

Part A: Block Ciphers

1. Introduction

- DESAES
- Modes of operation & security proofs
- 2. Differential cryptanalysis
 - Basics
 - Design theories
- 3. Differential cryptanalysis in practice
- 4. Linear cryptanalysis, variations on differential cryptanalysis

Principles • Kerckhoffs' principle: Algorithm is public, except for 1 parameter: the key • Key generation, distribution, management: • Different problem

Goals of Cryptography

- Confidentiality
- Integrity
- Authentication
- Anonymity
- Non-repudiation (origin, delivery)
- Time stamping
- Key escrow

Symmetric cryptography

- Sender and receiver use the same key
 Or keys that can easily be derived from one another
- Sender and receiver are equivalent
- By far the oldest type of cryptography
- Best performance
- Highest security standards
- Only disadvantage: difficult key management

Practical cryptography Short key is used to encrypt long messages Perfect secrecy is not possible Complexity-theoretic security No satisfactory results thus far Practical security Resistance against cryptanalysis "Human ignorance" model

Academic attacks and real attacks Academic attack = primitive behaves suboptimal

Real attack: can be broken in practice

Example:

- 1. Encryption algorithm with 40-bit key
 - Best attack is to try out all 240 keys
 - Practical attack
- 2. Encryption algorithm with 256-bit key
 - Key can be recovered with a method that has a complexity equivalent to 2²⁰⁰ encryptions
 - Academic attack

Block ciphers and cryptographic hash function

Assumptions on the attacker

- Ciphertext-only attack
 Most modern encryption systems are resistant
- Known-plaintext attack
 - Known headers, formatting,
 - Can be statistical information
- Chosen-plaintext attack
 Surprisingly, often quite realistic
- Related-key attack

k ciphers and cryptographic bash function

Advanced substitution cipher						
 Permutation on <i>block</i> of characters 						
	AAAA	AAAB	AAAC		ZZZZ	
	QAQZ	WIJT	ENTO		MIHB	
 "code book" Even more keys If blocks large enough, then frequency analysis impossible (infeasible) 						
Block ciphers and cryptographic hash functions						

Block cipher

- Avoid transport & storage of huge table
- Introduce computation rule to compute table elements:
 T[X] = f(X,key)
- Design 'good' rule f:
 Secure
 Efficient

Block cipher formally

- Family of permutations
- Every value of the key selects one permutation
- Block length n: $2^{n}! \approx 2^{(n-1)2^{n}}$ permutations • Key length k: 2^{k} selectable permutations
- Library of code books

Shannon's view on block cipher security

- Short key
 - Conditional security
- Key determined by equations
- Derived from message X, ciphertext Y, algorithm B
- Should be difficult to solve
- Without Key, impossible (infeasible) to
 - Decrypt (encrypt)

Block ciphers and cryptographic hash function

Derive statistical information about the message

Shannon's principles

- 1. Confusion: equations in the key should be
 - Complicated (non-linear)
 - Involve many variables
- 2. Diffusion: redundancy in message should be dissipated over large structures in ciphertext

Design principles

Shannon: product ciphers

 $B = T \circ M \circ S$

- M: mixing transformation (known)
- S, T: simple substitution ciphers (keyed)
- Iterative ciphers:
 - $\mathsf{B}=\mathsf{S}_{\mathsf{1}}\circ\mathsf{M}\circ\mathsf{S}_{\mathsf{2}}\circ\mathsf{M}\circ\mathsf{S}_{\mathsf{3}}\circ\ldots\circ\mathsf{M}\circ\mathsf{S}_{\mathsf{r}}$
 - Round transformation, round: (S_i \circ M)
 - Often: $S_i = S \circ AddKey$

AddKey: key addition

- Injection of key material
 - Addition of key to intermediate variable
 - Use of key-dependent transformations
- Key schedule
- Input: cipher key
- Output: round keys

What is nonlinearity?

- Distance to linear functions
 - = how difficult to approximate by a linear function
 - \neq nonlinear degree
- Example:
 - f(a,b,c,d) = abcd

Block ciphers and cryptographic hash function

Block ciphers and cryptographic hash f

- abcd ≈ 0
- Nonlinearity(f) = d(f,0) = 1/16
- g(a,b,c,d) = ab + cd
 Nonlinearity(g) = 6/16

Importance of nonlinearity

- Linear cryptanalysis
- Linear approximations of the cipher

graphic bash functio

- Differential cryptanalysis
- Non-uniformity of first order derivative

Mixing

- Boolean equations in a small number of variables are always easy to solve
- Mixing needs to ensure strong dependencies between sub-systems
- Easiest to measure for linear transformations (usually)

Practical constraints

- Hardware/software
- Key agility
- Typically
 - Small substitution elements
 - Mixing by means of interconnection

Block ciphers and cryptographic hash func

Inverse bit shuffle

Block ciphers and cryptographic hash function

S-box design criteria

- Surrounded with mystery ("No need to know")
- Apparently, largest S-box that would make DES fit on a single chip (in 1974)
- S-box input bits
 - 2 row selection bits, 4 column selection bits
 2 middle bits, 2 times 2 end bits
- Every row is a permutation

ock ciphers and cryptographic hash function

- End bits are shared between neighbouring S-boxes

S-box design criteria

- 1. No output bit is close to a linear function of the input
- 2. Flip one input \rightarrow at least two output bits flip
- 3. Flip two middle bits \rightarrow at least two output bits flip
- 4. Flip the first two input bits, but not the last two \rightarrow at least one output bit flips
- 5. ...
- 6. ...

Bit permutation P criteria

- 1. For every S-box, two outputs go to middle input bits, and two outputs go to end bits
- 2. Outputs of every S-box affect 6 S-boxes
- 3. If output of one S-box affects middle of another S-box, then not vice versa

Rise of the DES

- Design criteria classified
 - Design rationale remained unclear until 1990
- Modifications by NSA
- Trapdoors?Short key length
- Exhaustive key search
- World-wide adoption: the only commercial standard
- Also used for data authentication mechanisms

Evaluation criteria

- Security
- Efficiency
- Intellectual Property issues
- Flexibility
- Elegance, ability to prove absence of trapdoors, ...

Design trade-off

- Luke O' Connor (IBM): "Most ciphers are secure after sufficiently many rounds"
- James L. Massey (ETH Zuerich)::
 "Most ciphers are too slow after sufficiently many rounds"

Science or Engineering?

- Practical security can be achieved easily if we don't worry about performance
- It is not sufficient to prove that a secure block cipher existsWe have to construct it
- Design challenge:
 security AND performance
 provability

Block ciphers and cryptographic bash function

Rijndael

- Based on the dissertations of Joan Daemen (1995) and Vincent Rijmen (1997)
- Not a Feistel cipher (finally!)
- Influenced by experience with chip card based practical systems

Rijndael: Iterated Block Cipher

- 10/12/14 times applying the same round transformation
- Uniform round transformation
- Composed of 4 steps, each its own purpose:
 - SubBytes: non-linearity
 - ShiftRows: inter-column diffusion
 - MixColumns: inter-byte diffusion within columns
 - AddRoundKey

Message Authentication Code (MAC)

- Cryptographic check sum
- Allows to detect malicious modifications to messages
- Sender and receiver use the same key
- Not a digital signature

Authenticated encryption modes

- Combine encryption and authentication
- Less errors
 - Order of encryption and authentication
- Different keys or the same

Faster

- One pass over the data
- Not true for unpatented schemes
- Security proofs

ock ciphers and cryptographic bash function

Security proofs

- `But that's not security,' said Alice, `security means something else.'
- `Security means what I choose it to mean,' said the queen.

Alice in Wonderland

Security proofs for modes

- Concrete
 - For one or more given block ciphers
- Standard model

ock ciphers and cryptographic hash fur

- Block cipher is a Pseudo-Random Permutation (PRP)
- Random Oracle Model Ideal cipher model

Pseudo-Random Permutation (PRP)

Function indistinguishable from random permutation

- There are 2ⁿ! permutations from n bits to n bits
- Denote by R the set of all n-bit permutations
- Random permutation: randomly selected element of R

Further definition:

 Oracle: black box: for each input, it gives the output of the function it implements

Distinguishing

- Game: for $r \in R$, $f \in F$ When given two oracles, one for r, one for f Say which is which
- Average probability of success 0.5 = Advantage

Advantage depends on

- Number of oracle accesses (queries)
- Computational power (usually: not limited)
- Size n

Indistinguishable • We look at what happens when n grows • Advantage = f(q,n) • A primitive is called *indistinguishable from random* if • f decreases as an exponential function of n • Even if q grows as a polynomial function of n

- Block cipher as Pseudo-Random Permutation
- Block cipher is family of permutations
 One for each key
- We know constructions to build block ciphers that are PRPs
 - Luby-Rackoff

Block ciphers and cryptographic bash function

 Security proofs for applications: if the block cipher is a PRP, then ...

PRP

- A PRP can have:
 - Weak keys
 - Equivalent keys
- Output the key upon receipt of a special plaintext
- Because the model considers only the 'average case' (On average, pedestrians walk in the middle of the road)
- A PRP can further have
 - Weaknesses only apparent if you consider more keys (related keys)
- Because the model doesn't consider this

Ideal Cipher Model

- The attacker is not allowed to look at the block cipher
- Should help to concentrate on the security of the mode

Argument pro

- Allows to prove security where the standard model doesn't
 Block cipher based hash function
 - Anything where key input is not random

Argument contra

• 'prove security' means here: define security as the property that you can prove

Use of security proofs

- Definitely, don't use a mode of operation proven insecure
- Is it better to have a proof of security than to have no proof?

 \bullet Yes, if everything else is equal

- We don't know how to build block ciphers that can be proven to be PRP, are efficient and use a short key
- There is no idea how to measure whether a block cipher is close to ideal

Provable security

- If a secure tweakable block cipher exists, then also a secure block cipher exists (obviously)
- If a secure block cipher exists, then also constructions for secure tweakable block ciphers exist
- Tweakable block ciphers simplify (proofs of) modes
 OCB is close to ECB with tweakable block cipher

Block ciphers and cryptographic hash functions

Conclusion

- Practical block ciphers, DES, AES
- Shannon's ideas on practical designs
- Modes of operation
- (Security) proofs

s and cryptographic bash function