Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics

Thomas Noll

Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de

http://cosec.bit.uni-bonn.de/students/teaching/08us/08us-bridgingcourse.html

B-IT, Bonn, Winter semester 2008/09

- Schedule:
 - lecture 9:00-12:30 (Mon-Fri)
 - exercises 14:00-16:00 (Mon-Thu)
 - 30 min break in each block
- Examination after week 4
- Please ask questions!

- Regular Languages
- ② Context-Free Languages
- **③** Processes and Concurrency

- J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to Automata Theory, Languages, and Computation, 2nd ed., Addison-Wesley, 2001
- A. Asteroth, C. Baier: *Theoretische Informatik*, Pearson Studium, 2002 [in German]
- http://www.jflap.org/ (software for experimenting with formal languages concepts)

Part I

Regular Languages

Foundations of Informatics

Outline

Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
- **3** Regular Expressions
- 4 The Pumping Lemma

5 Outlook

- Computer systems transform data
- Data encoded as (binary) words
- \implies Data sets = sets of words = formal languages, data transformations = functions on words

- Computer systems transform data
- Data encoded as (binary) words
- $\Rightarrow Data sets = sets of words = formal languages, data transformations = functions on words$

Example I.1

 $Java = \{ all valid Java programs \},$

 $Compiler: Java \rightarrow Bytecode$

An alphabet is a finite, non-empty set of symbols ("letters").

 Σ, Γ, \dots denote alphabets a, b, \dots denote letters

An alphabet is a finite, non-empty set of symbols ("letters").

 Σ, Γ, \ldots denote alphabets a, b, \ldots denote letters

Example I.3

• Boolean alphabet $\mathbb{B} := \{0, 1\}$

An alphabet is a finite, non-empty set of symbols ("letters").

 Σ, Γ, \ldots denote alphabets a, b, \ldots denote letters

- Boolean alphabet $\mathbb{B} := \{0, 1\}$
- **2** Latin alphabet $\Sigma_{\text{latin}} := \{a, b, c, \ldots\}$

An alphabet is a finite, non-empty set of symbols ("letters").

 Σ, Γ, \ldots denote alphabets a, b, \ldots denote letters

- Boolean alphabet $\mathbb{B} := \{0, 1\}$
- **2** Latin alphabet $\Sigma_{\text{latin}} := \{a, b, c, \ldots\}$
- **3** Keyboard alphabet Σ_{key}

An alphabet is a finite, non-empty set of symbols ("letters").

 Σ, Γ, \ldots denote alphabets a, b, \ldots denote letters

- Boolean alphabet $\mathbb{B} := \{0, 1\}$
- **2** Latin alphabet $\Sigma_{\text{latin}} := \{a, b, c, \ldots\}$
- **3** Keyboard alphabet Σ_{key}

• Morse alphabet
$$\Sigma_{\text{morse}} := \{\cdot, -, \sqcup\}$$

Words

Definition I.4

- A word is a finite sequence of letters from a given alphabet Σ .
- Σ^* is the set of all words over Σ .
- |w| denotes the length of a word $w \in \Sigma^*$, i.e., $|a_1 \dots a_n| := n$.
- The empty word is denoted by ε , i.e., $|\varepsilon| = 0$.
- The concatenation of two words $v = a_1 \dots a_m \ (m \in \mathbb{N})$ and $w = b_1 \dots b_n \ (n \in \mathbb{N})$ is the word

$$v \cdot w := a_1 \dots a_m b_1 \dots b_n$$

(often written as vw).

- Thus: $w \cdot \varepsilon = \varepsilon \cdot w = w$.
- A prefix/suffix v of a word w is an initial/trailing part of w, i.e., w = vv'/w = v'v for some $v' \in \Sigma^*$.
- If $w = a_1 \dots a_n$, then $w^R := a_n \dots a_1$.

A set of words $L \subseteq \Sigma^*$ is called a (formal) language over Σ .

A set of words $L \subseteq \Sigma^*$ is called a (formal) language over Σ .

Example I.6

• over $\mathbb{B} = \{0, 1\}$: set of all bit strings containing 1101

A set of words $L \subseteq \Sigma^*$ is called a (formal) language over Σ .

Example I.6

over B = {0,1}: set of all bit strings containing 1101
over Σ = {I, V, X, L, C, D, M}: set of all valid roman numbers

A set of words $L \subseteq \Sigma^*$ is called a (formal) language over Σ .

- over $\mathbb{B} = \{0, 1\}$: set of all bit strings containing 1101
- **2** over $\Sigma = \{I, V, X, L, C, D, M\}$: set of all valid roman numbers
- **6** over Σ_{key} : set of all valid Java programs

Seen:

- Basic notions: alphabets, words
- Formal languages as sets of words

Seen:

- Basic notions: alphabets, words
- Formal languages as sets of words

Open:

• Description of computations on words?

Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

1 Formal Languages

Finite Automata

• Deterministic Finite Automata

- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
- **3** Regular Expressions
- 4 The Pumping Lemma

5 Outlook

Example: Pattern Matching

Example I.7 (Pattern 1101)

- Read Boolean string bit by bit
- Test whether it contains 1101
- Idea: remember which (initial) part of 1101 has been recognized
- () Five prefixes: ε , 1, 11, 110, 1101
- Diagram: on the board

Example I.7 (Pattern 1101)

- Read Boolean string bit by bit
- Test whether it contains 1101
- Idea: remember which (initial) part of 1101 has been recognized
- () Five prefixes: ε , 1, 11, 110, 1101
- Diagram: on the board

What we used:

- finitely many (storage) states
- an initial state
- for every current state and every input symbol: a new state
- a succesful state

Deterministic Finite Automata I

Definition I.8

A deterministic finite automaton (DFA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$$

where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final (or: accepting) states

Deterministic Finite Automata II

Example I.9

Pattern matching (Example I.7):

- $Q = \{q_0, \ldots, q_4\}$
- $\Sigma = \mathbb{B} = \{0, 1\}$
- $\delta: Q \times \Sigma \to Q$ on the board
- $F = \{q_4\}$

Graphical Representation of DFA

• states \implies nodes

•
$$\delta(q,a) = q' \implies q \stackrel{a}{\longrightarrow} q'$$

- initial state: incoming edge without source state
- final state(s): double circle

Acceptance by DFA I

Definition I.10

Let
$$\langle Q, \Sigma, \delta, q_0, F \rangle$$
 be a DFA. The extension of $\delta : Q \times \Sigma \to Q$,
 $\delta^* : Q \times \Sigma^* \to Q$,

is defined by

 $\delta^*(q, w) := \text{state after reading } w \text{ in } q.$

Formally:

$$\delta^*(q,w) := \begin{cases} q & \text{if } w = \varepsilon \\ \delta^*(\delta(q,a),v) & \text{if } w = av \end{cases}$$

Thus: if $w = a_1 \dots a_n$ and $q \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n$, then $\delta^*(q, w) = q_n$

Acceptance by DFA I

Definition I.10

Let
$$\langle Q, \Sigma, \delta, q_0, F \rangle$$
 be a DFA. The extension of $\delta : Q \times \Sigma \to Q$,
 $\delta^* : Q \times \Sigma^* \to Q$,

is defined by

 $\delta^*(q,w) := \text{state after reading } w \text{ in } q.$

Formally:

$$\delta^*(q,w) := \begin{cases} q & \text{if } w = \varepsilon \\ \delta^*(\delta(q,a),v) & \text{if } w = av \end{cases}$$

Thus: if $w = a_1 \dots a_n$ and $q \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n$, then $\delta^*(q, w) = q_n$

Example I.11

Pattern matching (Example I.9): on the board

Acceptance by DFA II

Definition I.12

- \mathfrak{A} accepts $w \in \Sigma^*$ if $\delta^*(q_0, w) \in F$.
- The language recognized by ${\mathfrak A}$ is

$$L(\mathfrak{A}) := \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}.$$

- A language $L \subseteq \Sigma^*$ is called DFA-recognizable if there exists some DFA \mathfrak{A} such that $L(\mathfrak{A}) = L$.
- Two DFA $\mathfrak{A}_1, \mathfrak{A}_2$ are called equivalent if

$$L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$$

Acceptance by DFA III

Example I.13

• The set of all bit strings containing 1101 is recognized by the automaton from Example I.9.

Acceptance by DFA III

Example I.13

- The set of all bit strings containing 1101 is recognized by the automaton from Example I.9.
- ② Two (equivalent) automata recognizing the language

 $\{w \in \mathbb{B}^* \mid w \text{ contains } 1\}:$

on the board

Acceptance by DFA III

Example I.13

- The set of all bit strings containing 1101 is recognized by the automaton from Example I.9.
- ② Two (equivalent) automata recognizing the language

 $\{w \in \mathbb{B}^* \mid w \text{ contains } 1\}:$

on the board

• An automaton which recognizes

 $\{w \in \{0, \dots, 9\}^* \mid \text{value of } w \text{ divisible by } 3\}$

Idea: test whether sum of digits is divisible by 3 – one state for each residue class (on the board)

Deterministic Finite Automata

Seen:

- Deterministic finite automata as a model of simple sequential computations
- Recognizability of formal languages by automata

Deterministic Finite Automata

Seen:

- Deterministic finite automata as a model of simple sequential computations
- Recognizability of formal languages by automata

Open:

- Composition and transformation of automata?
- Which languages are recognizable, which are not (alternative characterization)?
- Language definition \mapsto automaton and vice versa?

1 Formal Languages

Finite Automata

• Deterministic Finite Automata

• Operations on Languages and Automata

- Nondeterministic Finite Automata
- More Decidability Results
- **3** Regular Expressions
- The Pumping Lemma

5 Outlook

Simplest case: Boolean operations (complement, intersection, union)

Question

Let \mathfrak{A}_1 , \mathfrak{A}_2 be two DFA with $L(\mathfrak{A}_1) = L_1$ and $L(\mathfrak{A}_2) = L_2$. Can we construct automata which recognize

•
$$\overline{L_1}$$
 (:= $\Sigma^* \setminus L_1$),

- $L_1 \cap L_2$, and
- $L_1 \cup L_2$?

Language Complement

Theorem I.14

If $L \subseteq \Sigma^*$ is DFA-recognizable, then so is \overline{L} .

Theorem I.14

If $L \subseteq \Sigma^*$ is DFA-recognizable, then so is \overline{L} .

Proof.

Let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA such that $L(\mathfrak{A}) = L$. Then:

$$w \in \overline{L} \iff w \notin L \iff \delta^*(q_0, w) \notin F \iff \delta^*(q_0, w) \in Q \setminus F.$$

Thus, \overline{L} is recognized by the DFA $\langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$.

Theorem I.14

If $L \subseteq \Sigma^*$ is DFA-recognizable, then so is \overline{L} .

Proof.

Let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA such that $L(\mathfrak{A}) = L$. Then:

$$w \in \overline{L} \iff w \notin L \iff \delta^*(q_0, w) \notin F \iff \delta^*(q_0, w) \in Q \setminus F.$$

Thus, \overline{L} is recognized by the DFA $\langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$.

Example I.15

on the board

Language Intersection I

Theorem I.16

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cap L_2$.

Theorem I.16

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cap L_2$.

Proof.

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff both \mathfrak{A}_1 and \mathfrak{A}_2 accept w

Idea: let \mathfrak{A}_1 and \mathfrak{A}_2 run in parallel

- use pairs of states $(q_1, q_2) \in Q_1 \times Q_2$
- start with both components in initial state
- a transition updates both components independently
- for acceptance both components need to be in a final state

Proof (continued).

Formally: let the product automaton

$$\mathfrak{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F_1 \times F_2 \rangle$$

be defined by

$$\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_2, a)) \text{ for every } a \in \Sigma.$$

Proof (continued).

Formally: let the product automaton

$$\mathfrak{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F_1 \times F_2 \rangle$$

be defined by

 $\delta((q_1,q_2),a):=(\delta_1(q_1,a),\delta_2(q_2,a)) \text{ for every } a\in \Sigma.$ This definition yields

$$\delta^*((q_1,q_2),w) = (\delta_1^*(q_1,w),\delta_2^*(q_2,w)) \qquad (*)$$
 for every $w \in \Sigma^*.$

Proof (continued).

Formally: let the product automaton

$$\mathfrak{A} := \langle Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), F_1 \times F_2 \rangle$$

be defined by

 $\delta((q_1,q_2),a):=(\delta_1(q_1,a),\delta_2(q_2,a)) \text{ for every } a\in \Sigma.$ This definition yields

$$\delta^*((q_1, q_2), w) = (\delta_1^*(q_1, w), \delta_2^*(q_2, w)) \quad (*)$$

for every $w \in \Sigma^*$ Thus we have:

$$\begin{array}{rcl}\mathfrak{A} \mbox{ accepts } w \\ \Longleftrightarrow & \delta^*((q_0^1, q_0^2), w) \in F_1 \times F_2 \\ \stackrel{(*)}{\longleftrightarrow} & (\delta_1^*(q_0^1, w), \delta_2^*(q_0^2, w)) \in F_1 \times F_2 \\ \Leftrightarrow & \delta_1^*(q_0^1, w) \in F_1 \mbox{ and } \delta_2^*(q_0^2, w) \in F_2 \\ \Leftrightarrow & \mathfrak{A}_1 \mbox{ accepts } w \mbox{ and } \mathfrak{A}_2 \mbox{ accepts } w \end{array}$$

Language Intersection III

Example I.17

on the board

Language Union

Theorem I.18

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cup L_2$.

Language Union

Theorem I.18

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cup L_2$.

Proof.

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_1 or \mathfrak{A}_2 accepts w.

Language Union

Theorem I.18

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cup L_2$.

Proof.

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff \mathfrak{A}_1 or \mathfrak{A}_2 accepts w.

Idea: reuse product construction Construct \mathfrak{A} as before but choose as final states those pairs $(q_1, q_2) \in Q_1 \times Q_2$ with $q_1 \in F_1$ or $q_2 \in F_2$. Thus the set of final states is given by

$$F := (F_1 \times Q_2) \cup (Q_1 \times F_2).$$

Language Concatenation

Definition I.19

The concatenation of two languages $L_1, L_2 \subseteq \Sigma^*$ is given by

$$L_1 \cdot L_2 := \{ v \cdot w \in \Sigma^* \mid v \in L_1, w \in L_2 \}.$$

Abbreviations: $w \cdot L := \{w\} \cdot L, L \cdot w := L \cdot \{w\}$

Language Concatenation

Definition I.19

The concatenation of two languages $L_1, L_2 \subseteq \Sigma^*$ is given by

$$L_1 \cdot L_2 := \{ v \cdot w \in \Sigma^* \mid v \in L_1, w \in L_2 \}.$$

Abbreviations: $w \cdot L := \{w\} \cdot L, L \cdot w := L \cdot \{w\}$

Example I.20

• If
$$L_1 = \{101, 1\}$$
 and $L_2 = \{011, 1\}$, then

 $L_1 \cdot L_2 = \{101011, 1011, 11\}.$

Language Concatenation

Definition I.19

The concatenation of two languages $L_1, L_2 \subseteq \Sigma^*$ is given by

$$L_1 \cdot L_2 := \{ v \cdot w \in \Sigma^* \mid v \in L_1, w \in L_2 \}.$$

Abbreviations: $w \cdot L := \{w\} \cdot L, L \cdot w := L \cdot \{w\}$

Example I.20

• If
$$L_1 = \{101, 1\}$$
 and $L_2 = \{011, 1\}$, then

 $L_1 \cdot L_2 = \{101011, 1011, 11\}.$

2 If $L_1 = 00 \cdot \mathbb{B}^*$ and $L_2 = 11 \cdot \mathbb{B}^*$, then

 $L_1 \cdot L_2 = \{ w \in \mathbb{B}^* \mid w \text{ has prefix } 00 \text{ and contains } 11 \}.$

DFA-Recognizability of Concatenation

Conjecture

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cdot L_2$.

DFA-Recognizability of Concatenation

Conjecture

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cdot L_2$.

Proof (attempt).

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff a prefix of w is recognized by \mathfrak{A}_1 , and if \mathfrak{A}_2 accepts the remaining suffix. **Idea:** choose $Q := Q_1 \cup Q_2$ where each $q \in F_1$ is identified with q_0^2 **But:** on the board

DFA-Recognizability of Concatenation

Conjecture

If $L_1, L_2 \subseteq \Sigma^*$ are DFA-recognizable, then so is $L_1 \cdot L_2$.

Proof (attempt).

Let $\mathfrak{A}_i = \langle Q_i, \Sigma, \delta_i, q_0^i, F_i \rangle$ be DFA such that $L(\mathfrak{A}_i) = L_i$ (i = 1, 2). The new automaton \mathfrak{A} has to accept w iff a prefix of w is recognized by \mathfrak{A}_1 , and if \mathfrak{A}_2 accepts the remaining suffix. **Idea:** choose $Q := Q_1 \cup Q_2$ where each $q \in F_1$ is identified with q_0^2 **But:** on the board

Conclusion

Required: automata model where the successor state (for a given state and input symbol) is not unique

Language Iteration

Definition I.21

• The *n*th power of a language $L \subseteq \Sigma^*$ is the *n*-fold composition of L with itself $(n \in \mathbb{N})$: $L^n := \underbrace{L \cdot \ldots \cdot L}_{}$.

Inductively: $L^0 := \{\varepsilon\}, L^{n+1} := \overset{n \text{ times}}{L^n} \cdot L$

• The iteration (or: Kleene star) of L is

$$L^* := \bigcup_{n \in \mathbb{N}} L^n.$$

Language Iteration

Definition I.21

• The *n*th power of a language $L \subseteq \Sigma^*$ is the *n*-fold composition of L with itself $(n \in \mathbb{N})$: $L^n := \underbrace{L \cdot \ldots \cdot L}_{}$.

Inductively: $L^0 := \{\varepsilon\}, L^{n+1} := \overset{n \text{ times}}{L^n} \cdot L$

• The iteration (or: Kleene star) of L is

$$L^* := \bigcup_{n \in \mathbb{N}} L^n.$$

Remarks:

- we always have $\varepsilon \in L^*$ (since $L^0 \subseteq L^*$ and $L^0 = \{\varepsilon\}$)
- $w \in L^*$ iff $w = \varepsilon$ or if w can be decomposed into $n \ge 1$ subwords v_1, \ldots, v_n (i.e., $w = v_1 \cdot \ldots \cdot v_n$) such that $v_i \in L$ for every $1 \le i \le n$
- again we would suspect that the iteration of a DFA-recognizable language is DFA-recognizable, but there is no simple (deterministic) construction

Operations on Languages and Automata

Seen:

- Operations on languages:
 - complement
 - intersection
 - union
 - concatenation
 - iteration
- DFA constructions for:
 - complement
 - intersection
 - union

Operations on Languages and Automata

Seen:

- Operations on languages:
 - complement
 - intersection
 - union
 - concatenation
 - iteration
- DFA constructions for:
 - complement
 - intersection
 - union

Open:

• Automata model for (direct implementation of) concatenation and iteration?

1 Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
- **3** Regular Expressions
- The Pumping Lemma

5 Outlook

Nondeterministic Finite Automata I

Idea:

- for a given state and a given input symbol, several transitions (or none at all) are possible
- an input word generally induces several state sequences ("runs")
- the word is accepted if at least one accepting run exists

Nondeterministic Finite Automata I

Idea:

- for a given state and a given input symbol, several transitions (or none at all) are possible
- an input word generally induces several state sequences ("runs")
- the word is accepted if at least one accepting run exists

Advantages:

- simplifies representation of languages (example: B^{*} · 1101 · B^{*}; on the board)
- yields direct constructions for concatenation and iteration of languages
- more adequate modeling of systems with nondeterministic behaviour (communication protocols, multi-agent systems, ...)

Nondeterministic Finite Automata II

Definition I.22

A nondeterministic finite automaton (NFA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$

where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Nondeterministic Finite Automata II

Definition I.22

A nondeterministic finite automaton (NFA) is of the form

$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$

where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Remarks:

- $(q, a, q') \in \Delta$ usually written as $q \xrightarrow{a} q'$
- every DFA can be considered as an NFA

$$((q, a, q') \in \Delta \iff \delta(q, a) = q')$$
Foundations of

Acceptance by NFA

Definition I.23

- Let $w = a_1 \dots a_n \in \Sigma^*$.
- A *w*-labeled \mathfrak{A} -run from q_1 to q_2 is a sequence

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots p_{n-1} \xrightarrow{a_n} p_n$$

such that $p_0 = q_1$, $p_n = q_2$, and $(p_{i-1}, a_i, p_i) \in \Delta$ for every $1 \leq i \leq n$ (we also write: $q_1 \xrightarrow{w} q_2$).

- \mathfrak{A} accepts w if there is a w-labeled \mathfrak{A} -run from q_0 to some $q \in F$
- The language recognized by ${\mathfrak A}$ is

$$L(\mathfrak{A}) := \{ w \in \Sigma^* \mid \mathfrak{A} \text{ accepts } w \}.$$

- A language $L \subseteq \Sigma^*$ is called NFA-recognizable if there exists a NFA \mathfrak{A} such that $L(\mathfrak{A}) = L$.
- Two NFA $\mathfrak{A}_1, \mathfrak{A}_2$ are called equivalent if $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Acceptance Test for NFA

Algorithm I.24 (Acceptance Test for NFA)

Input: NFA
$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle, w \in \Sigma^*$$

Question: $w \in L(\mathfrak{A})$?

Procedure: successive computation of the reachability set

$$R_{\mathfrak{A}}(w) := \{ q \in Q \mid q_0 \xrightarrow{w} q \}$$

Inductive definition:

$$R_{\mathfrak{A}}(\varepsilon) := \{q_0\}$$

$$R_{\mathfrak{A}}(va) := \{q \in Q \mid p \xrightarrow{a} q \text{ for some } p \in R_{\mathfrak{A}}(v)\}$$

Output: "yes" if $R_{\mathfrak{A}}(w) \cap F \neq \emptyset$, otherwise "no"

Remark: this algorithm solves the word problem for NFA

Acceptance Test for NFA

Algorithm I.24 (Acceptance Test for NFA)

Input: NFA $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle, w \in \Sigma^*$

Question: $w \in L(\mathfrak{A})$?

Example I.25 on the board

RANTE

Procedure: successive computation of the reachability set

$$R_{\mathfrak{A}}(w) := \{ q \in Q \mid q_0 \stackrel{w}{\longrightarrow} q \}$$

Inductive definition:

$$R_{\mathfrak{A}}(\varepsilon) := \{q_0\}$$

$$R_{\mathfrak{A}}(va) := \{q \in Q \mid p \xrightarrow{a} q \text{ for some } p \in R_{\mathfrak{A}}(v)\}$$

Output: "yes" if $R_{\mathfrak{A}}(w) \cap F \neq \emptyset$, otherwise "no"

Remark: this algorithm solves the word problem for NFA

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

NFA-Recognizability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ε as transition label

ε -NFA

Definition I.26

A nondeterministic finite automaton with ε -transitions (ε -NFA) is of the form $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma_{\varepsilon} \times Q$ is the transition relation where $\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Remarks:

- $\bullet\,$ every NFA is an $\varepsilon\text{-NFA}$
- definitions of runs and acceptance: in analogy to NFA

ε -NFA

Definition I.26

A nondeterministic finite automaton with ε -transitions (ε -NFA) is of the form $\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ where

- Q is a finite set of states
- Σ denotes the input alphabet
- $\Delta \subseteq Q \times \Sigma_{\varepsilon} \times Q$ is the transition relation where $\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Remarks:

- $\bullet\,$ every NFA is an $\varepsilon\text{-NFA}$
- definitions of runs and acceptance: in analogy to NFA

Example I.27

on the board

ε -NFA-Recognizability of Concatenation

Theorem I.28

If $L_1, L_2 \subseteq \Sigma^*$ are ε -NFA-recognizable, then so is $L_1 \cdot L_2$.

ε -NFA-Recognizability of Concatenation

Theorem I.28

If $L_1, L_2 \subseteq \Sigma^*$ are ε -NFA-recognizable, then so is $L_1 \cdot L_2$.

Proof (idea).

on the board

ε -NFA-Recognizability of Iteration

Theorem I.29

If $L \subseteq \Sigma^*$ is ε -NFA-recognizable, then so is L^* .

ε -NFA-Recognizability of Iteration

Theorem I.29

If $L \subseteq \Sigma^*$ is ε -NFA-recognizable, then so is L^* .

Proof (idea).

on the board

Syntax diagrams (without recursive calls) can be interpreted as ε -NFA

Example I.30

decimal numbers (on the board)

Types of Finite Automata

- DFA
- INFA
- $\odot \varepsilon$ -NFA

- DFA
- INFA
- $\odot \varepsilon$ -NFA

Corollary I.31

- Every DFA-recognizable language is NFA-recognizable.
- **2** Every NFA-recognizable language is ε -NFA-recognizable.

- DFA
- INFA
- $\odot \varepsilon$ -NFA

Corollary I.31

- Every DFA-recognizable language is NFA-recognizable.
- **2** Every NFA-recognizable language is ε -NFA-recognizable.

Goal: establish reverse inclusions

From NFA to DFA I

Theorem I.32

Every NFA can be transformed into an equivalent DFA.

From NFA to DFA I

Theorem I.32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states ("powerset construction")

- Initial state of DFA := {initial state of NFA}
- $P \xrightarrow{a} P'$ in DFA iff there exist $q \in P, q' \in P'$ such that $q \xrightarrow{a} q'$ in NFA
- P final state in DFA iff it contains some final state of NFA

From NFA to DFA II

Proof (continued).

Let
$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$
 be a NFA.
Powerset construction of $\mathfrak{A}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$:
• $Q' := 2^Q := \{P \mid P \subseteq Q\}$
• $\delta' : Q' \times \Sigma \to Q'$ with
 $q \in \delta'(P, a) \iff$ there exists $p \in P$ such that $(p, a, q) \in \Delta$
• $q'_0 := \{q_0\}$
• $F' := \{P \subseteq Q \mid P \cap F \neq \emptyset\}$
This yields
 $q_0 \xrightarrow{w} q \text{ in } \mathfrak{A} \iff q \in {\delta'}^*(\{q_0\}, w) \text{ in } \mathfrak{A}'$
and thus

$$\mathfrak{A}$$
 accepts $w \iff \mathfrak{A}'$ accepts w

From NFA to DFA II

Proof (continued).

Let
$$\mathfrak{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$$
 be a NFA.
Powerset construction of $\mathfrak{A}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$:
• $Q' := 2^Q := \{P \mid P \subseteq Q\}$
• $\delta' : Q' \times \Sigma \to Q'$ with
 $q \in \delta'(P, a) \iff$ there exists $p \in P$ such that $(p, a, q) \in \Delta$
• $q'_0 := \{q_0\}$
• $F' := \{P \subseteq Q \mid P \cap F \neq \emptyset\}$
This yields

$$q_0 \xrightarrow{w} q \text{ in } \mathfrak{A} \iff q \in {\delta'}^*(\{q_0\}, w) \text{ in } \mathfrak{A'}$$

and thus

$$\mathfrak{A} \text{ accepts } w \iff \mathfrak{A}' \text{ accepts } w$$

Example I.33

on the board

From ε -NFA to NFA

Theorem I.34

Every ε -NFA can be transformed into an equivalent NFA.

From ε -NFA to NFA

Theorem I.34

Every ε -NFA can be transformed into an equivalent NFA.

Proof (idea).

Let \mathfrak{A} be a ε -NFA. We construct the NFA \mathfrak{A}' by eliminating all ε -transitions, adding appropriate direct transitions: if $p \xrightarrow{\varepsilon} q$, $q \xrightarrow{a} q'$, and $q' \xrightarrow{\varepsilon} r$ in \mathfrak{A} , then $p \xrightarrow{a} r$ in \mathfrak{A}' .

From ε -NFA to NFA

Theorem I.34

Every ε -NFA can be transformed into an equivalent NFA.

Proof (idea).

Let \mathfrak{A} be a ε -NFA. We construct the NFA \mathfrak{A}' by eliminating all ε -transitions, adding appropriate direct transitions: if $p \xrightarrow{\varepsilon} q$, $q \xrightarrow{a} q'$, and $q' \xrightarrow{\varepsilon} r$ in \mathfrak{A} , then $p \xrightarrow{a} r$ in \mathfrak{A}' .

Example I.35

on the board

Theorem I.34

Every ε -NFA can be transformed into an equivalent NFA.

Proof (idea).

Let \mathfrak{A} be a ε -NFA. We construct the NFA \mathfrak{A}' by eliminating all ε -transitions, adding appropriate direct transitions: if $p \xrightarrow{\varepsilon} q$, $q \xrightarrow{a} q'$, and $q' \xrightarrow{\varepsilon} r$ in \mathfrak{A} , then $p \xrightarrow{a} r$ in \mathfrak{A}' .

Example I.35

on the board

Corollary I.36

All types of finite automata recognize the same class of languages.

Nondeterministic Finite Automata

Seen:

- Definition of ε -NFA
- Determinization of (ε -)NFA

Nondeterministic Finite Automata

Seen:

- Definition of ε -NFA
- Determinization of (ε -)NFA

Open:

• More decidablity results

1 Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
- **3** Regular Expressions
- 4 The Pumping Lemma

5 Outlook

The Word Problem Revisited

Definition I.37

The word problem for DFA is specified as follows:

Given a DFA \mathfrak{A} and a word $w \in \Sigma^*$, decide whether

 $w \in L(\mathfrak{A}).$

The Word Problem Revisited

Definition I.37

The word problem for DFA is specified as follows:

Given a DFA \mathfrak{A} and a word $w \in \Sigma^*$, decide whether

 $w \in L(\mathfrak{A}).$

As we have seen (Def. I.10, Alg. I.24, Thm. I.34):

Theorem I.38

The word problem for DFA (NFA, ε -NFA) is decidable.

The Emptiness Problem

Definition I.39

The emptiness problem for DFA is specified as follows:

Given a DFA $\mathfrak{A},$ decide whether

 $L(\mathfrak{A}) = \emptyset.$

The Emptiness Problem

Definition I.39

The emptiness problem for DFA is specified as follows:

Given a DFA $\mathfrak{A},$ decide whether

$$L(\mathfrak{A}) = \emptyset.$$

Theorem I.40

The emptiness problem for DFA (NFA, ε -NFA) is decidable.

Proof.

It holds that $L(\mathfrak{A}) \neq \emptyset$ iff in \mathfrak{A} some final state is reachable from the initial state (simple graph-theoretic problem).

The Emptiness Problem

Definition I.39

The emptiness problem for DFA is specified as follows:

Given a DFA $\mathfrak{A},$ decide whether

$$L(\mathfrak{A}) = \emptyset.$$

Theorem I.40

The emptiness problem for DFA (NFA, ε -NFA) is decidable.

Proof.

It holds that $L(\mathfrak{A}) \neq \emptyset$ iff in \mathfrak{A} some final state is reachable from the initial state (simple graph-theoretic problem).

Remark: important result for formal verification (unreachability of bad (= final) states)

Definition I.41

The equivalence problem for DFA is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether

 $L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$

Definition I.41

The equivalence problem for DFA is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether

 $L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$

Theorem I.42

The equivalence problem for DFA (NFA, ε -NFA) is decidable.

Proof.

 $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$

Definition I.41

The equivalence problem for DFA is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether

 $L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$

Theorem I.42

The equivalence problem for DFA (NFA, ε -NFA) is decidable.

Proof.

$$L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$$

$$\iff \quad L(\mathfrak{A}_1) \subseteq L(\mathfrak{A}_2) \text{ and } L(\mathfrak{A}_2) \subseteq L(\mathfrak{A}_1)$$

Definition I.41

The equivalence problem for DFA is specified as follows:

Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether

 $L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$

Theorem I.42

The equivalence problem for DFA (NFA, ε -NFA) is decidable.

Proof.

$$\begin{array}{l} L(\mathfrak{A}_1) = L(\mathfrak{A}_2) \\ \Longleftrightarrow \quad L(\mathfrak{A}_1) \subseteq L(\mathfrak{A}_2) \text{ and } L(\mathfrak{A}_2) \subseteq L(\mathfrak{A}_1) \\ \Leftrightarrow \quad (L(\mathfrak{A}_1) \setminus L(\mathfrak{A}_2)) \cup (L(\mathfrak{A}_2) \setminus L(\mathfrak{A}_1)) = \emptyset \end{array}$$

Definition I.41

The equivalence problem for DFA is specified as follows:

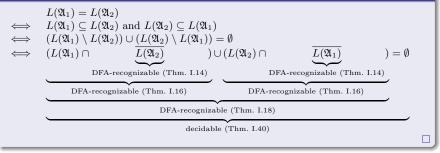
Given two DFA $\mathfrak{A}_1, \mathfrak{A}_2$, decide whether

 $L(\mathfrak{A}_1) = L(\mathfrak{A}_2).$

Theorem I.42

The equivalence problem for DFA (NFA, ε -NFA) is decidable.

Proof.



Seen:

- Decidability of word problem
- Decidability of emptiness problem
- Decidability of equivalence problem

Seen:

- Decidability of word problem
- Decidability of emptiness problem
- Decidability of equivalence problem

Open:

• Non-algorithmic description of languages

Outline

1 Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Example I.43

Consider the set of all words over $\Sigma:=\{a,b\}$ which

- \bullet start with one or three *a* symbols
- continue with a (potentially empty) sequence of blocks, each containing at least one b and exactly two a's
- 0 conclude with a (potentially empty) sequence of b 's

Corresponding regular expression:

$$(a + aaa)(\underbrace{bb^*ab^*ab^*}_{b \text{ before } a's} + \underbrace{b^*abb^*ab^*}_{b \text{ between } a's} + \underbrace{b^*ab^*abb^*}_{b \text{ after } a's})^*b^*$$

Syntax of Regular Expressions

Definition I.44

The set of regular expressions over Σ is inductively defined by:

- \emptyset and ε are regular expressions
- every $a \in \Sigma$ is a regular expression
- if α and β are regular expressions, then so are
 - $\alpha + \beta$
 - $\alpha \cdot \beta$
 - α^*

Syntax of Regular Expressions

Definition I.44

The set of regular expressions over Σ is inductively defined by:

- \emptyset and ε are regular expressions
- every $a \in \Sigma$ is a regular expression
- if α and β are regular expressions, then so are
 - $\alpha + \beta$
 - $\alpha \cdot \beta$
 - α^*

Notation:

- \cdot can be omitted
- * binds stronger than \cdot, \cdot binds stronger than +
- α^+ abbreviates $\alpha \cdot \alpha^*$

Semantics of Regular Expressions

Definition I.45

Every regular expression α defines a language $L(\alpha)$:

$$L(\emptyset) := \emptyset$$

$$L(\varepsilon) := \{\varepsilon\}$$

$$L(a) := \{a\}$$

$$L(\alpha + \beta) := L(\alpha) \cup L(\beta)$$

$$L(\alpha \cdot \beta) := L(\alpha) \cdot L(\beta)$$

$$L(\alpha^*) := (L(\alpha))^*$$

Definition I.45

Every regular expression α defines a language $L(\alpha)$:

$$L(\emptyset) := \emptyset$$

$$L(\varepsilon) := \{\varepsilon\}$$

$$L(a) := \{a\}$$

$$L(\alpha + \beta) := L(\alpha) \cup L(\beta)$$

$$L(\alpha \cdot \beta) := L(\alpha) \cdot L(\beta)$$

$$L(\alpha^*) := (L(\alpha))^*$$

A language L is called regular if it is definable by a regular expression, i.e., if $L = L(\alpha)$ for some regular expression α .

Regular Languages

Example I.46

$\bullet \ \{aa\} \text{ is regular since}$

$$L(a \cdot a) = L(a) \cdot L(a) = \{a\} \cdot \{a\} = \{aa\}$$

Regular Languages

Example I.46

 $\bullet \ \{aa\} \text{ is regular since}$

$$L(a \cdot a) = L(a) \cdot L(a) = \{a\} \cdot \{a\} = \{aa\}$$

2
$$\{a, b\}^*$$
 is regular since

 $L((a+b)^*) = (L(a+b))^* = (L(a) \cup L(b))^* = (\{a\} \cup \{b\})^* = \{a,b\}^*$

Regular Languages

Example I.46

 $\bullet \ \{aa\} \text{ is regular since}$

$$L(a \cdot a) = L(a) \cdot L(a) = \{a\} \cdot \{a\} = \{aa\}$$

2 $\{a, b\}^*$ is regular since

$$L((a+b)^*) = (L(a+b))^* = (L(a) \cup L(b))^* = (\{a\} \cup \{b\})^* = \{a, b\}^*$$

③ The set of all words over $\{a, b\}$ containing *abb* is regular since

$$L((a+b)^* \cdot a \cdot b \cdot b \cdot (a+b)^*) = \{a,b\}^* \cdot \{abb\} \cdot \{a,b\}^*$$

Regular Languages and Finite Automata I

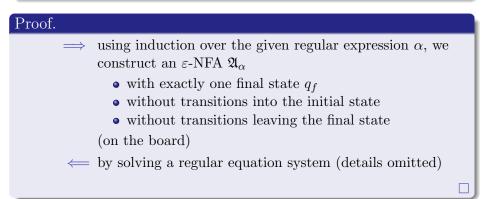
Theorem I.47 (Kleene's Theorem)

To each regular expression there corresponds an ε -NFA, and vice versa.

Regular Languages and Finite Automata I

Theorem I.47 (Kleene's Theorem)

To each regular expression there corresponds an ε -NFA, and vice versa.



Regular Languages and Finite Automata II

Corollary I.48

The following properties are equivalent:

- L is regular
- L is DFA-recognizable
- L is NFA-recognizable
- L is ε -NFA-recognizable

Input: regular expression α and $w \in \Sigma^*$ Question: does w contain some $v \in L(\alpha)$? Procedure: • $let \ \beta := (a_1 + \ldots + a_n)^* \cdot \alpha$ (for $\Sigma = \{a_1, \ldots, a_n\}$) • $determine \ \varepsilon$ -NFA \mathfrak{A}_{β} for β • $eliminate \ \varepsilon$ -transitions • $apply \ powerset \ construction \ to \ obtain \ DFA \ \mathfrak{A}$ • $let \ \mathfrak{A} \ run \ on \ w$ Output: "yes" if \mathfrak{A} passes through some final state, otherwise "no"

Remark: in UNIX/LINUX implemented by grep and lex

Seen:

- Definition of regular expressions
- Equivalence of regular and DFA-recognizable languages

Seen:

- Definition of regular expressions
- Equivalence of regular and DFA-recognizable languages

Open:

• Limitations of regular languages?

Outline

1 Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results

3 Regular Expressions

4 The Pumping Lemma

5 Outlook

Observation: a language L is DFA-recognizable (and thus regular) if the membership of a word w can be tested by symbol-wise reading of w, using a bounded memory

Observation: a language L is DFA-recognizable (and thus regular) if the membership of a word w can be tested by symbol-wise reading of w, using a bounded memory

Conjecture: languages of the form $\{a^n b^n \mid n \in \mathbb{N}\}$ are not regular since the test for membership requires the capability of comparing the number of a symbols to the number of b symbols (which can grow arbitrarily large)

Theorem I.50 (Pumping Lemma for Regular Languages)

If L is regular, then there exists $n \ge 1$ (called pumping index) such that any $w \in L$ with $|w| \ge n$ can be decomposed as w = xyz where

- $y \neq \varepsilon$ and
- for every $i \ge 0, xy^i z \in L$

The Pumping Lemma II

Proof (idea).

Let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA such that $L(\mathfrak{A}) = L$. Choose n := |Q|, and let $w \in L$. Then: $w = a_1 \dots a_k$ with $k \ge n$ \Longrightarrow the accepting run visits $k + 1 \ge n + 1$ states: $q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_k} q_k$ \Longrightarrow some state in Q occurs (at least) twice: there exist $1 \le i < j \le k$ such that $q_i = q_j$ Choose $y := a_{i+1} \dots a_j$ to be the substring which is read between the two visits of q. Clearly, $y \ne \varepsilon$. Moreover the cycle can be omitted or repeated such that $xz \in L$, $xyz \in L$, $xy^2z \in L$, ...

The Pumping Lemma II

Proof (idea).

Let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA such that $L(\mathfrak{A}) = L$. Choose n := |Q|, and let $w \in L$. Then: $w = a_1 \dots a_k$ with k > n \implies the accepting run visits $k+1 \ge n+1$ states: $q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_k} q_k$ \implies some state in Q occurs (at least) twice: there exist $1 \le i \le j \le k$ such that $q_i = q_i$ Choose $y := a_{i+1} \dots a_i$ to be the substring which is read between the two visits of q. Clearly, $y \neq \varepsilon$. Moreover the cycle can be omitted or repeated such that $xz \in L$, $xyz \in L$, $xy^2z \in L$, ...

Remark: Pumping Lemma states a necessary condition for regularity \implies can only be used to show the non-regularity of a language

The Pumping Lemma III

Example I.51

- $L := \{a^k b^k \mid k \in \mathbb{N}\}$ is not regular. Proof by contradiction: Assume that L is regular, and let n be a pumping index. Consider $w := a^n b^n$. Since $|w| \ge n$, it can be decomposed as w = xyz with $y \ne \varepsilon$. The following cases are possible:
 - $y \in L(a^+)$: then $xy^2z \notin L$ (more as than bs)
 - $y \in L(b^+)$: then $xy^2z \notin L$ (less as than bs)
 - $y \in L(a^+b^+)$: then $xy^2z \notin L$ (a follows b)

The Pumping Lemma III

Example I.51

- $L := \{a^k b^k \mid k \in \mathbb{N}\}$ is not regular. Proof by contradiction: Assume that L is regular, and let n be a pumping index. Consider $w := a^n b^n$. Since $|w| \ge n$, it can be decomposed as w = xyz with $y \ne \varepsilon$. The following cases are possible:
 - $y \in L(a^+)$: then $xy^2z \notin L$ (more as than bs)
 - $y \in L(b^+)$: then $xy^2z \notin L$ (less as than bs)
 - $y \in L(a^+b^+)$: then $xy^2z \notin L$ (a follows b)

Similarly: the set of all arithmetic expressions is not regular

The Pumping Lemma III

Example I.51

- $L := \{a^k b^k \mid k \in \mathbb{N}\}$ is not regular. Proof by contradiction: Assume that L is regular, and let n be a pumping index. Consider $w := a^n b^n$. Since $|w| \ge n$, it can be decomposed as w = xyz with $y \ne \varepsilon$. The following cases are possible:
 - $y \in L(a^+)$: then $xy^2z \notin L$ (more *as* than *bs*)
 - $y \in L(b^+)$: then $xy^2z \notin L$ (less as than bs)
 - $y \in L(a^+b^+)$: then $xy^2z \notin L$ (a follows b)

② Similarly: the set of all arithmetic expressions is not regular

Conclusion

Finite automata are too weak for defining the syntax of programming languages!

Seen:

- Necessary condition for regularity of languages
- Counterexamples

Seen:

- Necessary condition for regularity of languages
- Counterexamples

Open:

• More expressive formalisms for describing languages?

Outline

1 Formal Languages

Finite Automata

- Deterministic Finite Automata
- Operations on Languages and Automata
- Nondeterministic Finite Automata
- More Decidability Results
- **3** Regular Expressions

4 The Pumping Lemma

5 Outlook

- Minimization of DFA
- More language operations (reversion, homomorphisms, ...)
- Construction of scanners for compilers

