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Differential cryptanalysis

Biham and Shamir, 1991

Chosen plaintext attack
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Goal: Determine the secret key

Exploits mapping properties of differences within DES

Difference propagation

Notation: 
Pair of values X, X*

Difference X’ = X* - X  = X* + X

Linear map L, by definition:
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p , y
L(X*) + L(X) = L(X* + X) = L(X’)

Addition with constant (key)
(X* + K) + (X + K) = X* + X = X’

Nonlinear map S
If X* == X then S(X*) - S(X) = 0
Else S(X*) - S(X) = ?

The DES “F” function: notation
C B E
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The set of possible inputs to an Sbox

The set of possible inputs for given input- and output 
differences for Sbox j:
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IN(Bj’,Cj’) = { Bj : Sj(Bj) + Sj(Bj + Bj’) = Cj’}

Important observation: Not every input difference can 
produce every output difference
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The set of possible inputs to an Sbox
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Example: 
IN(110100,0100) = {010011,100111}

IN(Bj’,Cj’) = { Bj : Sj(Bj) + Sj(Bj + Bj’) = Cj’}

The key XOR

B’ = B + B* = (E + K) + (E* + K) = E + E* = E’

The input difference of the Sboxes of a round does not 
depend on the round key

Block ciphers and cryptographic hash functions 8

p y

Important observation: Ej + Kj ∈ IN(Ej’, Cj’)

The set of all keys that are possible

The set of possible input values

IN(Bj’,Cj’) = { Bj : Sj(Bj) + Sj(Bj + Bj’) = Cj’}

The set of possible keys:
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The set of possible keys:

Testj(Ej, Ej
*, Cj’) = { Ej + Bj : Bj ∈ IN(Ej’, Cj’)}

Kj = Bj + Ej

Given E, E* and C’, we can narrow down the key space

Attack on 3 rounds of DES

L0 R0

L1 R1

f
E and E* of the last round are known!

f K1
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L2 R2

f

L3 R3

f
The important question is: What is C´?

f

f

K2

K3

Attack on 3 rounds of DES

L0 R0

L1 R1

f K1
R3 = L0 + f(R0,K1) + f(R2,K3)

The differences can be expressed 
as follows, if R’

0= 0:
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L2 R2

f

L3 R3

f

K2

K3

R3’ = L0‘ + f(R2,K3) + f(R2
*,K3)

The set of possible values for K3
can be determined:

testj (Ej, Ej
*, Cj’)

C’’

Attack on 3 rounds of DES

Last round key can be determined by using several pairs of 
plaintexts with R’

0 =0: 
Key is in intersection of the sets of possible values
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y p

Then we know 48 bits of the 56-bit key

Remaining 8 key bits: try out all possibilities



3

Attack on 6 rounds of DES

C’ cannot be calculated as easily 
as before

Hence, a probabilistic approach is 

L0 R0

L1 R1

K1

L2 R2

f K2

K
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pursued
L3 R3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

What is C´?

Attack on 6 rounds of DES

Definition of a characteristic:

L’
0, R’

0

L’
1, R’

1, p1

L0 R0

L1 R1

K1

L2 R2

K2

K
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L’
2, R’

2, p2

…
L’

n, R’
n, pn

pi is the probability that L’
i-1, R’

i-1 is 
mapped to L’

i, R’
i

L3 R3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

Probability in differential cryptanalysis

Frequentist definition: probability denotes the relative 
frequency of occurrence of a certain outcome of an 
experiment, when repeating the experiment.

Experiment: encrypt 1 pair of plaintexts under 1 key
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Repeating: different plaintexts and/or different key

Standard description of the differential attack assumes: 
different plaintexts, same key
Most theory assumes: different key
Implicit ergodicity assumption

Attack on 6 rounds of DES
L0 R0

L1 R1

K1

L2 R2

K2

K

1-round characteristic:

L’
0 = anything R’

0 = 00000000
L’

1 = 00000000 R’
1 = L’

0

p1 = 1
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L3 R3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

p1

Attack on 6 rounds of DES

3-round characteristic:

L’
0 = 40080000 R’

0 = 04000000
L’

1 = 04000000 R’
1 = 00000000

L’
2 = 00000000 R’

2 = 04000000

L0 R0

L1 R1

K1

L2 R2

K2

K
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L’
3 = 04000000 R’

3 = 40080000

p1 = 0.25
p2 = 1
p3 = 0.25

L3 R3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

Attack on 6 rounds of DES
L0 R0

L1 R1

K1

L2 R2

K2

K

With probability 1/16:
L’

3 = 04000000 R’
3 = 40080000 

In that case:
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L‘3 R‘3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

Input and Output difference 
for S3,S5,S6,S7 and S8 = 0
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Attack on 6 rounds of DES
L0 R0

L1 R1

K1

L2 R2

K2

K

R6’ = C’ + L5’

R6’ = C’ + L3’ + f(K4,R3) + F(K4, R3*)
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L‘3 R‘3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

We can compute C’ for the 5 S-boxes 
where R3’ = 0

R‘4

L‘5
The keys J3,J5,J6,J7 and J8 can be 
determined!

Wrong pairs

15 out of 16 times, the pair doesn’t follow the characteristic
10 out of these 15 times we get at least one empty testi
We can filter this pair
5/15 of the wrong pairs can’t be filtered ⇒ random key 
suggestions = noise

Block ciphers and cryptographic hash functions 20

gg

Keys in test set are suggested keys
After some time the right key should be among the most 
suggested values

Signal-to-noise ratio

Let α = average number of keys in test set
β = fraction of unfiltered wrong pairs
2k = number of keys

S/N = p/(αβ / 2k) = 2k p/(αβ)
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S/N = p/(αβ / 2 ) = 2 p/(αβ)

We need at least 2/p pairs to discover the right key
Make k as large as possible (memory constraints)

Summary of the attack

It is necessary to determine the 
output differences of the 
Sboxes in the last round

L0 R0

L1 R1

K1

L2 R2

K2

K
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A “good” characteristic needs to 
be found in order to get there L3 R3

K3

L4 R4

K4

L5 R5

K5

L6 R6

K6

Security against differential attacks

Make prediction of differences difficult
Ensure that there are no high-probability characteristics

Compute bounds for existing ciphers
Design ciphers with low bounds on the probability 
Design ciphers with easily computable bounds
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g p y p

Computing bounds for DES

Done by determining the best characteristics
A* algorithm: branch and prune, depth-first
Determine iteratively the best characteristic over 1, 2, 3, … 
rounds
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Prune: if cost of current path over t rounds + cost of best 
path over (R-t)-rounds ≥ cost of currently best path over R 
rounds, then abandon the current path 
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A* algorithm

1st round 2nd round Rth round
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Results for DES

The best characteristics 
over 8 rounds or more, are 
iterative characteristics
Two values for A possible
With 3 active S-boxes

A 00000000
f
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Probability = 1/234 for 
every two rounds 

00000000 A

A 00000000

f

Differential strengthening of DES

The S-box design criteria (+ expansion) ensure that 
iterative characteristics have at least 3 active S-boxes
Any re-ordering of the S-boxes would increase the 
probability of the best characteristic
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DES designers knew about differential cryptanalysis

On the other hand, it is possible to find S-boxes that 
behave better in this respect

Technical problems

Computing the probability
1. Characteristics and differentials
2. Independence of rounds
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Predicting a difference

A’

B’

P1 = Pr(A’ → B’)
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C’

D’

Pr(A’ → D’) = p1p2p3   ???

P2 = Pr(B’ → C’)

P3 = Pr(C’ → D’)

Characteristics and differentials

A’

B’

Pr(A’ → D’) = 

Pr(A’ → B’ → C’ → D’)

+ Pr(A’ → B1’ → C1’ → D’)
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C’

D’

+ …

=ΣB’ΣC’ Pr(A’ → B’ → C’ → D’)

(A’,D’): differential 

(A’,B’,C’,D’): characteristic (trail, path)
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Characteristic and differential probabilities

Pr(A’,D’) ≥ Pr(A’,B’,C’,D’)

Computing Pr(A’,D’) is more difficult than computing 
Pr(A’,B’,C’,D’) 
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In a ‘weak’ cipher, usually one characteristic dominates the 
probability: Pr(A’,D’) ≈ Pr(A’,B’,C’,D’)

In many ‘strong’ ciphers: open problem

Computing Pr(A’ → B’ → C’ → D’)

Pr(A’ → B’) × Pr(B’ → C’) × Pr(C’ → D’) ??

Actually: 
Pr(A’ → B’) × Pr(B’ → C’ | A’) × Pr(C’ → D’ | A’ B’)
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Pr(A → B ) × Pr(B → C  | A ) × Pr(C → D  | A , B )

Theory of Markov ciphers [Lai,Massey,Murphy]

Markov cipher

Definition: cipher such that over one round:
Pr(A’ → B’)  = Pr(A’ → B’ | X) 

With X: input value
Obviously, Pr here is computed over different keys
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Definition of EDP:
EDP(A’→B’→C’→D’) = Pr(A’→B’) × Pr(B’→C’) × Pr(C’→D’) 

Fundamental Theorem: EDP(A’→B’→C’→D’)  equals 
‘probability’ if all rounds use independent keys. 

Hypothesis of stochastic equivalence

EDP ≈ E[Pr(A’→B’→C’→D’)]
Given 1 pair with input difference A’, the probability that it has 
differences B’, C’, and D’

Related quantity: DP[k] 
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Given q pairs with input difference A’, the fraction that will 
have differences, B’, C’, D’
Probability computed with fixed key

Hypothesis [Lai,Massey,Murphy]:
For almost all keys k:

DP[k](A’→B’→C’→D’) ≈ EDP(A’→B’→C’→D’) 

Problems with the hypothesis of S.E.

1. Computing EDP of a differential remains a problem

2. The hypothesis doesn’t hold
Example: DES:
Probability of the best characteristic: 2 rounds  EDP = 1/234
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y
For 13 rounds (used in attack), EDP = 2-47

2 rounds DP[k] = 1/146 or 1/585
For 13 rounds, this gives 2-43 ≤ DP[k] ≤ 2-55

Hypothesis of S.E. can’t hold

DP[k](A’→B’→C’→D’) is always a multiple of (No. of pairs)-1

EDP can become much smaller: 
(N f i ) 1 (N f k ) 1
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(No. of pairs)-1 × (No. of keys)-1

For modern ciphers, EDP < (No. of pairs)-1

Impact on DP[k] ???

Nevertheless, we continue with EDP
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Provable security (Knudsen/Nyberg)

Developed for Feistel ciphers
Prove upper bounds on the EDP of a differential through 
the cipher

Theorem:
If for 2 rounds EDP(A’,D’) ≤ p
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( , ) ≤ p
Then for 4 or more rounds EDP(A’,D’) ≤ 2p2

Extension: ≤ p2 if f-function is bijective
Examples: Misty, KASUMI

Problem: doesn’t improve after 4 rounds

Decorrelation theory (Vaudenay)

Borrows techniques from universal hash function design

Example: F(X,K) = K1× X + K2
F(X, K) + F(X+A’,K) = (K1× X + K2) + (K1× (X+A’) + K2)
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F(X, K)  F(X A ,K)  (K1× X  K2)  (K1× (X A )  K2)
= A’ × K1

DP[k](A’ → B’) = 1 if B’ = A’ × K1

= 0 otherwise
EDP(A’ → B’) = (No. of keys)-1

Very good bound on EDP

Attack

Example: F(X,K) = K1× X + K2

Consider X, X+A’, X+B’, X+A’+B’
F(X, K) + F(X+A’, K) + F(X+B’, K) + F(X+A’+B’,K) = 

A’ × K1 + A’ × K1 = 0
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Characteristic with EDP 1!

Demonstrates problem of this notion of provable security

Wide trail design strategy

Compute bounds for 1 S-box:
d = maxA’ ≠ 0, B’ Pr(A’ → B’) 
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Compute bound on number of active S-boxes
z = minimum number of active S-boxes

Together:  EDP ≤ dz

Bound valid for characteristics, not differentials

Iterative cipher

round

round S S S S S S S SS
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K
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.....

round

round

Mixing transformation

Single-Round Optimization

Mixing transformation

S S S S S S S SS

A’

B’

EDP(A’,B’)
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Relevant: 
Number of active components in A
Worst-case difference propagation probability in S-box

Provides a bound of 1 active S-box per round
Small d ⇒ Low bound requires large S-boxes 
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Two-Round Optimization

Mi i t f ti
S S S S S S S SS

A’

B’
Mixing transformation

S S S S S S S SS
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Relevant: number of active components in (A’,B’)
Diffusion criterion for mixing transformation y = m(x)

Branch number B: minimum number of active comp. in (A’,B’)

B depends only on the mixing transformation

Mixing transformation

C’

Designing the Mixing Transformation

B ≤ b f t f X l 1

Mixing transformation

X

Y
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B ≤ number of components of X plus 1
(x,y) with y = m(x) can be seen as an error-correcting code

B corresponds with the minimum distance of this code

Maximum B: take a Maximum Distance Separable (MDS) 
code

X Y

Shark

Block length of 64 bits = 8 bytes
8-bit S-box
MDS code over GF(256), length 16, dimension 8

Optimal 2-round mixing
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Optimal 2 round mixing
Sub-optimal performance

Four-Round Optimization (1)

Mixing 
S S S S S S S SS

Mixing Mixing 

B’

A’

Compose linear part of local mixing transformation and 
diffusion optimal component permutation
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B

C’

D’

Mixing 
S S S S S S S SS

Mixing Mixing 

Mixing 
S S S S S S S SS

Mixing Mixing 

Mixing 
S S S S S S S SS

Mixing Mixing 

Four-Round Optimization (2)

B’

A’

Mixing 
S SS

S SS

Mixing Mixing Mixing 

Mixing 
S SS

S SS
Mixing 

S SS

S SS
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Reorder transformations ⇒ Super-boxes
Apply two-round theorem recursively: B2 active S-boxes

C’

D’

Mixing 
S SS

S SS
Mixing 

S SS

S SS
Mixing 

S SS

S SS

Square

Block length of 128 bits = 16 bytes = 4 × 4
8-bit S-box
MDS code over GF(256), length 8, dimension 4
Diffusion optimal permutation: transpose
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4-round mixing: 25 active S-boxes per 4 rounds
S-box: EDP ≤ 2–6

EDP of 4-round characteristic ≤ 2–150
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Rijndael

Preliminary AES call asked for variable block length
Needed rectangular input arrays
Replace transpose by row shift

Increase number of rounds (improved cryptanalysis)
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PR
More complicated key schedule
Use ObjectOriented names for different components

Remark

MDS codes require byte-level approach

Similar approach, but on bit level, by Tavares et al. [1998]
Diffusion on bit level 

Also within the S-boxes (Avalanche criteria)
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Also within the S boxes (Avalanche criteria)

Conclusions

Differential cryptanalysis
Basic method
Several theories to secure designs
Simple AES structure allows for easier computation of bounds
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