Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/08us/08us-bridgingcourse.html

B-IT, Bonn, Winter semester 2008/09

noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/08us/08us-bridgingcourse.html

Organization

@ Schedule:

o lecture 9:00-12:30 (Mon-Fri)
o exercises 14:00-16:00 (Mon-Thu)
e 30 min break in each block

e Examination after week 4

o Please ask questions!

Rm Foundations of Informatics Winter 2008/09

Overview of Week 3

@ Regular Languages
© Context-Free Languages

@ Processes and Concurrency

Rm Foundations of Informatics Winter 2008/09

e J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to
Automata Theory, Languages, and Computation, 2nd ed.,
Addison-Wesley, 2001

o A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium,
2002 [in German)]

@ http://www.jflap.org/

(software for experimenting with formal languages concepts)

Rm Foundations of Informatics Winter 2008/09

http://www.jflap.org/

Part I

Regular Languages

“m Foundations of Informatics Winter 2008/09

@ Formal Languages

Rm Foundations of Informatics Winter 2

Words and Languages

e Computer systems transform data
e Data encoded as (binary) words

—> Data sets = sets of words = formal languages,
data transformations = functions on words

Rm Foundations of Informatics Winter 2008/09

Words and Languages

e Computer systems transform data
e Data encoded as (binary) words

—> Data sets = sets of words = formal languages,
data transformations = functions on words

Java = {all valid Java programs},

Compiler : Java — Bytecode

Rm Foundations of Informatics Winter 2008,/09

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

Rm Foundations of Informatics Winter 2008/09

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}

Rm Foundations of Informatics Winter 2008,/09

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}
@ Latin alphabet Yya4i, := {a,b,¢,...}

Rm Foundations of Informatics Winter 2008,/09

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}
@ Latin alphabet Yya4i, := {a,b,¢,...}
@ Keyboard alphabet Y,

Rm Foundations of Informatics Winter 2008,/09

Alphabets

An alphabet is a finite, non-empty set of symbols (“letters”).

>, I, ... denote alphabets

a,b, ... denote letters

@ Boolean alphabet B := {0,1}

@ Latin alphabet Yya4i, := {a,b,¢,...}
@ Keyboard alphabet Y,

© Morse alphabet Y opse 1= {+, —, 1}

Rm Foundations of Informatics Winter 2008/09

Words

Definition 1.4

e A word is a finite sequence of letters from a given alphabet X.

@ Y* is the set of all words over X.

|w| denotes the length of a word w € ¥*, i.e., |aj...a,| :==n.

The empty word is denoted by ¢, i.e., |e| = 0.

@ The concatenation of two words v = aq ...a,, (m € N) and
w =by...b, (n € N) is the word

V-w:i=aq...anb1... by,

(often written as vw).

@ Thus: w-e=¢-w=w.

A prefix/suffix v of a word w is an initial/trailing part of w, i.e.,
w = vv' /w = v'v for some v’ € X*.
R.

o Ifw=ay...a,, then w' :=ay,...a1.

Foundations of Informatics Winter 2008,/09

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

Rm Foundations of Informatics Winter 2008/09

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101

Rm Foundations of Informatics Winter 2008/09

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
@ over ¥ = {l,V,X,L,C,D,M}: set of all valid roman numbers

Rm Foundations of Informatics Winter 2008/09

Formal Languages I

Definition 1.5

A set of words L C ¥* is called a (formal) language over X.

@ over B = {0,1}: set of all bit strings containing 1101
@ over ¥ = {l,V,X,L,C,D,M}: set of all valid roman numbers

@ over Yy set of all valid Java programs

Rm Foundations of Informatics Winter 2008/09

Formal Languages II

Seen:
@ Basic notions: alphabets, words

e Formal languages as sets of words

Rm Foundations of Informatics Winter 2008,/09

Formal Languages II

Seen:
@ Basic notions: alphabets, words

e Formal languages as sets of words

Open:

@ Description of computations on words?

Rm Foundations of Informatics Winter 2008,/09

© Finite Automata
@ Deterministic Finite Automata
@ Operations on Languages and Automata
@ Nondeterministic Finite Automata
@ More Decidability Results

Rm Foundations of Informatics Winter 2008/09

© Finite Automata
@ Deterministic Finite Automata

Rm Foundati of Informatics Winter 2008/09

Example: Pattern Matching

Example 1.7 (Pattern 1101)

@ Read Boolean string bit by bit

@ Test whether it contains 1101

@ Idea: remember which (initial) part of 1101 has been recognized
@ Five prefixes: €, 1, 11, 110, 1101

@ Diagram: on the board

Rm Foundations of Informatics Winter 2008,/09

Example: Pattern Matching

Example 1.7 (Pattern 1101)

@ Read Boolean string bit by bit

@ Test whether it contains 1101

@ Idea: remember which (initial) part of 1101 has been recognized
@ Five prefixes: €, 1, 11, 110, 1101

@ Diagram: on the board

What we used:

finitely many (storage) states

an initial state

e for every current state and every input symbol: a new state

a succesful state

Rm Foundations of Informatics Winter 2008,/09

Deterministic Finite Automata 1

Definition 1.8

A deterministic finite automaton (DFA) is of the form
Ql: <Q7E767q07F>

where
e () is a finite set of states
@ Y denotes the input alphabet
@ §:(Q x X — (@ is the transition function

@ go € @ is the initial state

F C @ is the set of final (or: accepting) states

Foundations of Informatics Winter 2008/09

Deterministic Finite Automata 11

Example 1.9

Pattern matching (Example 1.7):
e Q@ =1{q,..-,q4}
o ¥ =B=1{0,1}
@ J:Q x X — @ on the board
o F'={q}

Foundations of Informatics Winter 2008/09

Graphical Representation of DFA

states — nodes

§(ga)=¢ = q->¢

initial state: incoming edge without source state

final state(s): double circle

Rm Foundations of Informatics Winter 2008/09

Acceptance by DFA 1

Definition 1.10

Let (@, 3,0, qo, F)) be a DFA. The extension of § : Q@ X ¥ — @,
QXX —Q,

is defined by
0*(q,w) := state after reading w in g.
Formally:
. _Ja ifw=e¢e
0%(a,w) = {5*(5(q, a),v) ifw=av

Thus: if w=ay...a, and ¢ =5 ¢4 =% ... 2% ¢, then 0 (q,w) = qn

Foundations of Informatics Winter 2008/09

Acceptance by DFA 1

Definition 1.10

Let (@, 3,0, qo, F)) be a DFA. The extension of § : Q@ X ¥ — @,
QXX —Q,

is defined by
0*(q,w) := state after reading w in g.
Formally:
. _Ja ifw=e¢e
0%(a,w) = {5*((5(q, a),v) ifw=av

Thus: if w=ay...a, and ¢ =5 ¢4 =% ... 2% ¢, then 0 (q,w) = qn

Pattern matching (Example 1.9): on the board

Foundations of Informatics Winter 2008,/09

Acceptance by DFA 11

Definition [.12

e 2 accepts w € ¥* if §*(qo,w) € F.
@ The language recognized by 2l is

L) :={w € * | §*(qo, w) € F}.

o A language L C ¥* is called DFA-recognizable if there exists some
DFA 2 such that L(2() = L.

e Two DFA 2,2 are called equivalent if

L) = L(As).

Foundations of Informatics Winter 2008/09

Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example 1.9.

Foundations of Informatics Winter 2008,/09

Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example 1.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board

Foundations of Informatics Winter 2008,/09

Acceptance by DFA 111

@ The set of all bit strings containing 1101 is recognized by the
automaton from Example 1.9.

@ Two (equivalent) automata recognizing the language
{w € B* | w contains 1} :

on the board

@ An automaton which recognizes
{w €{0,...,9}" | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 — one state for
each residue class (on the board)

Foundations of Informatics Winter 2008,/09

Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata

Rm Foundations of Informatics Winter 2008,/09

Deterministic Finite Automata

Seen:

@ Deterministic finite automata as a model of simple sequential
computations

@ Recognizability of formal languages by automata

Open:
o Composition and transformation of automata?

e Which languages are recognizable, which are not (alternative
characterization)?

e Language definition — automaton and vice versa?

Rm Foundations of Informatics Winter 2008,/09

© Finite Automata

@ Operations on Languages and Automata

Rm Foundati of Informatics Winter 2008/09

Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let 211, Q[Q be two DFA with L(Q[l) = Ll and L(ng) = L2.
Can we construct automata which recognize

o Tr (= ¥\ Ly),
e L1 N Ly, and
o L1ULy?

Foundations of Informatics Winter 2008,/09

Language Complement

If L C ¥* is DFA-recognizable, then so is L.

m' Foundations of Informatics Winter 2008/09

Language Complement

Theorem 1.14

If L C ¥* is DFA-recognizable, then so is L.

Let 20 = (Q, %, 0, qo, F') be a DFA such that L(2() = L. Then:

weL <= w¢L < §(q,w) ¢ F < §(q0,w) €Q\F.

Thus, L is recognized by the DFA (Q, X, 6,q0,Q \ F). O]

lmH Foundations of Informatics Winter 2008/09

Language Complement

Theorem .14
If L C ¥* is DFA-recognizable, then so is L.

Let 20 = (Q, %, 0, qo, F') be a DFA such that L(2() = L. Then:
weL < wé¢L < §(q,w) ¢ F <= §(qo0,w) €Q\ F.

Thus, L is recognized by the DFA (Q, X, 6,q0,Q \ F). O]

on the board

lmH Foundations of Informatics Winter 2008,/09

Language Intersection I

If L1, Ly C ¥* are DFA-recognizable, then so is Ly N Lo. \

m' Foundations of Informatics Winter 2008/09

Language Intersection I

If L1, Ly C ¥* are DFA-recognizable, then so is Ly N Lo.

Proof.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff both A1 and 25 accept w

Idea: let 2; and 25 run in parallel
@ use pairs of states (q1,¢2) € Q1 X Q2

start with both components in initial state

a transition updates both components independently

for acceptance both components need to be in a final state

m“ Foundations of Informatics Winter 2008,/09

Language Intersection II

Proof (continued).

Formally: let the product automaton

A= <Q1 X QQazv(Sv (Q(%7Q(%)7F1 X F2>
be defined by
5((q1,q2),a) := (61(q1,a),62(q2,a)) for every a € X.

Foundations of Informatics Winter 2008/09

Language Intersection II

Proof (continued).

Formally: let the product automaton
A= <Q1 X Q272767 (Q(%aqa%Fl X F2>
be defined by
0((q1,92),a) := (901(q1,a), d2(g2,a)) for every a € X.
This definition yields
6*((q1,g2), w) = (67 (q1, w), 65 (g2, w)) (¥)
for every w € ¥*.

Foundations of Informatics Winter 2008/09

Language Intersection II

Proof (continued).

Formally: let the product automaton
A= <Q1 X Q272767 (Q(%aqa%Fl X F2>
be defined by
0((q1,92),a) := (901(q1,a), d2(g2,a)) for every a € X.
This definition yields
6*((q1,92), w) = (61 (q1, w), 05 (g2, w)) ()
for every w € ¥*.
Thus we have:
2 accepts w

— 6*((Q6,q3),UJ)€F1 XFZ

L (G(gh,w),55(adw) € Fi x F
— Of(qp,w) € F1 and 63(q5, w) € Fy
<= 2 accepts w and Ay accepts w

Foundations of Informatics Winter 2008,/09

Language Intersection III

on the board I

Rm Foundations of Informatics Winter 2008/09

Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo. \

Rm Foundations of Informatics Winter 2008/09

Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff 2y or 2y accepts w.

lm“ Foundations of Informatics Winter 2008/09

Language Union

If Ly, Ly C ¥* are DFA-recognizable, then so is Ly U Lo.

Proof.

Let 2; = (Q;, %, 6i, ¢b, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff 2y or 2y accepts w.

Idea: reuse product construction
Construct 2 as before but choose as final states those pairs
(q1,92) € Q1 X Q2 with ¢ € F or g2 € F». Thus the set of final states
is given by
JF o= (Fl X Qg) U (Ql X Fg)

lm“ Foundations of Informatics Winter 2008,/09

Language Concatenation

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo I:{’U'wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

m' Foundations of Informatics Winter 2008,/09

Language Concatenation

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo ::{v-wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

Example 1.20

© If Ly = {101,1} and Ly = {011,1}, then

Ly - Ly = {101011, 1011, 11}.

lm“ Foundations of Informatics Winter 2008/09

Language Concatenation

The concatenation of two languages L1, Lo C 3* is given by

Ly Lo ::{v-wez*‘UELl,U}GLQ}.

Abbreviations: w-L:={w} L, L -w:=L-{w}

Example 1.20
@ If L, = {101,1} and Ly = {011, 1}, then

Ly - Ly = {101011, 1011, 11}.

Q If L1 =00 -B* and L2 =11 'B*, then

Ly - Ly = {w € B* | w has prefix 00 and contains 11}.

lm“ Foundations of Informatics Winter 2008/09

DFA-Recognizability of Concatenation

If L1, Lo C ¥* are DFA-recognizable, then so is Ly - L. \

Rm Foundations of Informatics Winter 2008/09

DFA-Recognizability of Concatenation

If L1, Ly C ¥* are DFA-recognizable, then so is Ly - Ls.

Proof (attempt).

Let 2; = (Q;, %, 6i, ¢, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff a prefix of w is recognized by 21,
and if 2, accepts the remaining suffix.

Idea: choose Q := Q1 U Q2 where each ¢ € F} is identified with ¢3
But: on the board []

lmH Foundations of Informatics Winter 2008/09

DFA-Recognizability of Concatenation

If L1, Ly C ¥* are DFA-recognizable, then so is Ly - Ls.

Proof (attempt).

Let 2; = (Q;, %, 6i, ¢, Fi) be DFA such that L(2;) = L; (i = 1,2). The
new automaton 2 has to accept w iff a prefix of w is recognized by 21,
and if 2, accepts the remaining suffix.

Idea: choose Q := Q1 U Q2 where each ¢ € F} is identified with ¢3
But: on the board []

Conclusion

| A\

Required: automata model where the successor state (for a given state
and input symbol) is not unique

A,

Foundations of Informatics Winter 2008/09

Language Iteration
Definition 1.21

e The nth power of a language L C ¥* is the n-fold composition of

L with itself (n € N): L" :=L-... L
—_——

n times
Inductively: LY := {e}, L"*1 .= L. L
e The iteration (or: Kleene star) of L is

L = U P

neN

Foundations of Informatics Winter 2008,/09

Language Iteration
Definition 1.21

e The nth power of a language L C ¥* is the n-fold composition of

L with itself (n € N): L" :=L-... L
—_—

n times
Inductively: LY := {e}, L"*1 .= L. L
e The iteration (or: Kleene star) of L is

L = U P

neN

Remarks:
o we always have ¢ € L* (since L° C L* and L° = {¢})
o we L*iff w=c¢ orif wcan be decomposed into n > 1 subwords
Viy..., Uy (1.6, w =v1-... - vy,) such that v; € L forevery 1 <i<mn
e again we would suspect that the iteration of a DFA-recognizable
language is DFA-recognizable, but there is no simple
(deterministic) construction

Foundations of Informatics Winter 2008,/09

Operations on Languages and Automata

Seen:

e Operations on languages:
complement
intersection
union
concatenation
iteration

e DFA constructions for:
e complement
e intersection
e union

Rm Foundations of Informatics Winter 2008,/09

Operations on Languages and Automata

Seen:

e Operations on languages:
complement
intersection
union
concatenation
iteration

e DFA constructions for:

e complement
e intersection
e union

Open:
e Automata model for (direct implementation of) concatenation and
iteration?

Rm Foundations of Informatics Winter 2008,/09

© Finite Automata

@ Nondeterministic Finite Automata

Rm Foundati of Informatics Winter 2008/09

Nondeterministic Finite Automata 1

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

e an input word generally induces several state sequences (“runs”)

e the word is accepted if at least one accepting run exists

Rm Foundations of Informatics Winter 2008/09

Nondeterministic Finite Automata 1

Idea:

e for a given state and a given input symbol, several transitions (or
none at all) are possible

e an input word generally induces several state sequences (“runs”)

e the word is accepted if at least one accepting run exists

Advantages:

e simplifies representation of languages
(example: B* - 1101 - B*; on the board)

@ yields direct constructions for concatenation and iteration of
languages

e more adequate modeling of systems with nondeterministic
behaviour (communication protocols, multi-agent systems, ...)

Rm Foundations of Informatics Winter 2008/09

Nondeterministic Finite Automata 11
Definition 1.22

A nondeterministic finite automaton (NFA) is of the form
Q[- <Q727A7q07F>

where

e () is a finite set of states

@ Y denotes the input alphabet

o A C(@Q x X x (@ is the transition relation
qo € @ is the initial state
F C (@ is the set of final states

Foundations of Informatics Winter 2008,/09

Nondeterministic Finite Automata 11
Definition 1.22

A nondeterministic finite automaton (NFA) is of the form
Q[- <Q727A7q07F>

where

e () is a finite set of states

@ Y denotes the input alphabet

o A C(@Q x X x (@ is the transition relation
qo € @ is the initial state
F C (@ is the set of final states

Remarks:
o (¢,a,q") € A usually written as ¢ — ¢
e every DFA can be considered as an NFA
((g,a,9") € A <= 6(q,a) =)
RWNTH

Foundations of Informatics Winter 2008,/09

Acceptance by NFA

o Let w=ay...a, € X*.

o A w-labeled 2l-run from ¢; to ¢o is a sequence
al a2 an
Po—P1 —.---Pn—-1 —7Pn

such that po = q1, pn = q2, and (p;—1,a;,p;) € A for every
1 <i <n (we also write: ¢ LN q2).

2 accepts w if there is a w-labeled 2A-run from gy to some g € F

The language recognized by 2 is
L(A) :={w € £* | A accepts w}.

e A language L C ¥* is called NFA-recognizable if there exists a
NFA 2 such that L(2() = L.

Two NFA 2;,2s are called equivalent if L(41) = L(22).

Foundations of Informatics Winter 2008,/09

Acceptance Test for NFA

Algorithm 1.24 (Acceptance Test for NFA)

Input: NFA A =(Q,%,A,q, F), we X*
Question: w € L(A)?
Procedure: successive computation of the reachability set

Ry(w) = {g€ Q| g — ¢}
Inductive definition:

Ra(e) = {q}
Ry(va) = {q€Q|p—> q for some p € Ry(v)}

Output: “yes” if Ry(w) N F # 0, otherwise “no”

Remark: this algorithm solves the word problem for NFA

lm“ Foundations of Informatics Winter 2008,/09

Acceptance Test for NFA

Algorithm 1.24 (Acceptance Test for NFA)

Input: NFA A =(Q,%,A,q, F), we X*
Question: w € L(A)?
Procedure: successive computation of the reachability set

Ry(w) = {g€ Q| g — ¢}
Inductive definition:

Ra(e) = {q}
Ry(va) = {q€Q|p—> q for some p € Ry(v)}

Output: “yes” if Ry(w) N F # 0, otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example 1.25

on the board
m“ Foundations of Informatics Winter 2008,/09

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Rm Foundations of Informatics Winter 2008/09

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ¢ as transition label

Rm Foundations of Informatics Winter 2008/09

Definition 1.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of
the form A = (Q, 3, A, qo, F') where

e (Q is a finite set of states

@ X denotes the input alphabet

e A CQ x X, X (Q is the transition relation where . := X U {¢}
@ ¢o € @ is the initial state

e F C (@ is the set of final states

Remarks:
e every NFA is an e-NFA

o definitions of runs and acceptance: in analogy to NFA

Foundations of Informatics Winter 2008,/09

Definition 1.26

A nondeterministic finite automaton with e-transitions (e-NFA) is of
the form A = (Q, 3, A, qo, F') where

e (Q is a finite set of states

@ X denotes the input alphabet

e A CQ x X, X (Q is the transition relation where . := X U {¢}
@ ¢o € @ is the initial state

e F C (@ is the set of final states

Remarks:
e every NFA is an e-NFA

o definitions of runs and acceptance: in analogy to NFA

on the board
RWNTH

Foundations of Informatics Winter 2008,/09

e-NFA-Recognizability of Concatenation

If Ly, Ly C X* are e-NFA-recognizable, then so is Ly - Lo. \

m' Foundations of Informatics Winter 2008/09

e-NFA-Recognizability of Concatenation

If Ly, Ly C X* are e-NFA-recognizable, then so is Ly - Lo. \
on the board [] l

Rm Foundations of Informatics Winter 2008,/09

e-NFA-Recognizability of Iteration

If L C ¥* is e-NFA-recognizable, then so is L*. \

m' Foundations of Informatics Winter 2008/09

e-NFA-Recognizability of Iteration

If L C ¥* is e-NFA-recognizable, then so is L*. \
on the board Ol l

Rm Foundations of Informatics Winter 2008,/09

Syntax Diagrams as e-NFA

Syntax diagrams (without recursive calls) can be interpreted as e-NFA

decimal numbers (on the board)

Rm Foundations of Informatics Winter 2008/09

Types of Finite Automata

O DFA
Q@ NFA
@ «-NFA

Rm Foundations of Informatics Winter 2008/09

Types of Finite Automata

O DFA
Q@ NFA
@ «-NFA

Q@ FEvery DFA-recognizable language is NFA-recognizable.

© FEwery NFA-recognizable language is e-NFA-recognizable.

Rm Foundations of Informatics Winter 2008/09

Types of Finite Automata

O DFA
Q@ NFA
@ «-NFA

Q@ FEvery DFA-recognizable language is NFA-recognizable.

© FEwery NFA-recognizable language is e-NFA-recognizable.

Goal: establish reverse inclusions

Rm Foundations of Informatics Winter 2008/09

From NFA to DFA 1

FEvery NFA can be transformed into an equivalent DFA. \

Rm Foundations of Informatics Winter 2008,/09

From NFA to DFA 1

FEvery NFA can be transformed into an equivalent DFA.

Proof.
Idea: let the DFA operate on sets of states (“powerset construction”)
o Initial state of DFA := {initial state of NFA}

o P % P’ in DFA iff there exist ¢ € P,¢' € P’ such that ¢ — ¢ in
NFA

o P final state in DFA iff it contains some final state of NFA

lmH Foundations of Informatics Winter 2008/09

From NFA to DFA 11

Proof (continued).

Let 2 = (Q, X, A, qo, F') be a NFA.
Powerset construction of A' = (Q', %, ¥, ¢f, F'):

0o Q=29 :={P|PCQ}

0 0 :Q xX — @ with

q € 0'(P,a) < there exists p € P such that (p,a,q) € A

° g = {q}

o F':={PCQ|PNF#0}
This yields

g —qinA < g€ & ({g}w)inA
and thus
A accepts w <= A’ accepts w

lm“ Foundations of Informatics Winter 2008,/09

From NFA to DFA 11

Proof (continued).
Let 2 = (Q, X, A, qo, F') be a NFA.
Powerset construction of A' = (Q', %, ¥, ¢f, F'):
0o Q=29 :={P|PCQ}
0 0 :Q xX — @ with
q € 0'(P,a) < there exists p € P such that (p,a,q) € A
° gy = {q}
o F':={PCQ|PNF#0}
This yields

@ —qin A <= g {q},w)in A
and thus
A accepts w <= A’ accepts w

O

v

on the board ‘

Foundations of Informatics Winter 2008,/09

From e-NFA to NFA

Every e-NFA can be transformed into an equivalent NFA. \

Rm Foundations of Informatics Winter 2008/09

From e-NFA to NFA

Theorem 1.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 21’ by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,
g5 ¢,and ¢ = rin 2, then p - r in A’. O

Rm Foundations of Informatics Winter 2008/09

From e-NFA to NFA

Theorem 1.34
Every e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 21’ by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,

¢ ——¢,and ¢ = 7 in 2, then p — r in A’ O

on the board ‘

lmH Foundations of Informatics Winter 2008,/09

From e-NFA to NFA

Theorem 1.34
FEvery e-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let 2 be a e-NFA. We construct the NFA 2 by eliminating*all
g-transitions, addin% appropriate direct transitions: if p — g,
g5 ¢,and ¢ = rin 2, then p - r in A’. O

on the board ‘
All types of finite automata recognize the same class of languages.

lm“ Foundations of Informatics Winter 2008/09

Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
e Determinization of (e-)NFA

Rm Foundations of Informatics Winter 2008,/09

Nondeterministic Finite Automata

Seen:
@ Definition of e-NFA
e Determinization of (e-)NFA

Open:
o More decidablity results

Rm Foundations of Informatics Winter 2008,/09

© Finite Automata

@ More Decidability Results

Rm Foundati of Informatics Winter 2008/09

The Word Problem Revisited

Definition 1.37

The word problem for DFA is specified as follows:
Given a DFA 2 and a word w € ¥*, decide whether

w € L(A).

Rm Foundations of Informatics Winter 2008,/09

The Word Problem Revisited

Definition 1.37
The word problem for DFA is specified as follows:

Given a DFA 2 and a word w € ¥*, decide whether

w € L(A).

As we have seen (Def. 1.10, Alg. 1.24, Thm. 1.34):

Theorem 1.38
The word problem for DFA (NFA, e-NFA) is decidable.

lmH Foundations of Informatics Winter 2008/09

The Emptiness Problem

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(2) = 0.

Rm Foundations of Informatics Winter 2008/09

The Emptiness Problem

Definition 1.39

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(2A) = 0.

The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2A) # () iff in 2 some final state is reachable from the
initial state (simple graph-theoretic problem). Ol

lmH Foundations of Informatics Winter 2008,/09

The Emptiness Problem

The emptiness problem for DFA is specified as follows:
Given a DFA 2, decide whether

L(2A) = 0.

The emptiness problem for DFA (NFA, e-NFA) is decidable.

It holds that L(2A) # () iff in 2 some final state is reachable from the
initial state (simple graph-theoretic problem). Ol

Remark: important result for formal verification (unreachability of
bad (= final) states)

lm“ Foundations of Informatics Winter 2008,/09

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

Rm Foundations of Informatics Winter 2008,/09

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

Proof.
L(A1) = L(As2)

lm“ Foundations of Informatics Winter 2008,/09

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

Proof.

L(A1) = L(As2)
< L(Qh) g L(Q[Q) and L(Q[Q) g L(Qh)

lm“ Foundations of Informatics Winter 2008,/09

The Equivalence Problem

The equivalence problem for DFA is specified as follows:

Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

L(A1) = L(As2)
= L(%1) C L(Ws) and L(As) C L(A1)
= (L(21) \ L(A2)) U (L(2A2) \ L(%1)) = 0

lm“ Foundations of Informatics Winter 2008,/09

The Equivalence Problem

The equivalence problem for DFA is specified as follows:
Given two DFA 2(;, %5, decide whether
L(2y) = L(As).

The equivalence problem for DFA (NFA, e-NFA) is decidable.

L() = L(A2)

< L(Qh) C L(Q[Q) and L(Q[Q) (- L(Qh)

= (L) \ L(A2)) U (L(A2) \ L(2)) = 0

— (LERL)N L(As2) YU (L(2A2) N L(21)) =10

N—~— ~——
DFA-recognizable (Thm. 1.14) DFA-recognizable (Thm. 1.14)
DFA-recognizable (Thm. 1.16) DFA-recognizable (Thm. 1.16)
DFA-recognizable (Thm. I.18)
decidable (Thm. 1.40)
g

mrH Foundations of Informatics Winter 2008,/09

Finite Automata

Seen:
@ Decidability of word problem
e Decidability of emptiness problem

@ Decidability of equivalence problem

Rm Foundations of Informatics Winter 2008,/09

Finite Automata

Seen:
@ Decidability of word problem
e Decidability of emptiness problem

@ Decidability of equivalence problem

Open:

o Non-algorithmic description of languages

Rm Foundations of Informatics Winter 2008,/09

@ Regular Expressions

Rm Foundations of Informatics Winter 2

Example .43

Consider the set of all words over X := {a, b} which
@ start with one or three a symbols

@ continue with a (potentially empty) sequence of blocks, each
containing at least one b and exactly two a’s

@ conclude with a (potentially empty) sequence of b’s
Corresponding regular expression:

(a + aaa)(bb*ab*ab® + b*abb*ab® +b*ab*abb®)*b

b before a’s b between a’s b after a’s

lmH Foundations of Informatics Winter 2008,/09

Syntax of Regular Expressions

Definition .44

The set of regular expressions over Y is inductively defined by:
e () and e are regular expressions

@ every a € ¥ is a regular expression

e if a and 3 are regular expressions, then so are
o a+p
o a-f3

° o

lmH Foundations of Informatics Winter 2008/09

Syntax of Regular Expressions

Definition .44

The set of regular expressions over Y is inductively defined by:
e () and e are regular expressions

@ every a € ¥ is a regular expression

e if a and 3 are regular expressions, then so are
o a+p
o a-f3

° o

Notation:
@ - can be omitted

@ * binds stronger than -, - binds stronger than +

e at abbreviates a - a*

lmH Foundations of Informatics Winter 2008/09

Semantics of Regular Expressions

Definition 1.45

Every regular expression « defines a language L(«):

L) = 0

L(e) = {e}

L(a) = {a}
Lia+p8) = L(a)UL(p)
L(a-B) = L(a)- L(B)

L(e®) = (L()"

Foundations of Informatics Winter 2008/09

Semantics of Regular Expressions

Definition 1.45

Every regular expression « defines a language L(«):

L) = 0
L(e) = {e}
L(a) = {a}
Lla+) = L(a)UL(B)
L(a- B) L(a) - L(B)
L(e®) = (L(a))"

A language L is called regular if it is definable by a regular expression,
i.e., if L = L(«a) for some regular expression a.

Foundations of Informatics Winter 2008,/09

Regular Languages

Example 1.46

Q {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

lmH Foundations of Informatics Winter 2008/09

Regular Languages

Example 1.46

Q {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a,b}* is regular since

L((a+b)") = (L(a +b))" = (L(a) U L(Y))" = ({a} U{b})" = {a,b}"

lmH Foundations of Informatics Winter 2008/09

Regular Languages

Example 1.46

Q {aa} is regular since

L(a-a) = L(a) - L(a) = {a} - {a} = {aa}

@ {a,b}* is regular since

L((a+b)") = (L(a +b))" = (L(a) U L(Y))" = ({a} U{b})" = {a,b}"

@ The set of all words over {a, b} containing abb is regular since

L(a+b)*-a-b-b-(a+b)*)={a,b}"-{abb} - {a,b}"

lm“ Foundations of Informatics Winter 2008/09

Regular Languages and Finite Automata I

Theorem 1.47 (Kleene’s Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

Rm Foundations of Informatics Winter 2008/09

Regular Languages and Finite Automata I

Theorem 1.47 (Kleene’s Theorem)

To each regular expression there corresponds an e-NFA, and vice versa.

Proof.

— using induction over the given regular expression «, we
construct an e-NFA 2,
e with exactly one final state gy
e without transitions into the initial state
e without transitions leaving the final state
(on the board)

<= by solving a regular equation system (details omitted)

lm“ Foundations of Informatics Winter 2008/09

Regular Languages and Finite Automata 11

Corollary 1.48

The following properties are equivalent:

L is regular
e L is DFA-recognizable
o L is NFA-recognizable

L is e-NFA-recognizable

Rm Foundations of Informatics Winter 2008,/09

Implementation of Pattern Matching

Algorithm 1.49 (Pattern Matching)

Input: regular expression o and w € 3*
Question: does w contain some v € L(a)?
let B:=(a1+...+ap)* a (for L ={ay,...,a,})
determine e-NFA g for (3
eliminate e-transitions
apply powerset construction to obtain DFA 2
let A run on w

Procedure:

00000

Output: “yes” if A passes through some final state, otherwise “no”

v

Remark: in UNIX/LINUX implemented by grep and lex

lmH Foundations of Informatics Winter 2008,/09

Regular Expressions

Seen:
@ Definition of regular expressions

e Equivalence of regular and DFA-recognizable languages

Rm Foundations of Informatics Winter 2008,/09

Regular Expressions

Seen:
@ Definition of regular expressions

e Equivalence of regular and DFA-recognizable languages

Open:

e Limitations of regular languages?

Rm Foundations of Informatics Winter 2008,/09

@ The Pumping Lemma

Rm Foundations of Informatics Winter 2

Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Rm Foundations of Informatics Winter 2008/09

Observation: a language L is DFA-recognizable (and thus regular) if
the membership of a word w can be tested by symbol-wise reading of
w, using a bounded memory

Conjecture: languages of the form {a"b" | n € N} are not regular
since the test for membership requires the capability of comparing the
number of a symbols to the number of b symbols (which can grow
arbitrarily large)

Rm Foundations of Informatics Winter 2008,/09

The Pumping Lemma I

Theorem 1.50 (Pumping Lemma for Regular Languages)

If L is regular, then there exists n > 1 (called pumping index) such that
any w € L with |{w| > n can be decomposed as w = xyz where

® y#e and
o for everyi >0, zy'z € L

Rm Foundations of Informatics Winter 2008,/09

The Pumping Lemma II

Proof (idea).
Let 2 = (Q, 3,9, qo, F) be a DFA such that L(2() = L. Choose
n :=|Q|, and let w € L.
Then: w=aj...a with k >n
— the accepting run visits k + 1 > n + 1 states:

ai az ak
Q —q — ... — 4k
= some state in @) occurs (at least) twice:
there exist 1 <4 < j < k such that ¢; = g;
Choose y := a;41...a; to be the substring which is read between the
two visits of g. Clearly, y # . Moreover the cycle can be omitted or
repeated such that zz € L, xzyz € L, zy’z € L, ... []

v

Foundations of Informatics Winter 2008,/09

The Pumping Lemma II

Proof (idea).
Let 2 = (Q, 3,9, qo, F) be a DFA such that L(2() = L. Choose
n :=|Q|, and let w € L.
Then: w=aj...a with k >n
— the accepting run visits k + 1 > n + 1 states:

ai az ak
Q —q — ... — 4k
= some state in @) occurs (at least) twice:
there exist 1 <4 < j < k such that ¢; = g;
Choose y := a;41...a; to be the substring which is read between the
two visits of g. Clearly, y # . Moreover the cycle can be omitted or
repeated such that zz € L, xzyz € L, zy’z € L, ... []

v

Remark: Pumping Lemma states a necessary condition for regularity
= can only be used to show the non-regularity of a language

Foundations of Informatics Winter 2008,/09

The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then 2y%2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

Foundations of Informatics Winter 2008,/09

The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then 2y%2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

© Similarly: the set of all arithmetic expressions is not regular

Foundations of Informatics Winter 2008,/09

The Pumping Lemma II1

@ L := {a"b* | k € N} is not regular. Proof by contradiction:
Assume that L is regular, and let n be a pumping index. Consider
w := a"b". Since |w| > n, it can be decomposed as w = xyz with
y # &. The following cases are possible:
o y € L(a™): then zy?2 ¢ L (more as than bs)
o y € L(b"): then xy?z ¢ L (less as than bs)
o y € L(atbh): then zy?z ¢ L (a follows b)

© Similarly: the set of all arithmetic expressions is not regular

v

Conclusion

Finite automata are too weak for defining the syntax of programming
languages!

A\

Foundations of Informatics Winter 2008/09

The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples

Rm Foundations of Informatics Winter 2008,/09

The Pumping Lemma IV

Seen:
@ Necessary condition for regularity of languages

o Counterexamples

Open:

e More expressive formalisms for describing languages?

Rm Foundations of Informatics Winter 2008,/09

© Outlook

Rm Foundations of Informatics Winter 2008/09

e Minimization of DFA
e More language operations (reversion, homomorphisms, ...)

e Construction of scanners for compilers

Rm Foundati of Informatics Winter 2008/09

	Regular Languages
	Formal Languages
	Finite Automata
	Deterministic Finite Automata
	Operations on Languages and Automata
	Nondeterministic Finite Automata
	More Decidability Results

	Regular Expressions
	The Pumping Lemma
	Outlook

