Part A: Block Ciphers

1. Introduction
 - DES
 - AES
 - Modes of operation & security proofs

2. Differential cryptanalysis
 - Basics
 - Design theories

3. Differential cryptanalysis in practice

4. Linear cryptanalysis, variations on differential cryptanalysis

The setting

Using cryptography

Principles
- Kerckhoffs’ principle:
 Algorithm is public, except for 1 parameter: the key
- Key generation, distribution, management:
 - Different problem

Goals of Cryptography
- Confidentiality
- Integrity
- Authentication
- Anonymity
- Non-repudiation (origin, delivery)
- Time stamping
- Key escrow
Symmetric cryptography
- Sender and receiver use the same key
 - Or keys that can easily be derived from one another
- Sender and receiver are equivalent
- By far the oldest type of cryptography
- Best performance
- Highest security standards
- Only disadvantage: difficult key management

Practical cryptography
- Short key is used to encrypt long messages
- Perfect secrecy is not possible
- Complexity-theoretic security
 - No satisfactory results thus far
- Practical security
 - Resistance against cryptanalysis
 - "Human ignorance" model

Academic attacks and real attacks
- Academic attack = primitive behaves suboptimal
- Real attack: can be broken in practice

- Example:
 1. Encryption algorithm with 40-bit key
 - Best attack is to try out all 2^{40} keys
 - Practical attack
 2. Encryption algorithm with 256-bit key
 - Key can be recovered with a method that has a complexity equivalent to 2^{200} encryptions
 - Academic attack

Assumptions on the attacker
- Ciphertext-only attack
 - Most modern encryption systems are resistant
- Known-plaintext attack
 - Known headers, formatting, …
 - Can be statistical information
- Chosen-plaintext attack
 - Surprisingly, often quite realistic
- Related-key attack

Simple substitution cipher
- Permutation of the alphabet

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>...</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>W</td>
<td>E</td>
<td>...</td>
<td>M</td>
</tr>
</tbody>
</table>
- $26!$ possibilities (keys)
- Frequency-analysis

Advanced substitution cipher
- Permutation on block of characters

<table>
<thead>
<tr>
<th>AAAA</th>
<th>AAAB</th>
<th>AAAC</th>
<th>...</th>
<th>ZZZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAQZ</td>
<td>WIJT</td>
<td>ENTO</td>
<td>...</td>
<td>MIHB</td>
</tr>
</tbody>
</table>
- "code book"
- Even more keys
- If blocks large enough, then frequency analysis impossible (infeasible)
Block cipher

- Avoid transport & storage of huge table
- Introduce computation rule to compute table elements:
 \[T[X] = f(X, \text{key}) \]
- Design 'good' rule \(f \):
 - Secure
 - Efficient

Block cipher formally

- Family of permutations
- Every value of the key selects one permutation
- Block length \(n \): \(2^n \approx 2^{(n-1)}2^n \) permutations
- Key length \(k \): \(2^k \) selectable permutations
- Library of code books

Shannon's view on block cipher security

- Short key
 - Conditional security
- Key determined by equations
 - Derived from message \(X \), ciphertext \(Y \), algorithm \(B \)
 - Should be difficult to solve
- Without key, impossible (infeasible) to
 - Decrypt (encrypt)
 - Derive statistical information about the message

Shannon's principles

1. Confusion: equations in the key should be
 - Complicated (non-linear)
 - Involve many variables
2. Diffusion: redundancy in message should be dissipated over large structures in ciphertext

Design principles

- Shannon: product ciphers
 \[B = T \circ M \circ S \]
 - \(M \): mixing transformation (known)
 - \(S, T \): simple substitution ciphers (keyed)
- Iterative ciphers:
 \[B = S_1 \circ M \circ S_2 \circ M \circ S_3 \circ \ldots \circ M \circ S_r \]
 - Round transformation, round: \((S_i \circ M) \)
 - Often: \(S_i = S \circ \text{AddKey} \)

AddKey: key addition

- Injection of key material
 - Addition of key to intermediate variable
 - Use of key-dependent transformations
- Key schedule
 - Input: cipher key
 - Output: round keys
Iterative cipher

What is nonlinearity?

- Distance to linear functions
 - \mathcal{D} = how difficult to approximate by a linear function
 - \neq nonlinear degree

- Example:
 - $f(a,b,c,d) = abcd$
 - $abcd \approx 0$
 - Nonlinearity(f) = $d(f,0) = 1/16$
 - $g(a,b,c,d) = ab + cd$
 - Nonlinearity(g) = $6/16$

Importance of nonlinearity

- Linear cryptanalysis
- Linear approximations of the cipher
- Differential cryptanalysis
- Non-uniformity of first order derivative

Mixing

- Boolean equations in a small number of variables are always easy to solve
- Mixing needs to ensure strong dependencies between sub-systems
- Easiest to measure for linear transformations (usually)

Practical constraints

- Hardware/software
- Key agility

- Typically
 - Small substitution elements
 - Mixing by means of interconnection
Feistel ciphers and SP-networks

- Round transformation is an involution
- Encryption and decryption only differ in the order of the round keys
 - Saves hardware area/code size

Feistel encryption

\[
\begin{align*}
L &\xrightarrow{F} R \\
R &\xrightarrow{K_1} L+F(R,K_1) \\
F &\xrightarrow{K_2} L+F(R,K_1) \\
\end{align*}
\]

Feistel decryption

\[
\begin{align*}
R &\xrightarrow{F} L+F(R,K_1) \\
L &\xrightarrow{K_1} R+F(L+F(R,K_1), K_2) \\
F &\xrightarrow{K_2} R+F(L+F(R,K_1), K_2) \\
\end{align*}
\]

Block cipher research

- Majority of designs uses Feistel structure or uniform structure
- Designs concentrate on selection of nonlinear elements
 - Small elements to reduce cost
 - Connection

Data Encryption Standard (1977)

- 1970: need for a commercial-grade encryption standard
- 1973-1977: Development of a block cipher DES
 - IBM together with NBS
- Encrypts blocks of 64 bits
- Effective key length of 56 bits
- Structure:
 - Initial bit shuffle
 - 16 iterations of a round transformation (Feistel)
 - Inverse bit shuffle
The DES round function

S-box 1

S-box design criteria
- Surrounded with mystery (“No need to know”)
- Apparently, largest S-box that would make DES fit on a single chip (in 1974)
- S-box input bits
 - 2 row selection bits, 4 column selection bits
 - 2 middle bits, 2 times 2 end bits
- Every row is a permutation
- End bits are shared between neighbouring S-boxes

Bit permutation P criteria
1. For every S-box, two outputs go to middle input bits, and two outputs go to end bits
2. Outputs of every S-box affect 6 S-boxes
3. If output of one S-box affects middle of another S-box, then not vice versa

Rise of the DES
- Design criteria classified
 - Design rationale remained unclear until 1990
- Modifications by NSA
 - Trapdoors?
- Short key length
 - Exhaustive key search
- World-wide adoption: the only commercial standard
- Also used for data authentication mechanisms
Fall of the DES

- Designed for 1970 technology
- No use of nifty processor features
- 1991, 1993: academic attacks + design of a DES cracker machine
- 1998: exhaustive key search performed in practice (EFF)
- Temporary solution: 3-DES

Multiple encryption

- DES is not a group:
 - In general, we can’t find a $k_3 = f(k_1, k_2)$ such that $E_{k_2}(E_{k_1}(x)) = E_{k_3}(x)$
- Hence, multiple encryption is not equivalent to single encryption
 - Can be used to increase the key space
 - Double encryption is not sufficient

Block ciphers and cryptographic hash functions

3-DES: triple encryption

- E-E-E or E-D-E
 - E-D-E easier for backwards compatibility
 - Triple key or double key: $E_{k_1}(E_{k_2}(E_{k_1}(x)))$
 - Triple key offers more practical security
 - Slow
- Alternative: XDES (‘triple-key DES’)
 - $y = k_3 + E_{k_2}(k_1 + x)$

Advanced Encryption Standard

- 1997: public call for submission
- Encrypt blocks of 128 bits
- Key of lengths 128, 192, 256
- To be available royalty-free
- August 1998: first AES conference

Public evaluation

- Only public comments taken into account
- Decisions by NIST, motivated by public reports
- Most analysis done by the public
- NSA had the right to veto NIST’s decision
Evaluation criteria

- Security
- Efficiency
- Intellectual Property issues
- Flexibility
- Elegance, ability to prove absence of trapdoors, ...

Design trade-off

- Luke O’Connor (IBM):
 “Most ciphers are secure after sufficiently many rounds”

- James L. Massey (ETH Zuerich):
 “Most ciphers are too slow after sufficiently many rounds”

Science or Engineering?

- Practical security can be achieved easily if we don’t worry about performance

- It is not sufficient to prove that a secure block cipher exists
 - We have to construct it

- Design challenge:
 - security AND performance
 - provability

Rijndael

- Based on the dissertations of Joan Daemen (1995) and Vincent Rijmen (1997)

- Not a Feistel cipher (finally!)

- Influenced by experience with chip card based practical systems

Rijndael: Iterated Block Cipher

- 10/12/14 times applying the same round transformation
- Uniform round transformation
- Composed of 4 steps, each its own purpose:
 - SubBytes: non-linearity
 - ShiftRows: inter-column diffusion
 - MixColumns: inter-byte diffusion within columns
 - AddRoundKey

Round step 1: SubBytes

- Bytes are transformed by invertible S-box.
- One S-box (lookup table) for complete cipher:
 - High non-linearity: multiplicative inverse in GF(2^8)
 - Complex algebraic expression: additional linear transformation
Round step 3: MixColumns

- Columns transformed by matrix over GF(2^8)
- High intra-column diffusion:
 - based on theory of error-correcting (MDS) codes

Round step 2: ShiftRows

- Rows are shifted over 4 different offsets
- High diffusion over multiple rounds:
 - Interaction with MixColumns
 - Bits flip in minimum 25 active S-boxes per 4 rounds

Round step 4: Key addition

- Makes round function key-dependent
- Round keys derived in a simple way from the master key

Modes of operation

- How to encrypt data that is not exactly one block?
 - Integer number of blocks
 - Fractions of blocks
- Using block ciphers for other goals than encryption
 - MACing
 - Hashing
- Consequence of popularity of the DES

Electronic Code Book
Problem of ECB

Properties

- Patterns are hidden
- Even repeated encryption of the same message not detectable (by changing IV)
- Last ciphertext block depends on all plaintext blocks
- Not true for decryption direction: each plaintext block depends on only two ciphertext blocks
- Favourite encryption mode (definitely in the past)

Birthday attack

- Encrypt $2^{nd/2}$ blocks under the same key
- With high probability:
 $\exists i, j$ such that $C_i = C_j$
 $C_{i+1} \oplus P_i = C_{j+1} \oplus P_j$
 $P_i \oplus P_j = C_{i+1} \oplus C_{j+1}$
- Information on plaintext revealed
- Encrypting slightly more blocks leads to many more collisions
- Main reason why AES has block length 128

Counter Mode

Properties

- Counter should start at values sufficiently far away from one another
 - Never same inputs to block cipher
- Parallel
 - Pipelining
 - Random access (hard disks)
- Block cipher is used to build a stream cipher
Message Authentication Code (MAC)

- Cryptographic check sum
- Allows to detect malicious modifications to messages
- Sender and receiver use the same key
 - Not a digital signature

Authenticated encryption modes

- Combine encryption and authentication
- Less errors
 - Order of encryption and authentication
 - Different keys or the same
- Faster
 - One pass over the data
 - Not true for unpatented schemes
- Security proofs

Security proofs for modes

- Concrete
 - For one or more given block ciphers
- Standard model
 - Block cipher is a Pseudo-Random Permutation (PRP)
- Random Oracle Model – Ideal cipher model

CBC-MAC (Simple MAC, S-MAC)

- Block ciphers and cryptographic hash functions

Authenticated encryption modes

- Combine encryption and authentication
- Less errors
- Faster
- Security proofs

Security proofs

- ‘But that’s not security,’ said Alice, ‘security means something else.’
- ‘Security means what I choose it to mean,’ said the queen.

Alice in Wonderland

Pseudo-Random Permutation (PRP)

- Function indistinguishable from random permutation
- There are 2^n permutations from n bits to n bits
- Denote by R the set of all n-bit permutations
- Random permutation: randomly selected element of R

Further definition:
- Oracle: black box: for each input, it gives the output of the function it implements
Distinguishing

Game: for \(r \in \mathbb{R}, f \in \mathbb{F} \)

When given two oracles, one for \(r \), one for \(f \)

Say which is which

- Average probability of success – 0.5 = Advantage
- Advantage depends on
 - Number of oracle accesses (queries)
 - Computational power (usually: not limited)
 - Size \(n \)

Indistinguishable

- We look at what happens when \(n \) grows
- Advantage = \(f(q,n) \)
- A primitive is called *indistinguishable from random* if
 - \(f \) decreases as an exponential function of \(n \)
 - Even if \(q \) grows as a polynomial function of \(n \)

Block cipher as Pseudo-Random Permutation

- Block cipher is family of permutations
 - One for each key
- We know constructions to build block ciphers that are PRPs
 - Luby-Rackoff
- Security proofs for applications: if the block cipher is a PRP, then ...

Luby-Rackoff construction

If \(f_1, f_2, f_3, f_4 \) are pseudo-random functions, then this is a PRP

Note that we can't really build this in practice

PRP

- A PRP can have:
 - Weak keys
 - Equivalent keys
 - Output the key upon receipt of a special plaintext

Because the model considers only the ‘average case’

(On average, pedestrians walk in the middle of the road)

- A PRP can further have
 - Weaknesses only apparent if you consider more keys (related keys)

Because the model doesn’t consider this

Ideal Cipher Model

- The attacker is not allowed to look at the block cipher
- Should help to concentrate on the security of the mode

Argument pro

- Allows to prove security where the standard model doesn’t
 - Block cipher based hash function
 - Anything where key input is not random

Argument contra

- ‘.prove security’ means here: define security as the property that you can prove
Use of security proofs

- Definitely, don’t use a mode of operation proven insecure
- Is it better to have a proof of security than to have no proof?
 - Yes, if everything else is equal
- We don’t know how to build block ciphers that can be proven to be PRP, are efficient and use a short key
- There is no idea how to measure whether a block cipher is close to ideal

Secure mode of operation

- Submit q queries of length n, $2n$, $3n$, ...
- Try to distinguish
 - Mode M with block cipher replaced by ideal cipher
 - Large ideal cipher (with variable block length)
- Advantage = $f(q,n)$
 - f decreases as an exponential function of n
 - Even if q grows as a polynomial function of n

ECB is insecure

- Submit (P,P)
- Oracle answers (C_1, C_2)
- For ECB: $C_1 = C_2$ always
- For ideal cipher with block length $2n$:
 - $C_1 \neq C_2$ with probability $1 - 2^{-n}$

CBC is secure

- But need to use a new, unpredictable IV every time
- Otherwise, submit P_1 and (P_1, P_2)
- What about the birthday attack?
 - q grows exponentially
 - Not allowed

CBC-MAC is secure

- But only if all messages have the same length!
- Let $T_1 = \text{MAC}(X_1)$, $T_2 = \text{MAC}(T_1)$
- Then $\text{MAC}(X_1, 0) = T_2$
- (Can be fixed easily)

Offset Code Book (OCB)
OCB start and stop

- **Whitening values** Z_i
 - γ_i: gray code counter
 - $Z_i = \gamma_i \times E[0] + E[\text{Nonce} + E[0]]$

- **Final values (tags)**
 - $C_{n+1} = E[\text{Length}(P) \times x^i \times Z_{n+1}] + \text{Length}(P)$
 - $C_{n+2} = E[\sum_i P_i + Z_{n+1}]$

- **Provably secure against**
 - Distinguishing attacks
 - Forgery attacks

Tweakable block cipher

- **Idea**: introduce additional variability: the tweak parameter
- **Known to the attacker**

\[
\begin{align*}
P & \to B \to C \\
K \to B & \to B# \\
T \to C
\end{align*}
\]

Provable security

- If a secure tweakable block cipher exists, then also a secure block cipher exists (obviously)
- If a secure block cipher exists, then also constructions for secure tweakable block ciphers exist

- **Tweakable block ciphers simplify (proofs of) modes**
 - OCB is close to ECB with tweakable block cipher

Conclusion

- **Practical block ciphers**, DES, AES
- **Shannon’s ideas on practical designs**
- **Modes of operation**
- **(Security) proofs**