (as $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$).

Overview of Decidability and Closure Results

Decidability Results						
	$w \in L$	$L = \emptyset$	$L_1 = L_2$			
Reg	+ (I.38)	+ (I.40)	+ (I.42)			
CFL	+ (II.11)	+ (II.13)	_			

Overview of Decidability and Closure Results

Decidability Results						
	$w \in L$	$L = \emptyset$	$L_1 = L_2$			
Reg	+ (I.38)	+ (I.40)	+ (I.42)			
CFL	+ (II.11)	+ (II.13)	_			

Closure Results							
	$L_1 \cdot L_2$	$L_1 \cup L_2$	$L_1 \cap L_2$	\overline{L}	L^*		
Reg	+ (I.28)	+ (I.18)	+ (I.16)	+ (I.14)	+ (I.29)		
CFL	+ (II.23)	+ (II.23)	- (II.24)	- (II.24)	+ (II.23)		

Outline

- 1 Context-Free Grammars and Languages
- 2 Context–Free and Regular Languages
- 3 The Word Problem for Context-Free Languages
- 1 The Emptiness Problem for CFLs
- 6 Pushdown Automata
- 6 Closure Properties of CFLs
- Outlook

Outlook

- Equivalence problem for CFG and PDA (" $L(X_1) = L(X_2)$?") (generally undecidable, decidable for DPDA)
- Pumping Lemma for CFL
- Greibach Normal Form for CFG
- Construction of parsers for compilers
- Non-context-free grammars and languages (context-sensitive and recursively enumerable languages, Turing machines—see Week 4)

