Differential Cryptanalysis

Vincent Rijmen

Differential cryptanalysis

- Biham and Shamir, 1991
- Chosen plaintext attack
- Goal: Determine the secret key
- Exploits mapping properties of differences within DES

The DES "F" function: notation

The set of possible inputs to an Sbox

- The set of possible inputs for given input- and output differences for Sbox j:

$$
\mathrm{IN}\left(\mathrm{~B}_{\mathrm{j}}^{\prime}, \mathrm{C}_{\mathrm{j}}^{\prime}\right)=\left\{\mathrm{B}_{\mathrm{j}}: \mathrm{S}_{\mathrm{j}}\left(\mathrm{~B}_{\mathrm{j}}\right)+\mathrm{S}_{\mathrm{j}}\left(\mathrm{~B}_{\mathrm{j}}+\mathrm{B}_{\mathrm{j}}^{\prime}\right)=\mathrm{C}_{\mathrm{j}}^{\prime}\right\}
$$

- Important observation: Not every input difference can produce every output difference

The set of possible inputs to an Sbox

$$
\mathrm{B}^{\prime}=\mathrm{B}+\mathrm{B}^{*}=(\mathrm{E}+\mathrm{K})+\left(\mathrm{E}^{*}+\mathrm{K}\right)=\mathrm{E}+\mathrm{E}^{*}=\mathrm{E}^{\prime}
$$

- The input difference of the Sboxes of a round does not depend on the round key
- Important observation: $\mathrm{E}_{\mathrm{j}}+\mathrm{K}_{\mathrm{j}} \in \operatorname{IN}\left(\mathrm{E}_{\mathrm{j}}{ }^{\prime}, \mathrm{C}_{\mathrm{j}}{ }^{\prime}\right)$
$\operatorname{IN}(110100,0100)=\{010011,100111\}$

$$
\operatorname{IN}\left(\mathrm{B}_{\mathrm{j}}^{\prime}, \mathrm{C}_{\mathrm{j}}^{\prime}\right)=\left\{\mathrm{B}_{\mathrm{j}}: \mathrm{S}_{\mathrm{j}}\left(\mathrm{~B}_{\mathrm{j}}\right)+\mathrm{S}_{\mathrm{j}}\left(\mathrm{~B}_{\mathrm{j}}+\mathrm{B}_{\mathrm{j}}^{\prime}\right)=\mathrm{C}_{\mathrm{j}}^{\prime}\right\}
$$

The set of all keys that are possible

- The set of possible input values

$$
\operatorname{IN}\left(B_{j}^{\prime}, C_{j}^{\prime}\right)=\left\{B_{j}: S_{j}\left(B_{j}\right)+S_{j}\left(B_{j}+B_{j}^{\prime}\right)=C_{j}^{\prime}\right\}
$$

- The set of possible keys:

$$
\begin{gathered}
\operatorname{Test}_{\mathrm{j}}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}^{*}, \mathrm{C}_{\mathrm{j}}^{\prime}\right)=\left\{\mathrm{E}_{\mathrm{j}}+\mathrm{B}_{\mathrm{j}}: \mathrm{B}_{\mathrm{j}} \in \operatorname{IN}\left(\mathrm{E}_{\mathrm{j}}^{\prime}, \mathrm{C}_{\mathrm{j}}^{\prime}\right)\right\} \\
\mathrm{K}_{\mathrm{j}}=\mathrm{B}_{\mathrm{j}}+\mathrm{E}_{\mathrm{j}}
\end{gathered}
$$

- Given E, E* and C', we can narrow down the key space
Attack on 3 rounds of DES
The differences can be expressed
as follows, if $\mathrm{R}_{0}^{\prime}=0$:
$\mathrm{R}_{3}=\mathrm{L}_{0}+\mathrm{f}\left(\mathrm{R}_{0}, \mathrm{~K}_{1}\right)+\mathrm{f}\left(\mathrm{R}_{2}, \mathrm{~K}_{3}\right)$
The set of possible values for K_{3}
can be determined:
test $\mathrm{L}_{6}{ }^{\prime}+\mathrm{f}\left(\mathrm{R}_{2}, \mathrm{~K}_{3}\right)+\mathrm{f}_{\mathrm{j}}\left(\mathrm{R}_{2}{ }^{*}, \mathrm{~K}_{3}\right)$

Attack on 3 rounds of DES

- Last round key can be determined by using several pairs of plaintexts with $\mathrm{R}_{0}^{\prime}=0$:
- Key is in intersection of the sets of possible values
- Then we know 48 bits of the 56-bit key
- Remaining 8 key bits: try out all possibilities

Probability in differential cryptanalysis

- Frequentist definition: probability denotes the relative frequency of occurrence of a certain outcome of an experiment, when repeating the experiment.
- Experiment: encrypt 1 pair of plaintexts under 1 key
- Repeating: different plaintexts and/or different key
- Standard description of the differential attack assumes: different plaintexts, same key
- Most theory assumes: different key
- Implicit ergodicity assumption

Attack on 6 rounds of DES

-3-round characteristic:

$L_{0}^{\prime}=40080000$	$R_{0}^{\prime}=04000000$
$L_{1}^{\prime}=04000000$	$R_{1}^{\prime}=00000000$
$L_{2}^{\prime}=00000000$	$R_{2}^{\prime}=04000000$
$L_{3}^{\prime}=04000000$	$R_{3}^{\prime}=40080000$
$p_{1}=0.25$	
$p_{2}=1$	
$p_{3}=0.25$	

Attack on 6 rounds of DES

Wrong pairs

- 15 out of 16 times, the pair doesn't follow the characteristic
- 10 out of these 15 times we get at least one empty test
- We can filter this pair
- $5 / 15$ of the wrong pairs can't be filtered \Rightarrow random key suggestions $=$ noise
- Keys in test set are suggested keys
- After some time the right key should be among the most suggested values

Signal-to-noise ratio

- Let $\alpha=$ average number of keys in test set
- $\beta=$ fraction of unfiltered wrong pairs

Security against differential attacks

- Make prediction of differences difficult
- Ensure that there are no high-probability characteristics
- Compute bounds for existing ciphers
- Design ciphers with low bounds on the probability
- Design ciphers with easily computable bounds

Computing bounds for DES

- Done by determining the best characteristics
- A* algorithm: branch and prune, depth-first
- Determine iteratively the best characteristic over $1,2,3, \ldots$ rounds
- Prune: if cost of current path over t rounds + cost of best path over (R-t)-rounds \geq cost of currently best path over R rounds, then abandon the current path

Results for DES

- The best characteristics over 8 rounds or more, are iterative characteristics
- Two values for A possible
- With 3 active S-boxes
- Probability = $1 / 234$ for every two rounds

Differential strengthening of DES

- The S-box design criteria (+ expansion) ensure that iterative characteristics have at least 3 active S-boxes
- Any re-ordering of the S-boxes would increase the probability of the best characteristic
- DES designers knew about differential cryptanalysis
- On the other hand, it is possible to find S-boxes that behave better in this respect

Technical problems

Computing the probability

1. Characteristics and differentials
2. Independence of rounds

Characteristics and differentials

A^{\prime}

$$
\begin{aligned}
& \operatorname{Pr}\left(A^{\prime} \rightarrow \mathrm{D}^{\prime}\right)= \\
& \operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right) \\
& +\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}_{1}^{\prime} \rightarrow \mathrm{C}_{1}^{\prime} \rightarrow \mathrm{D}^{\prime}\right) \\
& +\ldots \\
& =\Sigma_{B^{\prime}} \Sigma_{C^{\prime}} \operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)
\end{aligned}
$$

(A^{\prime}, D^{\prime}): differential
($\left.\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}\right)$: characteristic (trail, path)

Characteristic and differential probabilities

- $\operatorname{Pr}\left(A^{\prime}, D^{\prime}\right) \geq \operatorname{Pr}\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right)$
- Computing $\operatorname{Pr}\left(A^{\prime}, D^{\prime}\right)$ is more difficult than computing $\operatorname{Pr}\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right)$
- In a 'weak' cipher, usually one characteristic dominates the probability: $\operatorname{Pr}\left(A^{\prime}, D^{\prime}\right) \approx \operatorname{Pr}\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right)$
- In many ‘strong' ciphers: open problem

Markov cipher

- Definition: cipher such that over one round:

$$
\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}\right)=\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \mid \mathrm{X}\right)
$$

Hypothesis of stochastic equivalence

- $\mathrm{EDP} \approx \mathrm{E}\left[\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)\right]$
- Given 1 pair with input difference A^{\prime}, the probability that it has differences $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, and D^{\prime}
- With X: input value
- Obviously, Pr here is computed over different keys
- Definition of EDP:
$\operatorname{EDP}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)=\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}\right) \times \operatorname{Pr}\left(\mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime}\right) \times \operatorname{Pr}\left(\mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)$
- Fundamental Theorem: $\operatorname{EDP}\left(A^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)$ equals 'probability' if all rounds use independent keys.

Computing $\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)$
$\cdot \operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}\right) \times \operatorname{Pr}\left(\mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime}\right) \times \operatorname{Pr}\left(\mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)$??

- Actually:

$$
\operatorname{Pr}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}\right) \times \operatorname{Pr}\left(\mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \mid \mathrm{A}^{\prime}\right) \times \operatorname{Pr}\left(\mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime} \mid \mathrm{A}^{\prime}, \mathrm{B}^{\prime}\right)
$$

- Theory of Markov ciphers [Lai,Massey,Murphy]

Related quantity: DP[k]

- Given q pairs with input difference A', the fraction that will have differences, $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$
- Probability computed with fixed key
- Hypothesis [Lai,Massey,Murphy]:

For almost all keys k :

$$
\mathrm{DP}[\mathrm{k}]\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right) \approx \mathrm{EDP}\left(\mathrm{~A}^{\prime} \rightarrow \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{D}^{\prime}\right)
$$

Hypothesis of S.E. can't hold

- DP $[k]\left(A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow D^{\prime}\right)$ is always a multiple of (No. of pairs) ${ }^{-1}$
- EDP can become much smaller:
$(\text { No. of pairs })^{-1} \times(\text { No. of keys })^{-1}$
- For modern ciphers, EDP < (No. of pairs $)^{-1}$
- Impact on DP[k] ???
- Nevertheless, we continue with EDP

Provable security (Knudsen/Nyberg)

- Developed for Feistel ciphers
- Prove upper bounds on the EDP of a differential through the cipher
Theorem:
If for 2 rounds $\operatorname{EDP}\left(\mathrm{A}^{\prime}, \mathrm{D}^{\prime}\right) \leq \mathrm{p}$
Then for 4 or more rounds $\operatorname{EDP}\left(A^{\prime}, D^{\prime}\right) \leq 2 p^{2}$
- Extension: $\leq \mathrm{p}^{2}$ if f -function is bijective
- Examples: Misty, KASUMI
- Problem: doesn't improve after 4 rounds

Decorrelation theory (Vaudenay)

- Borrows techniques from universal hash function design
- Example: $\mathrm{F}(\mathrm{X}, \mathrm{K})=\mathrm{K}_{1} \times \mathrm{X}+\mathrm{K}_{2}$
- $\mathrm{F}(\mathrm{X}, \mathrm{K})+\mathrm{F}\left(\mathrm{X}+\mathrm{A}^{\prime}, \mathrm{K}\right)=\left(\mathrm{K}_{1} \times \mathrm{X}+\mathrm{K}_{2}\right)+\left(\mathrm{K}_{1} \times\left(\mathrm{X}+\mathrm{A}^{\prime}\right)+\mathrm{K}_{2}\right)$

$$
=\mathrm{A}^{\prime} \times \mathrm{K}_{1}
$$

- $\operatorname{DP}[k]\left(A^{\prime} \rightarrow B^{\prime}\right)=1$ if $B^{\prime}=A^{\prime} \times K_{1}$

$$
=0 \text { otherwise }
$$

- $\operatorname{EDP}\left(A^{\prime} \rightarrow B^{\prime}\right)=(\text { No. of keys })^{-1}$
- Very good bound on EDP

Block ciphers and cryptographic hash functions

Attack

- Example: $\mathrm{F}(\mathrm{X}, \mathrm{K})=\mathrm{K}_{1} \times \mathrm{X}+\mathrm{K}_{2}$
- Consider $\mathrm{X}, \mathrm{X}+\mathrm{A}^{\prime}, \mathrm{X}+\mathrm{B}^{\prime}, \mathrm{X}+\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
$F(X, K)+F\left(X+A^{\prime}, K\right)+F\left(X+B^{\prime}, K\right)+F\left(X+A^{\prime}+B^{\prime}, K\right)=$

$$
A^{\prime} \times K_{1}+A^{\prime} \times K_{1}=0
$$

- Characteristic with EDP 1!
- Demonstrates problem of this notion of provable security

Wide trail design strategy

- Compute bounds for 1 S-box:

$$
d=\max _{A^{\prime} \neq 0, B^{\prime}} \operatorname{Pr}\left(A^{\prime} \rightarrow B^{\prime}\right)
$$

- Compute bound on number of active S-boxes

$$
z=\text { minimum number of active S-boxes }
$$

- Together: EDP $\leq d^{z}$
- Bound valid for characteristics, not differentials

Single-Round Optimization

Relevant:

- Number of active components in A
- Worst-case difference propagation probability in S-box

Provides a bound of 1 active S-box per round
$>$ Small d \Rightarrow Low bound requires large S-boxes

Two-Round Optimization

- Relevant: number of active components in (A^{\prime}, B^{\prime})
- Diffusion criterion for mixing transformation $y=m(x)$
- Branch number \mathfrak{B} : minimum number of active comp. in (A^{\prime}, B^{\prime})
- \mathscr{B} depends only on the mixing transformation

Shark

- Block length of 64 bits $=8$ bytes
-8-bit S-box
- MDS code over GF(256), length 16, dimension 8
- Optimal 2-round mixing
- Sub-optimal performance

Four-Round Optimization (2)

- Reorder transformations \Rightarrow Super-boxes
- Apply two-round theorem recursively: \mathscr{B}^{2} active S-boxes

Designing the Mixing Transformation

- $\mathcal{B} \leq$ number of components of X plus 1
- (x, y) with $y=m(x)$ can be seen as an error-correcting code
- \mathscr{B} corresponds with the minimum distance of this code
- Maximum \mathfrak{B} : take a Maximum Distance Separable (MDS) code

Square

- Block length of 128 bits $=16$ bytes $=4 \times 4$
- 8-bit S-box
- MDS code over GF(256), length 8, dimension 4
- Diffusion optimal permutation: transpose
-4-round mixing: 25 active S-boxes per 4 rounds
- S-box: EDP $\leq 2^{-6}$
- EDP of 4-round characteristic $\leq 2^{-150}$

Rijndael

- Preliminary AES call asked for variable block length
- Needed rectangular input arrays
- Replace transpose by row shift
- Increase number of rounds (improved cryptanalysis)
- Also within the S-boxes (Avalanche criteria)
- PR
- More complicated key schedule
- Use ObjectOriented names for different components

Remark

- MDS codes require byte-level approach
- Similar approach, but on bit level, by Tavares et al. [1998]
- Diffusion on bit level

Conclusions

- Differential cryptanalysis
- Basic method
- Several theories to secure designs
- Simple AES structure allows for easier computation of bounds

