Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de
http://cosec.bit.uni-bonn.de/students/teaching/08us/08us-bridgingcourse.html

B-IT, Bonn, Winter semester 2008/09

Organization

- Schedule:
- lecture 9:00-12:30 (Mon-Fri)
- exercises 14:00-16:00 (Mon-Thu)
- 30 min break in each block
- Examination after week 4
- Please ask questions!

Overview of Week 3

(1) Regular Languages
(2) Context-Free Languages
(3) Processes and Concurrency

- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to Automata Theory, Languages, and Computation, 2nd ed., Addison-Wesley, 2001
- A. Asteroth, C. Baier: Theoretische Informatik, Pearson Studium, 2002 [in German]
- http://www.jflap.org/ (software for experimenting with formal languages concepts)

Part I

Regular Languages

Outline

(1) Formal Languages

(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma

(5) Outlook

Words and Languages

- Computer systems transform data
- Data encoded as (binary) words

Data sets $=$ sets of words $=$ formal languages, data transformations $=$ functions on words

Words and Languages

- Computer systems transform data
- Data encoded as (binary) words
\Longrightarrow Data sets $=$ sets of words $=$ formal languages, data transformations $=$ functions on words

```
Example I. }
Java = {all valid Java programs},
Compiler : Java }->\mathrm{ Bytecode
```


Alphabets

Definition I. 2

An alphabet is a finite, non-empty set of symbols ("letters").
Σ, Γ, \ldots denote alphabets
a, b, \ldots denote letters

Alphabets

Definition I. 2

An alphabet is a finite, non-empty set of symbols ("letters").
Σ, Γ, \ldots denote alphabets
a, b, \ldots denote letters

Example I. 3

(1) Boolean alphabet $\mathbb{B}:=\{0,1\}$

Alphabets

Definition I. 2

An alphabet is a finite, non-empty set of symbols ("letters").
Σ, Γ, \ldots denote alphabets
a, b, \ldots denote letters

Example I. 3

(1) Boolean alphabet $\mathbb{B}:=\{0,1\}$
(2) Latin alphabet $\Sigma_{\text {latin }}:=\{a, b, c, \ldots\}$

Alphabets

Definition I. 2

An alphabet is a finite, non-empty set of symbols ("letters").
Σ, Γ, \ldots denote alphabets
a, b, \ldots denote letters

Example I. 3

(1) Boolean alphabet $\mathbb{B}:=\{0,1\}$
(2) Latin alphabet $\Sigma_{\text {latin }}:=\{a, b, c, \ldots\}$
(3) Keyboard alphabet $\Sigma_{\text {key }}$

Alphabets

Definition I. 2

An alphabet is a finite, non-empty set of symbols ("letters").
Σ, Γ, \ldots denote alphabets
a, b, \ldots denote letters

Example I. 3

(1) Boolean alphabet $\mathbb{B}:=\{0,1\}$
(2) Latin alphabet $\Sigma_{\text {latin }}:=\{a, b, c, \ldots\}$
(3) Keyboard alphabet $\Sigma_{\text {key }}$
(1) Morse alphabet $\Sigma_{\text {morse }}:=\{\cdot,-$, , $\}$

Definition I. 4

- A word is a finite sequence of letters from a given alphabet Σ.
- Σ^{*} is the set of all words over Σ.
- $|w|$ denotes the length of a word $w \in \Sigma^{*}$, i.e., $\left|a_{1} \ldots a_{n}\right|:=n$.
- The empty word is denoted by ε, i.e., $|\varepsilon|=0$.
- The concatenation of two words $v=a_{1} \ldots a_{m}(m \in \mathbb{N})$ and $w=b_{1} \ldots b_{n}(n \in \mathbb{N})$ is the word

$$
v \cdot w:=a_{1} \ldots a_{m} b_{1} \ldots b_{n}
$$

(often written as $v w$).

- Thus: $w \cdot \varepsilon=\varepsilon \cdot w=w$.
- A prefix/suffix v of a word w is an initial/trailing part of w, i.e., $w=v v^{\prime} / w=v^{\prime} v$ for some $v^{\prime} \in \Sigma^{*}$.
- If $w=a_{1} \ldots a_{n}$, then $w^{R}:=a_{n} \ldots a_{1}$.

Definition I. 5

A set of words $L \subseteq \Sigma^{*}$ is called a (formal) language over Σ.

Definition I. 5

A set of words $L \subseteq \Sigma^{*}$ is called a (formal) language over Σ.

Example I. 6

(1) over $\mathbb{B}=\{0,1\}$: set of all bit strings containing 1101

Definition I. 5

A set of words $L \subseteq \Sigma^{*}$ is called a (formal) language over Σ.

Example I. 6

(1) over $\mathbb{B}=\{0,1\}$: set of all bit strings containing 1101
(2) over $\Sigma=\{\mathrm{I}, \mathrm{V}, \mathrm{X}, \mathrm{L}, \mathrm{C}, \mathrm{D}, \mathrm{M}\}$: set of all valid roman numbers

Definition I. 5

A set of words $L \subseteq \Sigma^{*}$ is called a (formal) language over Σ.

Example I. 6
(1) over $\mathbb{B}=\{0,1\}$: set of all bit strings containing 1101
(2) over $\Sigma=\{\mathrm{I}, \mathrm{V}, \mathrm{X}, \mathrm{L}, \mathrm{C}, \mathrm{D}, \mathrm{M}\}$: set of all valid roman numbers
(3) over Σ_{key} : set of all valid Java programs

Seen:

- Basic notions: alphabets, words
- Formal languages as sets of words

Seen:

- Basic notions: alphabets, words
- Formal languages as sets of words

Open:

- Description of computations on words?
(2) Finite Automata
- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma
(5) Outlook

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma
(5) Outlook

Example I. 7 (Pattern 1101)

(1) Read Boolean string bit by bit
(2) Test whether it contains 1101
(3) Idea: remember which (initial) part of 1101 has been recognized
(1) Five prefixes: $\varepsilon, 1,11,110,1101$
(6) Diagram: on the board

Example I. 7 (Pattern 1101)

(1) Read Boolean string bit by bit
(2) Test whether it contains 1101
(3) Idea: remember which (initial) part of 1101 has been recognized
(1) Five prefixes: $\varepsilon, 1,11,110,1101$
(6) Diagram: on the board

What we used:

- finitely many (storage) states
- an initial state
- for every current state and every input symbol: a new state
- a succesful state

Definition I. 8

A deterministic finite automaton (DFA) is of the form

$$
\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle
$$

where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final (or: accepting) states

Deterministic Finite Automata II

Example I. 9

Pattern matching (Example I.7):

- $Q=\left\{q_{0}, \ldots, q_{4}\right\}$
- $\Sigma=\mathbb{B}=\{0,1\}$
- $\delta: Q \times \Sigma \rightarrow Q$ on the board
- $F=\left\{q_{4}\right\}$

Graphical Representation of DFA

- states \Longrightarrow nodes
- $\delta(q, a)=q^{\prime} \Longrightarrow q \xrightarrow{a} q^{\prime}$
- initial state: incoming edge without source state
- final state(s): double circle

Acceptance by DFA I

Definition I. 10

Let $\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA. The extension of $\delta: Q \times \Sigma \rightarrow Q$,

$$
\delta^{*}: Q \times \Sigma^{*} \rightarrow Q,
$$

is defined by

$$
\delta^{*}(q, w):=\text { state after reading } w \text { in } q .
$$

Formally:

$$
\delta^{*}(q, w):= \begin{cases}q & \text { if } w=\varepsilon \\ \delta^{*}(\delta(q, a), v) & \text { if } w=a v\end{cases}
$$

Thus: if $w=a_{1} \ldots a_{n}$ and $q \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} q_{n}$, then $\delta^{*}(q, w)=q_{n}$

Acceptance by DFA I

Definition I. 10

Let $\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA. The extension of $\delta: Q \times \Sigma \rightarrow Q$,

$$
\delta^{*}: Q \times \Sigma^{*} \rightarrow Q,
$$

is defined by

$$
\delta^{*}(q, w):=\text { state after reading } w \text { in } q .
$$

Formally:

$$
\delta^{*}(q, w):= \begin{cases}q & \text { if } w=\varepsilon \\ \delta^{*}(\delta(q, a), v) & \text { if } w=a v\end{cases}
$$

Thus: if $w=a_{1} \ldots a_{n}$ and $q \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} q_{n}$, then $\delta^{*}(q, w)=q_{n}$

Example I. 11

Pattern matching (Example I.9): on the board

Acceptance by DFA II

Definition I. 12

- \mathfrak{A} accepts $w \in \Sigma^{*}$ if $\delta^{*}\left(q_{0}, w\right) \in F$.
- The language recognized by \mathfrak{A} is

$$
L(\mathfrak{A}):=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\} .
$$

- A language $L \subseteq \Sigma^{*}$ is called DFA-recognizable if there exists some DFA \mathfrak{A} such that $L(\mathfrak{A})=L$.
- Two DFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ are called equivalent if

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) .
$$

Acceptance by DFA III

Example I. 13

(1) The set of all bit strings containing 1101 is recognized by the automaton from Example I.9.

Acceptance by DFA III

Example I. 13

(1) The set of all bit strings containing 1101 is recognized by the automaton from Example I.9.
(2) Two (equivalent) automata recognizing the language

$$
\left\{w \in \mathbb{B}^{*} \mid w \text { contains } 1\right\}:
$$

on the board

Acceptance by DFA III

Example I. 13

(1) The set of all bit strings containing 1101 is recognized by the automaton from Example I.9.
(2) Two (equivalent) automata recognizing the language

$$
\left\{w \in \mathbb{B}^{*} \mid w \text { contains } 1\right\}:
$$

on the board
(3) An automaton which recognizes

$$
\left\{w \in\{0, \ldots, 9\}^{*} \mid \text { value of } w \text { divisible by } 3\right\}
$$

Idea: test whether sum of digits is divisible by 3 - one state for each residue class (on the board)

Seen:

- Deterministic finite automata as a model of simple sequential computations
- Recognizability of formal languages by automata

Seen:

- Deterministic finite automata as a model of simple sequential computations
- Recognizability of formal languages by automata

Open:

- Composition and transformation of automata?
- Which languages are recognizable, which are not (alternative characterization)?
- Language definition \mapsto automaton and vice versa?

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma
(5) Outlook

Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ be two DFA with $L\left(\mathfrak{A}_{1}\right)=L_{1}$ and $L\left(\mathfrak{A}_{2}\right)=L_{2}$.
Can we construct automata which recognize

- $\overline{L_{1}}\left(:=\Sigma^{*} \backslash L_{1}\right)$,
- $L_{1} \cap L_{2}$, and
- $L_{1} \cup L_{2}$?

Language Complement

Theorem I. 14
 If $L \subseteq \Sigma^{*}$ is DFA-recognizable, then so is \bar{L}.

Language Complement

Theorem I. 14

If $L \subseteq \Sigma^{*}$ is $D F A$-recognizable, then so is \bar{L}.

Proof.

Let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA such that $L(\mathfrak{A})=L$. Then:

$$
w \in \bar{L} \Longleftrightarrow w \notin L \Longleftrightarrow \delta^{*}\left(q_{0}, w\right) \notin F \Longleftrightarrow \delta^{*}\left(q_{0}, w\right) \in Q \backslash F
$$

Thus, \bar{L} is recognized by the DFA $\left\langle Q, \Sigma, \delta, q_{0}, Q \backslash F\right\rangle$.

Language Complement

Theorem I. 14

If $L \subseteq \Sigma^{*}$ is DFA-recognizable, then so is \bar{L}.

Proof.

Let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA such that $L(\mathfrak{A})=L$. Then:

$$
w \in \bar{L} \Longleftrightarrow w \notin L \Longleftrightarrow \delta^{*}\left(q_{0}, w\right) \notin F \Longleftrightarrow \delta^{*}\left(q_{0}, w\right) \in Q \backslash F
$$

Thus, \bar{L} is recognized by the DFA $\left\langle Q, \Sigma, \delta, q_{0}, Q \backslash F\right\rangle$.

Example I. 15

on the board

Language Intersection I

Theorem I. 16

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cap L_{2}$.

Language Intersection I

Theorem I. 16

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cap L_{2}$.

Proof.

Let $\mathfrak{A}_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{0}^{i}, F_{i}\right\rangle$ be DFA such that $L\left(\mathfrak{A}_{i}\right)=L_{i}(i=1,2)$. The new automaton \mathfrak{A} has to accept w iff both \mathfrak{A}_{1} and \mathfrak{A}_{2} accept w

Idea: let \mathfrak{A}_{1} and \mathfrak{A}_{2} run in parallel

- use pairs of states $\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$
- start with both components in initial state
- a transition updates both components independently
- for acceptance both components need to be in a final state

Language Intersection II

Proof (continued).

Formally: let the product automaton

$$
\mathfrak{A}:=\left\langle Q_{1} \times Q_{2}, \Sigma, \delta,\left(q_{0}^{1}, q_{0}^{2}\right), F_{1} \times F_{2}\right\rangle
$$

be defined by

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right):=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right) \text { for every } a \in \Sigma
$$

Language Intersection II

Proof (continued).

Formally: let the product automaton

$$
\mathfrak{A}:=\left\langle Q_{1} \times Q_{2}, \Sigma, \delta,\left(q_{0}^{1}, q_{0}^{2}\right), F_{1} \times F_{2}\right\rangle
$$

be defined by

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right):=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right) \text { for every } a \in \Sigma
$$

This definition yields

$$
\begin{equation*}
\delta^{*}\left(\left(q_{1}, q_{2}\right), w\right)=\left(\delta_{1}^{*}\left(q_{1}, w\right), \delta_{2}^{*}\left(q_{2}, w\right)\right) \tag{*}
\end{equation*}
$$

for every $w \in \Sigma^{*}$.

Language Intersection II

Proof (continued).

Formally: let the product automaton

$$
\mathfrak{A}:=\left\langle Q_{1} \times Q_{2}, \Sigma, \delta,\left(q_{0}^{1}, q_{0}^{2}\right), F_{1} \times F_{2}\right\rangle
$$

be defined by

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right):=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right) \text { for every } a \in \Sigma
$$

This definition yields

$$
\begin{equation*}
\delta^{*}\left(\left(q_{1}, q_{2}\right), w\right)=\left(\delta_{1}^{*}\left(q_{1}, w\right), \delta_{2}^{*}\left(q_{2}, w\right)\right) \tag{*}
\end{equation*}
$$

for every $w \in \Sigma^{*}$.
Thus we have:
\mathfrak{A} accepts w
$\Longleftrightarrow \quad \delta^{*}\left(\left(q_{0}^{1}, q_{0}^{2}\right), w\right) \in F_{1} \times F_{2}$
$\stackrel{(*)}{\Longleftrightarrow} \quad\left(\delta_{1}^{*}\left(q_{0}^{1}, w\right), \delta_{2}^{*}\left(q_{0}^{2}, w\right)\right) \in F_{1} \times F_{2}$
$\Longleftrightarrow \quad \delta_{1}^{*}\left(q_{0}^{1}, w\right) \in F_{1}$ and $\delta_{2}^{*}\left(q_{0}^{2}, w\right) \in F_{2}$
$\Longleftrightarrow \quad \mathfrak{A}_{1}$ accepts w and \mathfrak{A}_{2} accepts w

Language Intersection III

Example I. 17

on the board

Language Union

Theorem I. 18

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cup L_{2}$.

Language Union

Theorem I. 18

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cup L_{2}$.

Proof.

Let $\mathfrak{A}_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{0}^{i}, F_{i}\right\rangle$ be DFA such that $L\left(\mathfrak{A}_{i}\right)=L_{i}(i=1,2)$. The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_{1} or \mathfrak{A}_{2} accepts w.

Language Union

Theorem I. 18

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cup L_{2}$.

Proof.

Let $\mathfrak{A}_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{0}^{i}, F_{i}\right\rangle$ be DFA such that $L\left(\mathfrak{A}_{i}\right)=L_{i}(i=1,2)$. The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_{1} or \mathfrak{A}_{2} accepts w.

Idea: reuse product construction
Construct \mathfrak{A} as before but choose as final states those pairs $\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$ with $q_{1} \in F_{1}$ or $q_{2} \in F_{2}$. Thus the set of final states is given by

$$
F:=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)
$$

Language Concatenation

Definition I. 19

The concatenation of two languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ is given by

$$
L_{1} \cdot L_{2}:=\left\{v \cdot w \in \Sigma^{*} \mid v \in L_{1}, w \in L_{2}\right\}
$$

Abbreviations: $w \cdot L:=\{w\} \cdot L, L \cdot w:=L \cdot\{w\}$

Language Concatenation

Definition I. 19

The concatenation of two languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ is given by

$$
L_{1} \cdot L_{2}:=\left\{v \cdot w \in \Sigma^{*} \mid v \in L_{1}, w \in L_{2}\right\}
$$

Abbreviations: $w \cdot L:=\{w\} \cdot L, L \cdot w:=L \cdot\{w\}$

Example I. 20

(1) If $L_{1}=\{101,1\}$ and $L_{2}=\{011,1\}$, then

$$
L_{1} \cdot L_{2}=\{101011,1011,11\}
$$

Language Concatenation

Definition I. 19

The concatenation of two languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ is given by

$$
L_{1} \cdot L_{2}:=\left\{v \cdot w \in \Sigma^{*} \mid v \in L_{1}, w \in L_{2}\right\}
$$

Abbreviations: $w \cdot L:=\{w\} \cdot L, L \cdot w:=L \cdot\{w\}$

Example I. 20

(1) If $L_{1}=\{101,1\}$ and $L_{2}=\{011,1\}$, then

$$
L_{1} \cdot L_{2}=\{101011,1011,11\}
$$

(2) If $L_{1}=00 \cdot \mathbb{B}^{*}$ and $L_{2}=11 \cdot \mathbb{B}^{*}$, then

$$
L_{1} \cdot L_{2}=\left\{w \in \mathbb{B}^{*} \mid w \text { has prefix } 00 \text { and contains } 11\right\}
$$

DFA-Recognizability of Concatenation

Conjecture

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cdot L_{2}$.

DFA-Recognizability of Concatenation

Conjecture

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cdot L_{2}$.

Proof (attempt).

Let $\mathfrak{A}_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{0}^{i}, F_{i}\right\rangle$ be DFA such that $L\left(\mathfrak{A}_{i}\right)=L_{i}(i=1,2)$. The new automaton \mathfrak{A} has to accept w iff a prefix of w is recognized by \mathfrak{A}_{1}, and if \mathfrak{A}_{2} accepts the remaining suffix.
Idea: choose $Q:=Q_{1} \cup Q_{2}$ where each $q \in F_{1}$ is identified with q_{0}^{2} But: on the board

DFA-Recognizability of Concatenation

Conjecture

If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are DFA-recognizable, then so is $L_{1} \cdot L_{2}$.

Proof (attempt).

Let $\mathfrak{A}_{i}=\left\langle Q_{i}, \Sigma, \delta_{i}, q_{0}^{i}, F_{i}\right\rangle$ be DFA such that $L\left(\mathfrak{A}_{i}\right)=L_{i}(i=1,2)$. The new automaton \mathfrak{A} has to accept w iff a prefix of w is recognized by \mathfrak{A}_{1}, and if \mathfrak{A}_{2} accepts the remaining suffix.
Idea: choose $Q:=Q_{1} \cup Q_{2}$ where each $q \in F_{1}$ is identified with q_{0}^{2} But: on the board

Conclusion

Required: automata model where the successor state (for a given state and input symbol) is not unique

Language Iteration

Definition I. 21

- The nth power of a language $L \subseteq \Sigma^{*}$ is the n-fold composition of L with itself $(n \in \mathbb{N}): L^{n}:=\underbrace{L \cdot \ldots \cdot L}$.

Inductively: $L^{0}:=\{\varepsilon\}, L^{n+1}:=L^{n} \cdot L$

- The iteration (or: Kleene star) of L is

$$
L^{*}:=\bigcup_{n \in \mathbb{N}} L^{n}
$$

Language Iteration

Definition I. 21

- The nth power of a language $L \subseteq \Sigma^{*}$ is the n-fold composition of L with itself $(n \in \mathbb{N}): L^{n}:=\underbrace{L \cdot \ldots \cdot L}$. n times Inductively: $L^{0}:=\{\varepsilon\}, L^{n+1}:=L^{n} \cdot L$
- The iteration (or: Kleene star) of L is

$$
L^{*}:=\bigcup_{n \in \mathbb{N}} L^{n}
$$

Remarks:

- we always have $\varepsilon \in L^{*}\left(\right.$ since $L^{0} \subseteq L^{*}$ and $\left.L^{0}=\{\varepsilon\}\right)$
- $w \in L^{*}$ iff $w=\varepsilon$ or if w can be decomposed into $n \geq 1$ subwords v_{1}, \ldots, v_{n} (i.e., $w=v_{1} \cdot \ldots \cdot v_{n}$) such that $v_{i} \in L$ for every $1 \leq i \leq n$
- again we would suspect that the iteration of a DFA-recognizable language is DFA-recognizable, but there is no simple (deterministic) construction

Operations on Languages and Automata

Seen:

- Operations on languages:
- complement
- intersection
- union
- concatenation
- iteration
- DFA constructions for:
- complement
- intersection
- union

Operations on Languages and Automata

Seen:

- Operations on languages:
- complement
- intersection
- union
- concatenation
- iteration
- DFA constructions for:
- complement
- intersection
- union

Open:

- Automata model for (direct implementation of) concatenation and iteration?

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma
(5) Outlook

Idea:

- for a given state and a given input symbol, several transitions (or none at all) are possible
- an input word generally induces several state sequences ("runs")
- the word is accepted if at least one accepting run exists

Idea:

- for a given state and a given input symbol, several transitions (or none at all) are possible
- an input word generally induces several state sequences ("runs")
- the word is accepted if at least one accepting run exists

Advantages:

- simplifies representation of languages (example: $\mathbb{B}^{*} \cdot 1101 \cdot \mathbb{B}^{*} ;$ on the board)
- yields direct constructions for concatenation and iteration of languages
- more adequate modeling of systems with nondeterministic behaviour (communication protocols, multi-agent systems, ...)

Definition I. 22

A nondeterministic finite automaton (NFA) is of the form

$$
\mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle
$$

where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Definition I. 22

A nondeterministic finite automaton (NFA) is of the form

$$
\mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle
$$

where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Remarks:

- $\left(q, a, q^{\prime}\right) \in \Delta$ usually written as $q \xrightarrow{a} q^{\prime}$
- every DFA can be considered as an NFA

$$
\left(\left(q, a, q^{\prime}\right) \in \Delta \Longleftrightarrow \delta(q, a)=q^{\prime}\right)
$$

Acceptance by NFA

Definition I. 23

- Let $w=a_{1} \ldots a_{n} \in \Sigma^{*}$.
- A w-labeled \mathfrak{A}-run from q_{1} to q_{2} is a sequence

$$
p_{0} \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots p_{n-1} \xrightarrow{a_{n}} p_{n}
$$

such that $p_{0}=q_{1}, p_{n}=q_{2}$, and $\left(p_{i-1}, a_{i}, p_{i}\right) \in \Delta$ for every
$1 \leq i \leq n$ (we also write: $q_{1} \xrightarrow{w} q_{2}$).

- \mathfrak{A} accepts w if there is a w-labeled \mathfrak{A}-run from q_{0} to some $q \in F$
- The language recognized by \mathfrak{A} is

$$
L(\mathfrak{A}):=\left\{w \in \Sigma^{*} \mid \mathfrak{A} \text { accepts } w\right\} .
$$

- A language $L \subseteq \Sigma^{*}$ is called NFA-recognizable if there exists a NFA \mathfrak{A} such that $L(\mathfrak{A})=L$.
- Two NFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ are called equivalent if $L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right)$.

Acceptance Test for NFA

Algorithm I. 24 (Acceptance Test for NFA)

Input: $N F A \mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle, w \in \Sigma^{*}$
Question: $w \in L(\mathfrak{A})$?
Procedure: successive computation of the reachability set

$$
R_{\mathfrak{A}}(w):=\left\{q \in Q \mid q_{0} \xrightarrow{w} q\right\}
$$

Inductive definition:

$$
\begin{aligned}
R_{\mathfrak{A}}(\varepsilon) & :=\left\{q_{0}\right\} \\
R_{\mathfrak{A}}(v a) & :=\left\{q \in Q \mid p \xrightarrow{a} q \text { for some } p \in R_{\mathfrak{A}}(v)\right\}
\end{aligned}
$$

Output: "yes" if $R_{\mathfrak{A}}(w) \cap F \neq \emptyset$, otherwise "no"

Remark: this algorithm solves the word problem for NFA

Acceptance Test for NFA

Algorithm I. 24 (Acceptance Test for NFA)

Input: $N F A \mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle, w \in \Sigma^{*}$
Question: $w \in L(\mathfrak{A})$?
Procedure: successive computation of the reachability set

$$
R_{\mathfrak{A}}(w):=\left\{q \in Q \mid q_{0} \xrightarrow{w} q\right\}
$$

Inductive definition:

$$
\begin{aligned}
R_{\mathfrak{A}}(\varepsilon) & :=\left\{q_{0}\right\} \\
R_{\mathfrak{A}}(v a) & :=\left\{q \in Q \mid p \xrightarrow{a} q \text { for some } p \in R_{\mathfrak{A}}(v)\right\}
\end{aligned}
$$

Output: "yes" if $R_{\mathfrak{A}}(w) \cap F \neq \emptyset$, otherwise "no"

Remark: this algorithm solves the word problem for NFA

Example I. 25

on the board

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)
Solution: admit empty word ε as transition label

ε-NFA

Definition I. 26

A nondeterministic finite automaton with ε-transitions $(\varepsilon$-NFA) is of the form $\mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma_{\varepsilon} \times Q$ is the transition relation where $\Sigma_{\varepsilon}:=\Sigma \cup\{\varepsilon\}$
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Remarks:

- every NFA is an ε-NFA
- definitions of runs and acceptance: in analogy to NFA

ε-NFA

Definition I. 26

A nondeterministic finite automaton with ε-transitions $(\varepsilon$-NFA) is of the form $\mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma_{\varepsilon} \times Q$ is the transition relation where $\Sigma_{\varepsilon}:=\Sigma \cup\{\varepsilon\}$
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Remarks:

- every NFA is an ε-NFA
- definitions of runs and acceptance: in analogy to NFA

Example I. 27

on the board

ε-NFA-Recognizability of Concatenation

> Theorem I. 28
> If $L_{1}, L_{2} \subseteq \Sigma^{*}$ are ε-NFA-recognizable, then so is $L_{1} \cdot L_{2}$.

ε-NFA-Recognizability of Concatenation

```
Theorem I. 28
If \(L_{1}, L_{2} \subseteq \Sigma^{*}\) are \(\varepsilon\)-NFA-recognizable, then so is \(L_{1} \cdot L_{2}\).
```


Proof (idea).

on the board

ε-NFA-Recognizability of Iteration

Theorem I. 29
If $L \subseteq \Sigma^{*}$ is ε-NFA-recognizable, then so is L^{*}.

ε-NFA-Recognizability of Iteration

> Theorem I. 29
> If $L \subseteq \Sigma^{*}$ is ε-NFA-recognizable, then so is L^{*}.

Proof (idea).

on the board

Syntax Diagrams as ε-NFA

Syntax diagrams (without recursive calls) can be interpreted as ε-NFA

Example I. 30

decimal numbers (on the board)

Types of Finite Automata

(1) DFA
(2) NFA
(3) ε-NFA
(1) DFA
(2) NFA
(3) ε-NFA

Corollary I. 31

(1) Every DFA-recognizable language is NFA-recognizable.
(2) Every NFA-recognizable language is ε-NFA-recognizable.

Types of Finite Automata

(1) DFA
(2) NFA
(3) ε-NFA

Corollary I. 31

(1) Every DFA-recognizable language is NFA-recognizable.
(2) Every NFA-recognizable language is ε-NFA-recognizable.

Goal: establish reverse inclusions

Theorem I. 32

Every NFA can be transformed into an equivalent DFA.

From NFA to DFA I

Theorem I. 32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states ("powerset construction")

- Initial state of DFA $:=$ \{initial state of NFA $\}$
- $P \xrightarrow{a} P^{\prime}$ in DFA iff there exist $q \in P, q^{\prime} \in P^{\prime}$ such that $q \xrightarrow{a} q^{\prime}$ in NFA
- P final state in DFA iff it contains some final state of NFA

From NFA to DFA II

Proof (continued).

Let $\mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle$ be a NFA.
Powerset construction of $\mathfrak{A}^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q}:=\{P \mid P \subseteq Q\}$
- $\delta^{\prime}: Q^{\prime} \times \Sigma \rightarrow Q^{\prime}$ with

$$
q \in \delta^{\prime}(P, a) \Longleftrightarrow \text { there exists } p \in P \text { such that }(p, a, q) \in \Delta
$$

- $q_{0}^{\prime}:=\left\{q_{0}\right\}$
- $F^{\prime}:=\{P \subseteq Q \mid P \cap F \neq \emptyset\}$

This yields

$$
q_{0} \xrightarrow{w} q \text { in } \mathfrak{A} \Longleftrightarrow q \in \delta^{\prime *}\left(\left\{q_{0}\right\}, w\right) \text { in } \mathfrak{A}^{\prime}
$$

and thus

$$
\mathfrak{A} \text { accepts } w \Longleftrightarrow \mathfrak{A}^{\prime} \text { accepts } w
$$

From NFA to DFA II

Proof (continued).

Let $\mathfrak{A}=\left\langle Q, \Sigma, \Delta, q_{0}, F\right\rangle$ be a NFA.
Powerset construction of $\mathfrak{A}^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q}:=\{P \mid P \subseteq Q\}$
- $\delta^{\prime}: Q^{\prime} \times \Sigma \rightarrow Q^{\prime}$ with

$$
q \in \delta^{\prime}(P, a) \Longleftrightarrow \text { there exists } p \in P \text { such that }(p, a, q) \in \Delta
$$

- $q_{0}^{\prime}:=\left\{q_{0}\right\}$
- $F^{\prime}:=\{P \subseteq Q \mid P \cap F \neq \emptyset\}$

This yields

$$
q_{0} \xrightarrow{w} q \text { in } \mathfrak{A} \Longleftrightarrow q \in \delta^{\prime *}\left(\left\{q_{0}\right\}, w\right) \text { in } \mathfrak{A}^{\prime}
$$

and thus

$$
\mathfrak{A} \text { accepts } w \Longleftrightarrow \mathfrak{A}^{\prime} \text { accepts } w
$$

Example I. 33

on the board

From ε-NFA to NFA

Theorem I. 34
Every $\varepsilon-N F A$ can be transformed into an equivalent NFA.

From ε-NFA to NFA

Theorem I. 34

Every $\varepsilon-N F A$ can be transformed into an equivalent NFA.

Proof (idea).

Let \mathfrak{A} be a ε-NFA. We construct the NFA \mathfrak{A}^{\prime} by eliminating all ε-transitions, adding appropriate direct transitions: if $p \xrightarrow{\varepsilon} q$, $q \xrightarrow{a} q^{\prime}$, and $q^{\prime} \xrightarrow{\varepsilon} r$ in \mathfrak{A}, then $p \xrightarrow{a} r$ in \mathfrak{A}^{\prime}.

From ε-NFA to NFA

Theorem I. 34

Every $\varepsilon-N F A$ can be transformed into an equivalent NFA.

Proof (idea).

Let \mathfrak{A} be a ε-NFA. We construct the NFA \mathfrak{A}^{\prime} by eliminating all ε-transitions, adding appropriate direct transitions: if $p \xrightarrow{\varepsilon} q$, $q \xrightarrow{a} q^{\prime}$, and $q^{\prime} \xrightarrow{\varepsilon} r$ in \mathfrak{A}, then $p \xrightarrow{a} r$ in \mathfrak{A}^{\prime}.

Example I. 35

 on the board
From ε-NFA to NFA

Theorem I. 34

Every $\varepsilon-N F A$ can be transformed into an equivalent NFA.

Proof (idea).

Let \mathfrak{A} be a ε-NFA. We construct the NFA \mathfrak{A}^{\prime} by eliminating all ε-transitions, adding appropriate direct transitions: if $p \xrightarrow{\varepsilon}{ }^{\varepsilon} q$, $q \xrightarrow{a} q^{\prime}$, and $q^{\prime} \xrightarrow{\varepsilon} r$ in \mathfrak{A}, then $p \xrightarrow{a} r$ in \mathfrak{A}^{\prime}.

Example I. 35

on the board

Corollary I. 36

All types of finite automata recognize the same class of languages.

Nondeterministic Finite Automata

Seen:

- Definition of ε-NFA
- Determinization of $(\varepsilon-) \mathrm{NFA}$

Seen:

- Definition of ε-NFA
- Determinization of $(\varepsilon-) \mathrm{NFA}$

Open:

- More decidablity results

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma

5 Outlook

The Word Problem Revisited

Definition I. 37

The word problem for DFA is specified as follows:
Given a DFA \mathfrak{A} and a word $w \in \Sigma^{*}$, decide whether

$$
w \in L(\mathfrak{A}) .
$$

The Word Problem Revisited

Definition I. 37

The word problem for DFA is specified as follows:
Given a DFA \mathfrak{A} and a word $w \in \Sigma^{*}$, decide whether

$$
w \in L(\mathfrak{A}) .
$$

As we have seen (Def. I.10, Alg. I.24, Thm. I.34):

Theorem I. 38

The word problem for DFA (NFA, $\varepsilon-N F A)$ is decidable.

The Emptiness Problem

Definition I. 39

The emptiness problem for DFA is specified as follows:
Given a DFA \mathfrak{A}, decide whether

$$
L(\mathfrak{A})=\emptyset .
$$

The Emptiness Problem

Definition I. 39

The emptiness problem for DFA is specified as follows:
Given a DFA \mathfrak{A}, decide whether

$$
L(\mathfrak{A})=\emptyset .
$$

Theorem I. 40

The emptiness problem for $D F A(N F A, \varepsilon-N F A)$ is decidable.

Proof.

It holds that $L(\mathfrak{A}) \neq \emptyset$ iff in \mathfrak{A} some final state is reachable from the initial state (simple graph-theoretic problem).

The Emptiness Problem

Definition I. 39

The emptiness problem for DFA is specified as follows:
Given a DFA \mathfrak{A}, decide whether

$$
L(\mathfrak{A})=\emptyset .
$$

Theorem I. 40

The emptiness problem for DFA (NFA, $\varepsilon-N F A)$ is decidable.

Proof.

It holds that $L(\mathfrak{A}) \neq \emptyset$ iff in \mathfrak{A} some final state is reachable from the initial state (simple graph-theoretic problem).

Remark: important result for formal verification (unreachability of bad (= final) states)

RWIH

The Equivalence Problem

Definition I. 41

The equivalence problem for DFA is specified as follows:
Given two DFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$, decide whether

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) .
$$

The Equivalence Problem

Definition I. 41

The equivalence problem for DFA is specified as follows:
Given two DFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$, decide whether

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) .
$$

Theorem I. 42

The equivalence problem for DFA (NFA, $\varepsilon-N F A)$ is decidable.
Proof.

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right)
$$

The Equivalence Problem

Definition I. 41

The equivalence problem for DFA is specified as follows:
Given two DFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$, decide whether

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) .
$$

Theorem I. 42

The equivalence problem for DFA (NFA, $\varepsilon-N F A)$ is decidable.

Proof.

$$
\begin{aligned}
& L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) \\
& L\left(\mathfrak{A}_{1}\right) \subseteq L\left(\mathfrak{A}_{2}\right) \text { and } L\left(\mathfrak{A}_{2}\right) \subseteq L\left(\mathfrak{A}_{1}\right)
\end{aligned}
$$

The Equivalence Problem

Definition I. 41

The equivalence problem for DFA is specified as follows:
Given two DFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$, decide whether

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) .
$$

Theorem I. 42

The equivalence problem for DFA (NFA, $\varepsilon-N F A)$ is decidable.

Proof.

$$
\begin{array}{ll}
& L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) \\
\Longleftrightarrow & L\left(\mathfrak{A}_{1}\right) \subseteq L\left(\mathfrak{A}_{2}\right) \text { and } L\left(\mathfrak{A}_{2}\right) \subseteq L\left(\mathfrak{A}_{1}\right) \\
\Longleftrightarrow & \left(L\left(\mathfrak{A}_{1}\right) \backslash L\left(\mathfrak{A}_{2}\right)\right) \cup\left(L\left(\mathfrak{A}_{2}\right) \backslash L\left(\mathfrak{A}_{1}\right)\right)=\emptyset
\end{array}
$$

The Equivalence Problem

Definition I. 41

The equivalence problem for DFA is specified as follows:
Given two DFA $\mathfrak{A}_{1}, \mathfrak{A}_{2}$, decide whether

$$
L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) .
$$

Theorem I. 42

The equivalence problem for DFA (NFA, $\varepsilon-N F A)$ is decidable.

Proof.

$$
\begin{aligned}
& L\left(\mathfrak{A}_{1}\right)=L\left(\mathfrak{A}_{2}\right) \\
& \Longleftrightarrow \quad L\left(\mathfrak{A}_{1}\right) \subseteq L\left(\mathfrak{A}_{2}\right) \text { and } L\left(\mathfrak{A}_{2}\right) \subseteq L\left(\mathfrak{A}_{1}\right) \\
& \Longleftrightarrow \quad\left(L\left(\mathfrak{A}_{1}\right) \backslash L\left(\mathfrak{A}_{2}\right)\right) \cup\left(L\left(\mathfrak{A}_{2}\right) \backslash L\left(\mathfrak{A}_{1}\right)\right)=\emptyset \\
& \Longleftrightarrow \underbrace{\overline{L\left(\mathfrak{A}_{2}\right)}}) \cup(L\left(\mathfrak{A}_{2}\right) \cap \quad \underbrace{\overline{L\left(\mathfrak{A}_{1}\right)}}) \quad)=\emptyset \\
& \underbrace{\underbrace{\text { DFA-recognizable (Thm. I.14) }}_{\text {DFA-recognizable (Thm. I.14) }} \text { DFA-recognizable (Thm. I.16) }}_{\text {DFA-recognizable (Thm. I.16) }} \\
& \text { DFA-recognizable (Thm. I.18) } \\
& \text { decidable (Thm. I.40) }
\end{aligned}
$$

Finite Automata

Seen:

- Decidability of word problem
- Decidability of emptiness problem
- Decidability of equivalence problem

Finite Automata

Seen:

- Decidability of word problem
- Decidability of emptiness problem
- Decidability of equivalence problem

Open:

- Non-algorithmic description of languages

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma
(5) Outlook

Example I. 43

Consider the set of all words over $\Sigma:=\{a, b\}$ which
(1) start with one or three a symbols
(2) continue with a (potentially empty) sequence of blocks, each containing at least one b and exactly two a 's
(3) conclude with a (potentially empty) sequence of b 's

Corresponding regular expression:

$$
(a+a a a)(\underbrace{\left(b^{*} a b^{*} a b^{*}\right.}_{b \text { before } a^{\prime} \text { 's }}+\underbrace{b^{*} a b b^{*} a b^{*}}_{b \text { between } a^{\prime} \text { 's }}+\underbrace{b^{*} a b^{*} a b b^{*}}_{b \text { after } a^{\prime} \text { s }})^{*} b^{*}
$$

Syntax of Regular Expressions

Definition I. 44

The set of regular expressions over Σ is inductively defined by:

- \emptyset and ε are regular expressions
- every $a \in \Sigma$ is a regular expression
- if α and β are regular expressions, then so are
- $\alpha+\beta$
- $\alpha \cdot \beta$
- α^{*}

Syntax of Regular Expressions

Definition I. 44

The set of regular expressions over Σ is inductively defined by:

- \emptyset and ε are regular expressions
- every $a \in \Sigma$ is a regular expression
- if α and β are regular expressions, then so are
- $\alpha+\beta$
- $\alpha \cdot \beta$
- α^{*}

Notation:

- can be omitted
- * binds stronger than \cdot, binds stronger than +
- α^{+}abbreviates $\alpha \cdot \alpha^{*}$

Semantics of Regular Expressions

Definition I. 45

Every regular expression α defines a language $L(\alpha)$:

$$
\begin{aligned}
L(\emptyset) & :=\emptyset \\
L(\varepsilon) & :=\{\varepsilon\} \\
L(a) & :=\{a\} \\
L(\alpha+\beta) & :=L(\alpha) \cup L(\beta) \\
L(\alpha \cdot \beta) & :=L(\alpha) \cdot L(\beta) \\
L\left(\alpha^{*}\right) & :=(L(\alpha))^{*}
\end{aligned}
$$

Semantics of Regular Expressions

Definition I. 45

Every regular expression α defines a language $L(\alpha)$:

$$
\begin{aligned}
L(\emptyset) & :=\emptyset \\
L(\varepsilon) & :=\{\varepsilon\} \\
L(a) & :=\{a\} \\
L(\alpha+\beta) & :=L(\alpha) \cup L(\beta) \\
L(\alpha \cdot \beta) & :=L(\alpha) \cdot L(\beta) \\
L\left(\alpha^{*}\right) & :=(L(\alpha))^{*}
\end{aligned}
$$

A language L is called regular if it is definable by a regular expression, i.e., if $L=L(\alpha)$ for some regular expression α.

Regular Languages

Example I. 46

(- $\{a a\}$ is regular since

$$
L(a \cdot a)=L(a) \cdot L(a)=\{a\} \cdot\{a\}=\{a a\}
$$

Regular Languages

Example I. 46

(- $\{a a\}$ is regular since

$$
L(a \cdot a)=L(a) \cdot L(a)=\{a\} \cdot\{a\}=\{a a\}
$$

(0) $\{a, b\}^{*}$ is regular since

$$
L\left((a+b)^{*}\right)=(L(a+b))^{*}=(L(a) \cup L(b))^{*}=(\{a\} \cup\{b\})^{*}=\{a, b\}^{*}
$$

Example I. 46

(1) $\{a a\}$ is regular since

$$
L(a \cdot a)=L(a) \cdot L(a)=\{a\} \cdot\{a\}=\{a a\}
$$

(2) $\{a, b\}^{*}$ is regular since

$$
L\left((a+b)^{*}\right)=(L(a+b))^{*}=(L(a) \cup L(b))^{*}=(\{a\} \cup\{b\})^{*}=\{a, b\}^{*}
$$

(3) The set of all words over $\{a, b\}$ containing $a b b$ is regular since

$$
L\left((a+b)^{*} \cdot a \cdot b \cdot b \cdot(a+b)^{*}\right)=\{a, b\}^{*} \cdot\{a b b\} \cdot\{a, b\}^{*}
$$

Regular Languages and Finite Automata I

Theorem I. 47 (Kleene's Theorem)

To each regular expression there corresponds an $\varepsilon-N F A$, and vice versa.

Regular Languages and Finite Automata I

Theorem I. 47 (Kleene's Theorem)

To each regular expression there corresponds an $\varepsilon-N F A$, and vice versa.

Proof.

\Longrightarrow using induction over the given regular expression α, we construct an ε-NFA \mathfrak{A}_{α}

- with exactly one final state q_{f}
- without transitions into the initial state
- without transitions leaving the final state
(on the board)
\Longleftarrow by solving a regular equation system (details omitted)

Corollary I. 48

The following properties are equivalent:

- L is regular
- L is DFA-recognizable
- L is NFA-recognizable
- L is ε-NFA-recognizable

Implementation of Pattern Matching

Algorithm I. 49 (Pattern Matching)

Input: regular expression α and $w \in \Sigma^{*}$
Question: does w contain some $v \in L(\alpha)$?
Procedure: (1) let $\beta:=\left(a_{1}+\ldots+a_{n}\right)^{*} \cdot \alpha$ (for $\left.\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}\right)$
(2) determine ε-NFA \mathfrak{A}_{β} for β
(3) eliminate ε-transitions
(1) apply powerset construction to obtain DFA \mathfrak{A}
(6) let \mathfrak{A} run on w

Output: "yes" if \mathfrak{A} passes through some final state, otherwise "no"

Remark: in UNIX/LINUX implemented by grep and lex

Seen:

- Definition of regular expressions
- Equivalence of regular and DFA-recognizable languages

Seen:

- Definition of regular expressions
- Equivalence of regular and DFA-recognizable languages

Open:

- Limitations of regular languages?

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions

4 The Pumping Lemma
(5) Outlook

Observation: a language L is DFA-recognizable (and thus regular) if the membership of a word w can be tested by symbol-wise reading of w, using a bounded memory

Observation: a language L is DFA-recognizable (and thus regular) if the membership of a word w can be tested by symbol-wise reading of w, using a bounded memory

Conjecture: languages of the form $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ are not regular since the test for membership requires the capability of comparing the number of a symbols to the number of b symbols (which can grow arbitrarily large)

Theorem I. 50 (Pumping Lemma for Regular Languages)

If L is regular, then there exists $n \geq 1$ (called pumping index) such that any $w \in L$ with $|w| \geq n$ can be decomposed as $w=x y z$ where

- $y \neq \varepsilon$ and
- for every $i \geq 0, x y^{i} z \in L$

Proof (idea).

Let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA such that $L(\mathfrak{A})=L$. Choose $n:=|Q|$, and let $w \in L$.
Then: $\quad w=a_{1} \ldots a_{k}$ with $k \geq n$
$\Longrightarrow \quad$ the accepting run visits $k+1 \geq n+1$ states:
$q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{k}} q_{k}$
$\Longrightarrow \quad$ some state in Q occurs (at least) twice:
there exist $1 \leq i<j \leq k$ such that $q_{i}=q_{j}$
Choose $y:=a_{i+1} \ldots a_{j}$ to be the substring which is read between the two visits of q. Clearly, $y \neq \varepsilon$. Moreover the cycle can be omitted or repeated such that $x z \in L, x y z \in L, x y^{2} z \in L, \ldots$

Proof (idea).

Let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA such that $L(\mathfrak{A})=L$. Choose $n:=|Q|$, and let $w \in L$.
Then: $\quad w=a_{1} \ldots a_{k}$ with $k \geq n$
$\Longrightarrow \quad$ the accepting run visits $k+1 \geq n+1$ states:
$q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{k}} q_{k}$
$\Longrightarrow \quad$ some state in Q occurs (at least) twice:
there exist $1 \leq i<j \leq k$ such that $q_{i}=q_{j}$
Choose $y:=a_{i+1} \ldots a_{j}$ to be the substring which is read between the two visits of q. Clearly, $y \neq \varepsilon$. Moreover the cycle can be omitted or repeated such that $x z \in L, x y z \in L, x y^{2} z \in L, \ldots$

Remark: Pumping Lemma states a necessary condition for regularity
\Longrightarrow can only be used to show the non-regularity of a language

Example I. 51

(1) $L:=\left\{a^{k} b^{k} \mid k \in \mathbb{N}\right\}$ is not regular. Proof by contradiction:

Assume that L is regular, and let n be a pumping index. Consider $w:=a^{n} b^{n}$. Since $|w| \geq n$, it can be decomposed as $w=x y z$ with $y \neq \varepsilon$. The following cases are possible:

- $y \in L\left(a^{+}\right)$: then $x y^{2} z \notin L$ (more as than $b \mathrm{~s}$)
- $y \in L\left(b^{+}\right)$: then $x y^{2} z \notin L$ (less as than $b \mathrm{~s}$)
- $y \in L\left(a^{+} b^{+}\right)$: then $x y^{2} z \notin L(a$ follows $b)$

Example I. 51

(1) $L:=\left\{a^{k} b^{k} \mid k \in \mathbb{N}\right\}$ is not regular. Proof by contradiction:

Assume that L is regular, and let n be a pumping index. Consider $w:=a^{n} b^{n}$. Since $|w| \geq n$, it can be decomposed as $w=x y z$ with $y \neq \varepsilon$. The following cases are possible:

- $y \in L\left(a^{+}\right)$: then $x y^{2} z \notin L$ (more as than b s)
- $y \in L\left(b^{+}\right)$: then $x y^{2} z \notin L$ (less as than $b s$)
- $y \in L\left(a^{+} b^{+}\right)$: then $x y^{2} z \notin L$ (a follows b)
(2) Similarly: the set of all arithmetic expressions is not regular

The Pumping Lemma III

Example I. 51

(1) $L:=\left\{a^{k} b^{k} \mid k \in \mathbb{N}\right\}$ is not regular. Proof by contradiction:

Assume that L is regular, and let n be a pumping index. Consider $w:=a^{n} b^{n}$. Since $|w| \geq n$, it can be decomposed as $w=x y z$ with $y \neq \varepsilon$. The following cases are possible:

- $y \in L\left(a^{+}\right)$: then $x y^{2} z \notin L$ (more as than $b \mathrm{~s}$)
- $y \in L\left(b^{+}\right)$: then $x y^{2} z \notin L$ (less as than $b s$)
- $y \in L\left(a^{+} b^{+}\right)$: then $x y^{2} z \notin L(a$ follows $b)$
(2) Similarly: the set of all arithmetic expressions is not regular

Conclusion

Finite automata are too weak for defining the syntax of programming languages!

The Pumping Lemma IV

Seen:

- Necessary condition for regularity of languages
- Counterexamples

Seen:

- Necessary condition for regularity of languages
- Counterexamples

Open:

- More expressive formalisms for describing languages?

Outline

(1) Formal Languages
(2) Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
(3) Regular Expressions
(4) The Pumping Lemma
(5) Outlook

Outlook

- Minimization of DFA
- More language operations (reversion, homomorphisms, ...)
- Construction of scanners for compilers

