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Outline

Part I: Integers and Their Divisors

We discuss some not-so-well-known facts about
the arithmetic structure of integer numbers

• Given a “typical” integer n what can we say
about

– the largest prime divisor of n?

– the distibution of integer divisors of n?

• Are the answers much different for “typical”
cryptographic integers, such as

– shifted primes p− 1?

– polynomial values f(n)?

– values of the Euler function?

– cardinalities of elliptic curves over IFq?
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Part II: Cryptography

We apply this knowledge to analysis of several not-

so-well-known attacks on various cryptographic pro-

tocols and algorithms:

• Naive ElGamal protocol for key exchange;

• Fix-padded RSA;

• Generalised Diffie-Hellman protocol;

• Pratt primality certificate;

• Using small exponentiation base;

• Strong primes for RSA.
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Rough Introduction to
Smoothness

What are Smooth Numbers?

An integer n is smooth if it has only small prime
divisors.

In a quantitative form: n is y-smooth if all prime
divisors p|n satisfy p ≤ y.

P (n) = the largest prime divisor of n.

n is y-smooth ⇐⇒ P (n) ≤ y

How Many are There?

Let

ψ(x, y) = #{n ≤ x | n is y-smooth}.

Important parameter:

u =
logx

log y
⇔ x = yu
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Intuition

Question: What is the probability that p 6 | n when

n ≤ x is chosen at random?

1−
1

p

Question: What is the probability that p 6 | n for

all x ≥ p > y when n ≤ x is chosen at random?

∏
x≥p>y

(
1−

1

p

)
=

∏
p≤x

(
1−

1

p

) ∏
p≤y

(
1−

1

p

)−1

∼
log y

logx
=

1

u

by the Mertens formula.

So one can certainly predict a very nice bound

ψ(x, y) ∼
1

u
x

Too bad that this is completely wrong ...
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Fundamental Theorem of Cryptography:

If we have no clue about something
then we can safely assume that it
behaves as an idependent random
variable

. . . is unfortunately not always correct.

Sometimes we need to work with very slowly chang-

ing functions, where numerical experiments are

useless and only deep theoretic understanding may

help us:

log log logn has been proved to go
to infinity with n, but it has never
been observed doing so . . .

Carl Pomerance
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Approximate Answer:

Canfield, Erdős, and Pomerance, 1983:

ψ(x, y) = u−u+o(u)x

for

1 ≤ u ≤ y1−ε ∀ε > 0,

or, equaivalently,

y ≥ (logx)1+ε ∀ε > 0,

More Precise Answer:

Hildebrand, 1986:

ψ(x, y) ∼ ρ(u)x

for

u ≤ exp
(
(log y)3/5−ε

)
∀ε > 0,

or, equaivalently,

y > exp
(
(log logx)5/3+ε

)
∀ε > 0,

u ≤ exp
(
(log y)3/5−ε

)
⇔ y > exp

(
(log logx)5/3+ε

)
,

where ρ(u) is the Dickman–de Bruijn function



8

Dickman–de Bruijn function ρ(u)

ρ(u) = 1, 0 ≤ u ≤ 1,

and

ρ(u) = 1−
∫ u

1

ρ(v − 1)

v
dv, u > 1.

Some properties of the ρ(u)

We recall that

ρ(u) = u−u+o(u), u→∞

(this can be obtained independently).

More precisely

ρ(u) =

(
e+ o(1)

u logu

)u
, u→∞

We also have ρ(u) = 1− logu for 1 ≤ u ≤ 2.

E.g. ρ(e1/2) = 1/2, that is ∼ 50% of integers n

have all prime divisors ≤ n1/e1/2
.

This has been used by I. M. Vinogradov, and then

by D. A. Burgess, to estimate the smallest quadratic

non-residue.
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Conditional Answer:

Hildebrand, 1984:

ψ(x, y) ∼ ρ(u)x

for a wider range

1 ≤ u ≤ y1/2−ε ∀ε > 0,

or, equaivalently,

y ≥ (logx)2+ε ∀ε > 0,

iff the Riemann Hypothesis is true.

Very Smooth Numbers

Granville, 1993:

ψ(x, logA x) = x1−1/A+o(1), for any A > 1.

Important Special Case

ψ(x, L(x)c) = x/L(x)1/2c+o(1),

where

L(x) := exp(
√

logx log logx).
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How Do We Count Them?

Counting very smooth numbers

Lattices:

Let 2 = p1 < . . . < ps ≤ y be all s = π(y) primes up

to y.

ψ(x, y) = #

(α1, . . . , αs) |
s∏

i=1

p
αi
i ≤ x


= #

(α1, . . . , αs) |
s∑

i=1

αi log pi ≤ logx


— counting integer points in a tetrahedron.

The number of integer points is close to its volume

V =
logs x

s!
∏s
i=1 log pi

if V is large compared to the dimension s

⇓

s (and thus ps) must be reasonably small.
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Counting not so smooth numbers

Rankin’s method

Fix any constant c > 0. Then

ψ(x, y) =
∑
n≤x

p|n⇒p≤y

1 ≤
∑
n≤x

p|n⇒p≤y

(
x

n

)c

≤
∑

p|n⇒p≤y

(
x

n

)c
= xc

∑
p|n⇒p≤y

1

nc

= xc
∏
p≤y

∞∑
i=0

1

pic
= xc

∏
p≤y

(
1−

1

pc

)−1

.

Using the prime number theorem, we estimate the

product as a function of y and c (non-trivial!) and

minimize over all choices of c.

The (quasi-) optimal value is

c = 1−
u logu

log y
.
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Buchstab-de Bruijn Recurrent relation

Write each y-smooth n with n > 1, as n = pm

where p = P (n) is the largest prime factor of n.

Collecting together integers n with P (n) = p we

get

ψ(x, y) = 1 +
∑
p≤y

ψ

(
x

p
, p

)
,

(since P (m) ≤ P (n) = p and m = n/p ≤ x/p).

This identity has been used for both lower and

upper bounds and even for asymptotic formulas.

We now use it to “prove” that for each fixed u

ψ(x, x1/u) ∼ xρ(u).

The “proof” is by induction over N , where u ∈
(N,N + 1].



13

For 0 < u ≤ 1 we trivially have ψ(x, x1/u) = bxc.

For 1 < u ≤ 2 (i.e. x ≥ y ≥ x1/2), noticing

that non-y-smooth numbers have one and only one

prime divisor p > y, we get

ψ(x, y) = bxc −
∑

y<p≤x
#{m : m ≤ x/p}

= bxc −
∑

y<p≤x

⌊
x

p

⌋
≈ x− x

∑
y<p≤x

1

p

= x

1−
∑

2≤p≤x

1

p
+

∑
2≤p≤y

1

p



Now, by the Mertens formula,

ψ(x, y) ≈ x(1− (log logx− log log y))

≈ x

(
1− log

logx

log y

)
= x(1− logu) = xρ(u)

This step wasn’t necessary but is good warm-

ing up for the proof
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Suppose ψ(x, x1/u) ∼ xρ(u) holds for 0 ≤ u ≤ N .

Consider values of u ∈ (N,N + 1].

Subtracting the Buchstab-de Bruijn relation with

y = x1/N :

ψ(x, x1/N) = 1 +
∑

p≤x1/N

ψ

(
x

p
, p

)

from the same equation with y = x1/u:

ψ(x, x1/u) = 1 +
∑

p≤x1/u

ψ

(
x

p
, p

)
,

we obtain

ψ(x, x1/u) = ψ(x, x1/N)−
∑

x1/u<p≤x1/N

ψ

(
x

p
, p

)

≈ x

ρ(N)−
∑

x1/u<p≤x1/N

1

p
ρ

(
log(x/p)

log p

) .
since

log(x/p)

log p
=

logx

log p
− 1 <

logx

log(x1/u)
− 1 = u− 1 ≤ N,

so the induction hypothesis applies.



15

Let

ϑ(z) =
∑
p≤z

log p.

By the prime number theorem

ϑ(z) = z +O(z/(log z)A)

for any fixed A.

Writing z = x1/t, by partial summation, we get

∑
x1/u<p≤x1/N

1

p
ρ

(
log(x/p)

log p

)

=
∑

x1/u<p≤x1/N

ϑ(p)− ϑ(p− 1)

p log p
ρ

(
log(x/p)

log p

)

=
∫ x1/N

x1/u
ρ

(
logx

log z
− 1

)
dϑ(z)

z log z

≈
∫ x1/N

x1/u
ρ

(
logx

log z
− 1

)
dz

z log z

=
∫ u
N
ρ(t− 1)

dt

t
,

Therefore

ψ(x, x1/u) ≈ x
(
ρ(N)−

∫ u
N
ρ(t− 1)

dt

t

)
= ρ(u)x
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Sieve method

This is how not to count:

A general purpose sieve method gives an upper

bound

ψ(x, y) = O(x/u)

which is very weak.
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How Can We Evaluate ψ(x, y)?

To optimise and balance many cryptographic algo-

rithms, need more precise information about ψ(x, y)

than estimates and asymptotic formulas provide.

Hunter and Sorenson, 1997,2000:

One can approximate ψ(x, y) up to a factor

1 +O

(
1

u
+

log y

y

)
in time

O

(
y log logx

log y
+

y

log log y

)
.

Several more results: Sorenson, 2000:

Bernstein, 2001:

Suzuki, 2004,2006:

Parsell and Sorenson, 2006:

to be continued . . .
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Constructing Smooth Numbers

It is easy to produce a smooth number, e.g. 2k is

such.

What if one needs a smooth number close to the

target value x?

Boneh, 2001:

Efficient constructions of y-smooth numbers in

short intervals [x, x+z] for some relations between

x, y and z.

More research here would be very welcome . . .
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For Those Who Want it Rough

Let Θ(x, y) be the number of n ≤ x which are y-

rough, that is, all prime divisors p|n satisfy p > y.

Buchstab, 1949:

Θ(x, y) ∼ ω(u)
x

log y
,

where ω(u) = 1/u for 1 ≤ u ≤ 2 and

uω(u) = 1 +
∫ u−1

1
ω(t)dt for all u ≥ 2.

Note that:

• (uω(u))′ = ω(u− 1);

• limu→∞ ω(u) = e−γ.
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Large Smooth Divisors

Banks and Shparlinski, 2007:

Tenenbaum, 2007:

Asymptotic formula for

Θ(x, y, z) = #{n ≤ x | ∃d | n, d > z, d is y-smooth}

in a wide range of parameters x, y, z.
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Other Prime Divisors

Let Pk(n) be the k-th largest prime divisor of n.

Billingsley, 1972:

Tenenbaum, 2000:

Joint distribution

ψ(x, y1, . . . , yk) = #{n ≤ x | Pj(n) ≤ yj, j = 1, . . . , k}.

The case of k = 2 is especially important:

Lenstra, 1987:

The elliptic curve factorisation algorithm which

factors an integer n in time exp
(
2
√

log p log log p
)

where p = P2(n).
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Variations and Open Questions

Smooth Numbers in Arithmetic Progressions:

Let

ψ(x, y; a, q) = #{n ≤ x | n is y-smooth, n ≡ a mod q}

and

ψq(x, y) = #{n ≤ x | n is y-smooth, gcd(n, q) = 1}

Balog and Pomerance, 1992:

Granville, 1993:

Fouvry and Tenenbaum, 1996:

Harman, 2001:

In many cases, the situation is at about the same

level as for ψ(x, y). For gcd(a, q) = 1,

ψ(x, y; a, q) ∼
1

ϕ(q)
ψq(x, y) and ψq(x, y) ∼

ϕ(q)

q
ψ(x, y)

or a little weaker

ψ(x, y; a, q) �
1

ϕ(q)
ψq(x, y) and ψq(x, y) �

ϕ(q)

q
ψ(x, y)

are known in wide ranges of x, y and q.
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Smooth Numbers in Small Intervals

Define ψ(x, y, z) as the number of y-smooth n ∈
[x, x+ z]:

ψ(x, y, z) = ψ(x+ z, y)− ψ(x, y)

It is expected that

ψ(x, y, z) ∼ ρ(u)z

in a wide range. It is known in some ranges but
not in general.

Hildebrad, 1986:
Balog, 1987:
Friedlander and Lagarias, 1987:
Harman, 1991:
Friedlander and Granville, 1993:

Some results . . . but the main challenge —

ψ(x, exp
(
2
√

logx log logx
)
,2x1/2)

is out of reach. This case is crucial for analysis of
the elliptic curve factoring.

Lenstra, Pila and Pomerance, 1993:
The current knowledge is enough to analyse rigor-
ously the hyperelliptic smoothness test (larger in-
tervals: ψ(x, y, Cx3/4) is already doable for rather
“small” y!).
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Smooth k-Tuples

Balog and Wooley, 1998: Konyagin, 2000:

For any k and ε > 0 there are infinitely many n

such that n+ i is nε-smooth for i = 1, . . . , k.

Very nice and elementary explicit constructions.

One can take k → ∞ and ε → 0 (slowly) when

n→∞.

Smooth Partitions

Balog, 1989:

Each sufficiently large integer N can be written as

N = n1 + n2 where n1, n2 are N0.2695-smooth.
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Smooth Shifted Primes

Let

π(x, y) = #{p ≤ x | p− 1 is y-smooth}.

It is strongly believed that that

π(x, y) ∼ ρ(u)π(x)

(out of reach).

Pomerance and Shparlinski, 2002:

π(x, y) = O (uρ(u)π(x))

for

exp
(√

logx log logx
)
≤ y ≤ x

In a shorter range we have the “right” upper bound

Fouvry and Tenenbaum, 1996:

π(x, y) = O (ρ(u)π(x))

for

exp
(
(logx)2/3+ε

)
≤ y ≤ x



26

Friedlander, 1989:

π(x, y) ≥ Cπ(x)/ logx

for u ≤ 2
√
e = 3.2974 . . . .

Baker and Harman, 1998:

•

π(x, y) ≥ Cπ(x)/ logA x

for u ≤ 3.377 . . . .

•

π(x)− π(x, y) ≥ Cπ(x)/ logA x

for u ≥ 1.477 . . . .
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Equivalent Form

There are Cπ(x)/ logA x

• primes p ≤ x such that p−1 has a prime divisor

q ≥ p0.6776

Results of these type play a central role in

deterministic primality test of Agrawal, Kayal,

Saxena, 2004:

• primes p ≤ x such that all prime divisors q of

p− 1 satisfy q ≤ p0.2962.

The above two statements are expected to be true

with A = 0 and with 1− ε instead of 0.6776 and ε

instead of 0.2962, respectively (for any ε > 0).

Smooth Values of the Euler Function

Let

Π(x, y) = #{p ≤ x | ϕ(p− 1) is y-smooth}.

and

Φ(x, y) = #{n ≤ x | ϕ(n) is y-smooth}.



Banks, Friedlander, Pomerance and Shparlinski,

2003:

For (log logx)1+ε ≤ y ≤ x, we have

Φ(x, y) ≤ x exp(−(1 + o(1))u log logu)

Remark: Mind log logu rather than logu in the

exponent and mind the very wide range. Recall

that ρ(u) = exp(−(1 + o(1))u logu) and the “typ-

ical” range for ψ(x, y) starts with y ≥ (logx)1+ε.

How tight is this?

Lamzouri, 2007: Under some plausible conjec-

ture, there is a matching lower bound.
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We can now simply use the trivial inequality Π(x, y) ≤
Φ(x, y).

Other bounds:

For exp
(√

logx log logx
)
≤ y ≤ x we have

Π(x, y)� u−1π(x).

For logx ≤ y ≤ x, we have

Π(x, y) ≤
π(x)

exp((1
2 + o(1))u1/2 logu)

+
π(x) log logx

exp((1 + o(1))u logu)

Dream Result:

Π(x, y)� π(x) exp(−(1 + o(1))u log logu) ???
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Smooth Values of Polynomials

ψf(x, y) = #{n ≤ x | |f(n)| is y-smooth}.

Martin, 2001:

Conjecture: Let f be squarefree and let d1, d2, . . . , dk
be the degrees of irreducible factors of f over ZZ[x],

ψf(x, y) ∼ ρ(d1u)ρ(d2u) . . . ρ(dku)x

(out of reach).

Some rigorous upper bounds are known (and some

lower bounds for very small u = O(1)).
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Smooth Polynomials

A polynomial F ∈ IFq[x] is k-smooth if all irre-

ducible divisors f |F satisfy deg f ≤ k.

Nq(m, k) = #{f ∈ IFq[x] | deg f ≤ m,
f is monic and k-smooth }.

Define

u =
m

k
=

log qm

log qk

Odlyzko, 1985:

Bender and Pomerance, 1998:

Nq(m, k) = ρ(u)qm exp
(
O

(
m log k

k2

))
(if k ≥ m1/2 logm it is an asymptotic formula).

Nq(m, k) = u−u+o(u)qm

for qk ≥ m log2m.

Nq(m, k) ≥ m−uqm

for k ≤ m1/2.
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Distribution of Divisors

More About Intuition

It is obvious that the density of perfect squares

n = d2 is extremely small as there are only about

∼ x1/2 perfect squares up to x.

Let’s relax the relation n = k2 and consider n = km

with k ≤ m ≤ k1.001. Such integers can be called

“almost” squares.

Question: Is the density of “almost” squares small?

Are there only o(x) of “almost” squares up to x?

Answer: NO!

“Almost” squares occur with positive density.
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Notation

Given a sequence of integers A = (an) we denote

H(x, y, z;A) = #{n ≤ x : ∃ d|an with y < d ≤ z}.

The following sequences A are of our primal inter-

est:

• A = IN, natural numbers

• A = Pa = {p+ a : p prime}, shifted primes

• A = Ff = {f(n) : n = 1,2 . . .}, where f ∈
ZZ[X], polynomial sequences

• A = Φ = {ϕ(n) : n = 1,2 . . .}, values of the

Euler function
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Natural Numbers

This case goes back to two old questions of Erdős:

Given an integer N what is the size of the

multiplication table {nm : 1 ≤ m,n ≤ N}.

Show that almost all n have two divisors

d1 < d2 < 2d1 .

Erdős, Ford, Hall, Hooley, Maier, Saias, Tenen-

baum . . . , 1980 – ???:

Many various results, upper and lower bounds on

H(x, y, z, IN), depending on relative sizes of x, y, z

as well as of z − y and z/y.



35

A sample result (will be used later)

Define v > 0 by the relation

z = y1+1/v

Then, if

2y ≤ z ≤ min{y3/2, x1/2}

then

exp(−c
√

log v log log v) ≤
H(x, y, z, IN)

xv−δ
≤

log log v√
log v

where c > 0 is an absolute constant and

δ = 1−
1 + log log 2

log 2
= 0.008607 . . .

is the Erdős number .

Special case: For any ε > 0,

c1(ε)x ≤ H(x, y, y1+ε, IN) ≤ c2(ε)x

where O < c1(ε) < c2(ε) < 1

Equivalent form: The set of integers n ≤ x,

which have a divisor d ∈ [y, y1+ε], is of positive

density (depending only on ε > 0).
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Let’s prove something . . .

Special-special case:

For 0 ≤ α < β ≤ 1:

x� H(x, xα, xβ, IN)� x

It is enough to consider 0 < α < β < 1/2 (since if

d|n then (n/d) | n).

Consider only prime divisors p ∈ [xα, xβ].

• There are x/p + O(1) integers n ≤ x divisible

by p

• Each n ≤ x may have at most K =
⌈
α−1

⌉
of

prime divisors p ≥ xα.
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The sum ∑
xα≤p≤xβ

(
x

p
+O(1)

)

count every integer n ≤ x with a prime divisor

p ∈ [xα, xβ] at most K times.

⇓

H(x, xα, xβ, IN) ≥
1

K

∑
xα≤p≤xβ

x

p
+O(xβ)

=
x

K

∑
xα≤p≤xβ

1

p
+O(xβ)

By the Mertens formula

H(x, xα, xβ, IN) ≥
x

K

(
log log(xβ)− log log(xα) + o(1)

)
=

x

K

(
log

log(xβ)

log(xα)
+ o(1)

)

∼
log(β/α)

K
x
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Shifted Primes

Ford, 2007:

Upper bounds on H(x, y, z;Pa) of the same strength

as for H(x, y, z; IN).

Lower bounds are much weaker although heuristi-

cally there is little doubt that H(x, y, z;Pa) behaves

similarly to H(x, y, z; IN).

One of the very few known lower bounds (yet, with

many important applications to cryptography) is

due to Ford, 2007:

For a 6= 0 and 0 < α < β:

c1(ε)π(x)� H(x, xα, xβ,Pa) ≤ c2(ε)π(x)

The proof follows the same path as our previ-

ous proof, but needs rather deep tools from the

analytic number theory, the Bombieri–Vinogradov

theorem:

Instead of integers n ≤ x with p | n we need to

count primes q ≤ x with p | q − a.
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Polynomials

I wish I could say something here ...

However, it is not hopeless. It is just needs more

attention, and fully deserves it!
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Euler Function

Here is just yet another confirmation that totients

are not typical integers.

As we have mentioned, H(x, y, z;Pa) is expected

to behave similarly to H(x, y, z; IN).

However the behaviour of H(x, y, z; Φ) is very dif-

ferent! Totients have larger/denser divisor sets.

Ford and Hu, 2007:

• Uniformly over 1 ≤ y ≤ x/2, we have H(x, y,2y; Φ)�
x.

• For y = xo(1), we have H(x, y,2y; Φ) ∼ x.

• For a positive proportion of integers n, there is

a divisor d | ϕ(n) in every interval of the form

[K,2K], 1 ≤ K ≤ n.
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Applications

Primality, Factorisation, Dlog

90% of applications are in these areas.

90% of this talk is about other applications.

Examples:

• Dixon’s Method

• Quadratic Sieve

• Number Field Sieve

• Index Calculus

• Elliptic Curve Factoring

Some are rigorously analysed, some are heuris-
tic (but based on our understanding (???) of
smooth numbers)
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Index Calculus in IF∗p

Initial Assumption

Let us fix some y (to be optimised later) and as-
sume that we know Dlog’s of all primes p1, . . . , ps
up to y.

To compute k from b ≡ ak mod p we

• take a random integer m and compute

c ≡ bam ≡ ak+m mod p

Note that

Dloga c = Dloga b+ Dloga a
m = Dloga b+m

Cost: negligible

• Try to factor c, assuming that c, treated as an
integer, is y-smooth and try to factor c as

c = p
α1
1 . . . pαss

factors, by using the brute force trial division.

Note that

Dloga c = α1Dloga p1 + . . .+ αsDloga ps

Cost: About y operations
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• If the previous step succeeds, output

Dloga b = α1Dloga p1 + . . .+ αsDloga ps −m,

otherwise repeat the first step.

Cost: About u
up
p repetitions, where up = log p

log y
(under the assumption that c is a random in-

teger up to p).

Total Cost: yu
up
p

Taking y = exp
(√

log p log log p
)

we get an algo-

rithm of complexity about

exp
(

2
√

log p log log p
)

. . . but it is too early to celebrate yet.
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Removing the Assumption

We apply the same algorithm for each pi as b.
Then at the 3rd step we get an equation

Dloga pi = α1,iDloga p1 + . . .+ αs,iDloga ps −mi

We cannot find Dlogpi immediately

. . . but after we have this relations for every pi we
have a system of s linear equations with s vari-
ables!!

Cost: About s3 ≤ y3 or even less — still subex-
ponential!!

This algorithm (due to Andrew Odlyzko, AT&T,
1967) has the overall subexponential complexity
about

exp
(
c
√

log p log log p
)

for some constant c.

Nowadays there is an algorithm, Number Field
Sieve, of complexity

exp
(
c(log p)1/3(log log p)2/3

)
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Comments

The above approach belongs to the generic class
of so-called index calculus algorithms.

However it does not work for elliptic curves:

• What are primes points?

• What are small points?

• What is the prime number factorizations?

Igor Semaev, Pierrick Gaudry, Claus Diem etc.,
2005–??: some attempts to address these ques-
tions (and some real achievements!!).

In fact even extension to general finite field is not
easy (and is not known in full generality).

For fields of small characteristic such as IF2n =
IF2[X]/f(X), where f ∈ IF2[X] is irreducible of de-
gree n, irreducible polynomials of small degree play
roles of small primes. Thus counting smooth poly-
nomials in finite fields becomes very important.
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“Text-book” ElGamal

Boneh, Joux and Nguyen, 2000:

ElGamal Scheme Primes p, q with q|p− 1

g ∈ IFp of order q.

Private Key: x ∈ ZZq

Public Key: X = gx

Encryption of a Message µ:

For a random r ∈ ZZq, compute R = µXr and Q =

gr, send C = (R,Q) = (µXr, gr)

Decryption:

Compute S = Qx = gxr = Xr and R/S = R/Xr = µ

Assume that µ is small

E.g. µ is a key for a private key cryptosystem (e.g.

p is 500 bits long, µ is 80 bits long).
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Attack

We have R = µU where U ∈ Gq, the subgroup of

IF∗p of order q.

Let 1 ≤ µ ≤M .

• Compute Rq = µqUq = µq;

• Choose some bound B and for m = 1, . . . , B

compute, sort and store mq;

• For k = 1, . . . ,M/B compute Rq/kq = (µ/k)q

and check whether they are in the table;

• Output µ = km if there is a match.
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The Algorithm works with:

• B = M for all messages (trivial; e.g., m = µ,

k = 1)

• B = M1/2+ε for a positive proportion of mes-

sages (nontrivial; it works because with a pos-

itive probability a random integer µ has a rep-

resentation µ = km with 1 ≤ k ≤ m ≤ µ1/2+ε).

Example: M = 280 (standard key size for a pri-

vate key cryptosystem). The attack runs in a little

more than 240 steps.
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Desmedt-Odlyzko Attack

RSA Signature Scheme:

N = RSA modulus

e = public exponent

d = private exponent; ed ≡ 1 (mod ϕ(N))

Message: m Signature: s ≡ md (mod N)

The pair (m, s) is sent

Verification: : m ≡ se (mod N)

Desmedt and Odlyzko, 1985:

Existential Forgery Attack: we are allowed to ask

for signatures on some “allowed” message (e.g.

padded in a prescribed way), and them we must

produce a signature on one more “allowed” mes-

sage.
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• Select a bound y and let p1, . . . , pk be the primes

up to y, i.e. k = π(y).

• Take k + 1 messages mi which are y-smooth

and factor them mi =
∏k
j=1 p

αi,j
j

• Solve in u1, . . . , uk ∈ {0, . . . , e− 1}

k∑
i=1

αi,jui ≡ αk+1 (mod e), j = 1, . . . , k,

and the write

k∑
i=1

αi,jui + γie = αk+1, j = 1, . . . , k.

Thus

mk+1 ≡ re
k∏
i=1

m
ui
i (mod N)

where

r =
k∏

j=1

p
γj
j .
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• Ask for the signatures si on mi for i = 1, . . . , k

and forge the signature on mk+1 as

s ≡ r
k∏
i=1

s
ui
i ≡ r

k∏
i=1

m
dui
i

It is a valid signature since:

se ≡ re
k∏
i=1

m
edui
i

≡ re
k∏
i=1

m
ui
i ≡ m

d
k+1 (mod N)

Coppersmith, Coron, Grieu, Halevi, Jutla, Nac-

cache and Stern, 2007:

Improvements, generalisations, concrete applica-

tions
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Generalised Diffie-Hellman Problem

DH Assumption: Given gx with some “hidden”

integer x, it is hard to compute gx
2
.

Recently, several cryptographic schemes have ap-

peared which base their security on the following

assumption:

Let g be an element g of prime order p of a “generic”

Abelian group G.

Generalised DH Assumption: Given n powers

gx, . . . gx
n

with some “hidden” integer x, it is hard

to compute gx
n+1

.

A “generic” attack (e.g. Shanks or Pollard algo-

rithms) take about p1/2 operations.
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Brown, Gallant, 2006:

and, in more detail, Cheon, 2006:

• Given gx and gx
d

for some d | p − 1, one can

find x in time about (p/d)1/2 + d1/2 (which is

O(p1/4) for d ∼ p1/2).

• Given gx, . . . , gx
d

for some d | p+1, one can find

x in time about (p/d)1/2 + d (which is O(p1/3)

for d ∼ p1/3).

Question: How often primes p are such that p±1

has a divisor d of a give size?

More specifically:

Question: How often primes p are such that p±1

has a divisor d ∈ [n1−ε, n] (which will guarantee the

maximal advantage if we are given gx, . . . , gx
n
).
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Ford, 2006:

For every ε > 0 this happens for a positive propor-

tion of primes p.

Moral: The conditions for this attack are satisfied

with a positive probability!! The new problem is

weaker than the traditional Diffie-Hellam problem.
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Fix-Padded RSA

N = n-bit RSA modulus.

“Text-book” RSA signature scheme:

Message m =⇒ Signature s ≡ md mod N

Verification: se ≡ m mod N — ???

Chosen Message Attack

Assume that the attacker wants to sign an impor-
tant message m and has an ability to ask a demo
version to decrypt some innocent messages.

The attacker:

• chooses a random m1 and computes m2 from
m1m2 ≡ m mod N (and gets to (meaningless)
messages m1 and m2).

• asks the demo version to sign si ≡ md
i mod N

• computes s ≡ s1s2 mod N
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This works because

s ≡ s1s2 ≡ md
1m

d
2 ≡ (m1m2)d ≡ md mod N

RSA is homogeneous:

A relation between messages implies a relation be-

tween signatures.

Defence:

Allow the signature/verfication algorithms to work

only for messages of special structure, e.g., ending

with some function of the message itself or say

with 100 binary digits of π:

m1 and m2 are not likely to be of this type =⇒
the attack fails.
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Fixed-pattern padding scheme:

fixed n− `-bit padding P | `-bit message m

m→ P +m = R(m), s(m) ≡ R(m)d mod N

Some existing standards still use this scheme.

Misarsky, 1997:

Girault and Misarsky, 1997:

Brier, Clavier, Coron and Naccache, 2001:

Existential forgery

that is, the attacker can sign some message.

Lenstra and Shparlinski, 2002:

Selective forgery

that is, the attacker can sign any message.
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Idea of the Forgery

Find four distinct `-bit messages m1, . . . ,m4 such

that

R(m1) ·R(m2) ≡ R(m3) ·R(m4) mod N.

Then

s(m1) · s(m2) ≡ s(m3) · s(m4) mod N.

=⇒ signature on m3 can be computed from

signatures on m1,m2,m4.

The above congruence is equivalent to

P (m3 +m4 −m1 −m2) ≡ m1m2 −m3m4 mod N.

With

x = m1−m3, y = m2−m3, z = m3+m4−m1−m2

this becomes

(P +m3)z ≡ xy mod N.

This congruence would be trivial to solve by

we need “small” x, y and z about ` bits long



59

Let ` = (1/3 + ε)n.

We start with the congruence

(P + s)z ≡ w mod N.

where |s| ≤ N1/3+ε is given and the variables w

and s satisfy where |z| ≤ N1/3 and w ≤ N2/3+2ε

Let Ri/Qi denote the i-th continued fraction con-

vergent to (P + s)/N . Then∣∣∣∣∣P + s

N
−
Ri
Qi

∣∣∣∣∣ ≤ 1

QiQi+1
.

Define j by Qj < N1/3 ≤ Qj+1.

Let w = |(P + s)Qj −NPj| and z = ±Qj

w = NQj

∣∣∣∣∣P + s

N
−
Rj

Qj

∣∣∣∣∣ ≤ N/Qj+1 < N2/3.

and

|z| < N1/3

For at least one choice of the sign ± we have

(P + s)z ≡ w mod N
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• Choose a “random” r with 0 ≤ r < 0.5Nε and

find

w ≡
(
P +m3 − r

⌊
N1/3

⌋)
z mod N

with w < N2/3 (i.e., use s = m3 − r
⌊
N1/3

⌋
)

• Put u = w + r
⌊
N1/3

⌋
z, thus

u ≡ (P +m3)z mod N

and u < N2/3+ε

• Try to use elliptic curve factorisation to fac-

tor u which runs in time exp
(
2
√

log p log log p
)

where p = P (u/P (u)) = P2(u) (but terminate

this steps if it takes too long).

• Try to find x, y with u = xy and x, y < N1/3+ε

• If successful, compute m1,m2,m4, otherwise

try another pair z, u
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Why does it work?

Eventually we hit a reasonably good u:

• u is of the form u = P (u)v where P (v) = P2(u)

is small .

• u has a divisor x ∈ [N1/3+ε/2, N1/3+ε]

Heuristic run-time: LN(1/3,1) which is substan-

tially faster than

LN(1/3, (128/27)1/3) ≈ LN(1/3,1.68),

where as usual

LN(α, γ) = exp((γ + o(1))(logN)α(log logN)1−α).

for M →∞.

Lenstra and Shparlinski, 2002:

Selective forgery for 1024 RSA modulus.
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Question: Find a way to use more signatures and

thus extend the range of ` which can be attacked

this way.

Note: The congruence

(P +m3)z ≡ xy mod N

as any other congruence

F (x, y, z) ≡ 0 mod N

with a “generic” polynomial F is not likely to have

a solution with

1 ≤ x, y, z ≤ Nα

for α < 1/3.

⇓

One needs a relation involving more signatures
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Large Subgroup Attack

Digital Signature Algorithm (DSA), uses two large

primes p and q with q | p− 1.

Suppose that p and q are selected for DSA using

the following standard method:

• Select a random m-bit prime q;

• Randomly generate k-bit integers n until a prime

p = 2nq + 1 is reached.

Menezes, 2007:

The Large subgroup attack on some cryptographic

protocols (e.g. HMQV) which contain DSA as

their part. These attacks lead to the following

Question: What is the probability η(k, `,m) that

n =
p− 1

2q

has a divisor s > q which is 2`-smooth?
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Banks and Shparlinski, 2007:

(heuristically, assuming that shifted primes p − 1

behave like “random” integers):

In the most interesting choice of parameters at

the present time is k = 863, ` = 80, and m = 160

(which produces a 1024-bit prime p), for which one

expects that the attack succeeds with probality

η(863,80,160) ≈ 0.09576 > 9.5%

over the choices of p and q.



65

Smooth Orders

Let l(n) be the order of 2 modulo n, gcd(2, n) = 1

(change 2 with your favourite integer a ≥ 2). That

is, l(n) is the smallest integer k with

2k ≡ 1 (mod n).

Question: Can we use g = 2 as the base for

Diffie-Hellman, ElGamal and other exponentiation

based cryptoschemes modulo n?

Yes, but only if l(n) is not smooth – mind Pohlig-

Hellman!

Question: Why would we want g = 2?

Boneh and Venkatesan, 1996:

Nice bit security properties

(and a little easier to compute).

Also remember Pollard’s p−1 factorisation method:

if p|n with l(n) smooth, n can be easily factored.
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Let

L(x, y) = #{p ≤ x | l(p) is y-smooth}.

and

N(x, y) = #{n ≤ x | l(n) is y-smooth}.

Pomerance and Shparlinski, 2002:

For exp
(√

logx log logx
)
≤ y ≤ x, we have

L(x, y)� uρ(u/2)π(x),

Banks, Friedlander, Pomerance and Shparlinski,

2003:

For exp
(√

logx log logx
)
≤ y ≤ x, we have

N(x, y) ≤ x exp(−(1/2 + o(1))u log logu)

Remark: Mind log logu rather than logu in the ex-

ponent. Recall that ρ(u) = exp(−(1+o(1))u logu).

How tight are they?

Probably quite tight (but 1/2 should be 1 in both

cases).
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Pratt Tree

Assume that somebody wants to “sell” a large

prime p, but the buyer requests a proof that p

is prime indeed.

Here is a way to do this.

Pratt, 1975:

• Ask the buyer to check that p is not a perfect

power (easy!!).

• Produce a primitive root g modulo p and ask

the buyer to check this. It is enough to verify

that

gp−1 6≡ 1 (mod p) and g(p−1)/q 6≡ 1 (mod p)

for all prime divisors q | p − 1, so the list of

these primes q also must be supplied.

• Give a proof that each q on the above list is

prime by iterating the above procedure.
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The algorithm runs in polynomial time and in par-

ticular shows that PRIMES ∈ NP (not so exciting

nowdays as we know that PRIMES ∈ P).

The whole algorithm can be viewed as a tree where

each node contains a prime (with p as a root), with

2 at each leave.

The number of multiplication required by this al-

gorithm is:

Pratt, 1975: O((log p)2). Bayless, 2007: At

least C log p for any C > 1 and almost all primes p.

This tree is called the Pratt Tree.

Question: What is the size of this tree, e.g. the

height, the number of nodes, the number of leaves,

etc.
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Banks, Shparlinski, 2007: The length L(p) of

the chain p 7→ P (p− 1) is at least

(1 + o(1))
log log p

log log log p

for almost all primes p.

Ford, Konyagin, Luca, 2008 (?): The height

H(p) of the Pratt Tree is at least

(log p)0.9622 � H(p)� log log p

for almost all primes p.

Ford, Konyagin, Luca, 2008 (?): Heuristically

H(p) = e log log p+O(log log log p)

for almost all primes.
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Strong Primes

A prime p is strong if p− 1 and p+ 1 have a large

prime divisor, and p− 1 has a prime divisor r such

that r − 1 has a large prime divisor.

If p is not strong then

1. either p− 1 or p+ 1 are y-smooth;

2. (extra condition) or p−1 is divisible by a r2 for

a prime r ≥ y;

3. or ϕ(p− 1) is y-smooth

For 1: Bounds on π(x, y)

For 2: ∑
r≥y

∑
p≤x,p≡1 mod r2

1 ≤
∑
r≥y

x

r2
= O(x/y)

For 3: Bounds on π(x, y)
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What to Read?

General Theory

A. Granville, ‘Smooth numbers: Computational
number theory and beyond’, Proc. MSRI Conf.
Algorithmic Number Theory: Lattices, Number
Fields, Curves, and Cryptography, Berkeley 2000 ,
Cambridge Univ. Press, (to appear).

A. Hildebrand and G. Tenenbaum, ‘Integers with-
out large prime factors’, J. de Théorie des Nom-
bres de Bordeaux , 5 (1993), 411–484.

G. Tenenbaum, Introduction to analytic and prob-
abilistic number theory , Cambridge Univ. Press,
1995.

Primality, Factorisation, Dlog

R. Crandall and C. Pomerance, Prime numbers: A
Computational perspective, Springer-Verlag, Berlin,
2005.

Other Cryptographic Applications

Original papers
. . . or these notes
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Postmortem

What Was This All About?

The goal was not to make you experts in analytic

number theory but rather:

1. give you a glimpse of a beautiful and diverse

world of integers;

2. give you a glimpse of a no less beautiful and

diverse world of cryptanalysis;

3. give you some feelings on what can and what

cannot be true;

4. give you some ideas of underlying methods and

ideas;
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5. show you that the intuition and heuristic guess-

ing should be based on knowledge, not on the

lack of it;

6. help you to be able to formulate your num-

ber theory questions, in a coherent form, using

standard terminology;

7. give you a literature guide, your questions may

have already been addressed in the literature

and either have been answered (or known to

be out of reach);

8. give you some names of the most distinguished

experts in the area who might be asked for

help.
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If you

• ask your question in a coherent form;

• give some evidences that you have checked

standard sources and did not find answers;

• ask a right person;

this may lead to a very interesting and useful col-

laboration and extend you network of co-drinkers
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Numbers and You

Numbers are your friends:

• be relaxed dealing with them

• do not worry about making mistakes, they will

excuse you, as friends always do;

• learn from your mistakes, you make the same

mistake twice and they may not be your friends

anymore. . .
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Tutorial Problems

General Comments

This problems are designed to show you different

aspects of the material which has been discussed.

Some of them are easy, some of them require more

efforts, some may potentially lead to more serious

research projects.

Sore are of experimental nature, some are more

theoretic, some are designed to teach you to de-

velop heuristic prediction skill and avoid standard

traps.

Some of them can be too difficult to answer, but

even thinking about possible way to tackle them.

Feel free to email for help, clarifications of further

problems anytime:

igor@ics.mq.edu.au .
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Arithmetic Structure of Integers

1. Given a prime p, give a heuristic guess on

the “probability” that n2 ≡ 1 (mod p).

2. Prove it!

3. Given a prime p, give a heuristic guess on

the “probability” that n2 ≡ −1 (mod p).

4. Prove it!

5. Given a real y, give a heuristic prediction for

the number of n ≤ x such that

• n2 ≡ 1 (mod p) for all primes p ≤ y,

• n2 ≡ 1 (mod p) for at least one prime p ≤ y.

6. Prove them for as large as possible values of

y compared to x.
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7. Given a real y, give a heuristic prediction for

the number of n ≤ x such that

• n2 ≡ −1 (mod p) for all primes p ≤ y,

• n2 ≡ −1 (mod p) for at least one prime p ≤
y.

8. Prove them for as large as possible values of

y compared to x.

9. Is this true that if gcd(a, q) > 1 then π(x; q, a) =

0?

10. We usually say that the “probability” that a

“random” integer n is prime is about 1/ logn.

What is the expect number of Mersenne num-

bers 2p − 1 with prime exponents p ≤ x, which

are prime?

11. What is the expect number of Fermat num-

bers 22n + 1 with integer exponents n ≤ x,

which are prime?
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Euler function

We say that m is a totient if there exists some

integer n with m = ϕ(n), where

ϕ(n) =
∏

pαp‖n
pαp−1(p− 1) = n

∏
p|n

(
1−

1

p

)

is the Euler function (pαp‖n = “exact divisibility”).

1. Find all odd totients.

2. Let F (x) be the number of totients m ≤ x,

show that x/2 + 1 ≥ F (x) ≥ (1 + o(1))x/ logx.

3. Prove that ϕ(n) ≥ n1/2 for n ≥ 2 and use

it to desine a brute force algorithm to check

whether a given m is a totient.

4. Search the internet, MathSciNet and/or num-

ber theory literature in order to find sharp and

fully explicit lower bounds on ϕ(n). Use them

to improve your algorithm.
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Let N(m) be the number of n with m = ϕ(n)

5. Try to find m with N(m) = 1

Hint: Do not spend too much time on this

. . .

6. Try to find m for which N(m) is large (the

larger the better).

7. Analyze the structure of m for which N(m)

is large. Try to predict what m are likely to

lead to large values of N(m) and verify your

guess by constructing such champions m.

8. By Turán-Kubilius, a “typical” integer n has

about log logn distinct prime factors. Explain

why it is reasonable to expect that “typically”

ϕ(n) has many more prime factors.

9. Estimate the probability ϑ(x, z) that for two

randomly chosen primes p, q ≤ x we have

gcd(p− 1, q − 1) ≥ z.
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Hint: Write

ϑ(x, z) =
1

π(x)2

∑
p,q≤x

gcd(p−1,q−1)≥z

1

=
1

π(x)2

∑
d≥z

∑
p,q≤x

gcd(p−1,q−1)=d

1

≤
1

π(x)2

∑
d≥z

∑
p,q≤x

p≡q≡1 (mod d)

1

=
1

π(x)2

∑
d≥z

π(x; d,1)2

Now choose some parameter Z and use the

Brun–Titchmarsh theorem for d ≤ Z and the

trivial estimate π(x; d,1) ≤ x/d for d > Z. Op-

timize Z.

Note that even taking Z = z (that is, using

the trivial estimate for all d) already gives a

nontrivial result).
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10. Use the results of the previous two problems

to give a motivated guess what should be the

number of distinct prime factors of ϕ(n) for a

“typical” integer n.

11. Verify your guess numerically, re-assess and

adjust it, if necessary. Verify the new guess

again.

12. Use inclusion-exclusion principle (expressed

in terms of the Möbius function) and try to

get an asymptotic formula for ϑ(x, z) (for the

values of z as large as possible).

13. Use inclusion-exclusion principle (expressed

in terms of the Möbius function) and try to

get an asymptotic formula for ϑ(x, z) (for the

values of z as large as possible).
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Hint:

(a) The condition gcd(a, b) = d can be expressed

as a = a0d, b = b0d where gcd(a0, b0) =

1. The last condition is equivalent to that

gcd(a0, b0) is not divisible by any prime p.

(b) The result can now be expresses via some

sums involving π(x; d,1) and the Möbius func-

tion (via the inclusion-exclusion principle).

(c) Use the Siegel–Walfisz theorem for d ≤ Z

and the Brun–Titchmarsh theorem for d >

Z where Z is a parameter to be optimised.

(d) Now try to improve the result by using the

Bombieri–Vinogradov theorem instead of the

Siegel–Walfisz theorem.

14. Check what the Extended Riemann Hypoth-

esis gives for the previous problem.
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Counting Smooth Numbers

1. Evaluate ψ(100,2). Give an exact formula

for ψ(100,2).

2. Evaluate ψ(100,10). Try different approaches

and discuss which one seems to be more effi-

cient. Now evaluate ψ(100,9), ψ(100,8), ψ(100,7).

3. Using your results and conclusions from the

previous problem, evaluate ψ(100,6).

4. Count the number of primes p ≤ x for which

p−1 is 2-smooth, and the the number of primes

p ≤ x for which p+1 is 2-smooth. Such primes

are named after two distinguished mathemati-

cians. What are these names?
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Duality of Divisors

1. We have claimed that in order to prove that

for 0 ≤ α < β ≤ 1 we have

x� H(x, xα, xβ, IN)� x

it is enough to consider 0 < α < β < 1/2.

Prove this!

2. Does our proof show that for any 0 ≤ α <

β ≤ 1 a positive proportion of integers n ≤ x,

there is a prime divisor p | n with xα ≤ p ≤ xβ?

3. Prove that if ∑
d|m

d =
∑
f |n

f

and ∑
d|m

1

d
=
∑
f |n

1

f

then m = n.
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Algorithms and Smooth Numbers

H. W. Lenstra’s elliptic curve factorisation algo-

rithm of completely factors an integer n in time

exp
(

2
√

log p log log p
)

(logn)O(1)

where p = P (n/P (n)).

1. Considering the products of the shape n =

qs where q ≤ Q and is prime and s ≤ S is prime,

obtain a lower bound on F (T ) integers n ≤ N

which can be factored in time T . Optimize Q

and S over all choices with QS ≈ N .

2. Work out the complexity of the Desmedt-

Odlyzko Attack when all messages satisfy m ≤
M (optimise the choice of y).

3. Design an algorithm to verify whether n is

perfect power (that is, n = mk for some inte-

gers m and k ≥ 2).



87

Number Theory Background

Notation

• A� B or B � A (I. M. Vinogradov)

m

A = O(B) (E. Landau)

� is more compact and easier to use and it

admits more informative chains like

A� B = C

while

A = O(B) = C

is nonsense.

We also recall that

A ∼ B ⇔ A� B � A
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• p (with or without a subscript) always denotes

a prime number

• ϕ(n) is the Euler function;

ϕ(n) = #{1 ≤ k < n | gcd(k, n) = 1} = #(ZZ/nZZ)∗

• π(x) is the number of primes p ≤ x

• logx is the natural logarithm

• When we write logx, log logx, etc. we always

assume that the argument is large enough
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Some Fasic Facts

• Prime Number Theorem

1. π(x) = lix+O

(
x

(logx)K

)
for any fixed K, where

lix =
∫ x

2

1

log t
d t

or

2.
∑
p≤x

log p = x+O

(
x

(logx)K

)

for any fixed K.

Warning: lix ∼ x/ logx but

π(x) =
x

logx
+O

(
x

(logx)K

)
is wrong!

Remark: The best know result is due to N. M. Ko-
robov and I. M. Vingogradov (and dates back
to 1953), correct by H.-E. Richert and im-
proved by K. Ford:

π(x) = lix+O

(
x exp

(
−0.2098

(logx)3/5

(log logx)1/5

))
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• π(x; q, a) = the number of primes p ≤ x with
p ≡ a (mod q) (only gcd(a, q) = 1 should be
considered).

• Siegel–Walfisz theorem

For every fixed A > 0, there is B > 0 such that
for all x ≥ 2 and all positive integers q ≤ logA x,

max
gcd(a,q)=1

∣∣∣∣∣π(x; q, a)−
lix

ϕ(q)

∣∣∣∣∣� x exp
(
−B

√
logx

)
.

• Brun–Titchmarsh theorem

For all x ≥ 2 and all positive integers q,

π(x; q, a)�
x

ϕ(q) log(x/q)

(it is expected to hold with just logx instead
of log(x/q)).

• Bombieri–Vinogradov theorem:

For every fixed A > 0, there is B > 0 such that∑
q≤x1/2(logx)−B

max
y≤x

max
gcd(a,q)=1

∣∣∣∣∣π(y; q, a)−
liy

ϕ(q)

∣∣∣∣∣
� x(logx)−A.
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• Euler function is “large”:

n ≥ ϕ(n)�
n

log logn

• Mertens Formulas

1.
∑
p≤x

1

p
= log logx+A+o(1), A = 0.2614 . . .

2.
∑
p≤x

log p

p
= logx+B+o(1), B = 1.3325 . . .

3.
∏
p≤x

(
1−

1

p

)
=
C + o(1)

logx
, C = eγ = 1.7810 . . .

where γ = 0.5772 . . . is the Euler-Mascheroni

constant.
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• For any complex number s with <s > 1 the

Riemann Zeta-function is given by

ζ(s) =
∞∑
n=1

1

ns

then it is analytically continued to all s ∈ C.

• Riemann Hypotheis: All zeros of ζ(s) with 0 ≤
<s ≤ 1 have <s = 1/2.

Warning There are other trivial zeros outside

of the critical strip 0 ≤ <s ≤ 1.

• ζ(1 + it)ζ(it) 6= 0 for every t ∈ IR

m

Prime Number Theorem

• The best known result is due to Korobov and

Vinogradov (independently, 1953)

• Generalised Riemann Hypotheis (GRH): the

same is true for a much wider class of simi-

lar functions called L-functions (and even more

general functions).
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• The Riemann Hypothesis implies that

π(x) = lix+O
(
x1/2 logx

)
.

• The GRH implies that

π(x; q, a) =
lix

ϕ(q)
+O

(
x1/2 logx

)
, gcd(q, a) = 1.

Remarks

– The Bombieri–Vinogradov theorem gives “on

average” over q a result comparable with

what the GRH implies.

– The Brun–Titchmarsh is stronger than the

GRH for, say q > x1/2.
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• Euler Product:

∏
p

(
1−

1

ps

)−1

=
∏
p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

)

=
∞∑
n=1

1

ns
= ζ(s).

• More generally, let S be any set of primes, and

let NS be the set of integers whose all prime

factors are from S:

∏
p∈S

(
1−

1

ps

)−1

=
∑
n∈NS

1

ns


