Linear Cryptanalysis

History

- Matsui
- Originally developed to analyse the block cipher FEAL
- Formalized and applied to DES in 1993
- Known plaintext attack
- Breaks DES with 2^{43} known plaintexts
- First attack on DES that was really implemented
- Apparently not known to the DES designers

Linear approximations and bias

Other notations

- Boolean function $\mathrm{f}(\mathrm{x})$
- Linear function $\mathrm{U}(\mathrm{x})$ (approximation)
x is a bit vector (column)
- Bias $\varepsilon=\operatorname{Prob}(f(x)=U(x))-1 / 2$
$-U(x)=u^{\top} x$ where u is a column vector
- $-1 / 2 \leq \varepsilon \leq 1 / 2$
- x can also be mapped to element of GF(2^{n})
- U(x) = Trace($u x$ x) where $u \in G F\left(2^{n}\right)$
- Bias = 0 indicates bad approximation
- Interesting notation if the cipher is defined over $\operatorname{GF}\left(2^{n}\right)$
- Bias $=1 / 2$ indicates good approximation
- $-1 / 2$ is equally useful

Linear approximations of S-boxes

Approximations of linear functions

- Vector notation: y = A x
- Vector Boolean function (S-box) S(x)
- Linear functions $\mathrm{U}(\mathrm{x})$ en $\mathrm{V}(\mathrm{S}(\mathrm{x})$)
- Bias $\varepsilon=\operatorname{Pr}(\mathrm{V}(\mathrm{S}(\mathrm{x}))=\mathrm{U}(\mathrm{x}))-1 / 2$
- DES designers made sure that the S-box outputs are not close to linear (i.e. have small ε)
- But they forgot about linear combinations of the S-box holds with probability 1 outputs
- This fact was noticed almost immediately
- But it was not known how to exploit it
$\operatorname{Pr}\left(v^{\top} y=u^{\top} x\right)=?$
- $v^{\top} y=v^{\top}(A x)=\left(A^{\top} v\right)^{\top} x$
- $\Rightarrow v^{\top} y=u^{\top} x$ if and only if $A^{\top} v=u$

A linear function has exactly one approximation which

- All other approximations hold with probability 1/2

Finding good approximations

- For linear maps: deterministic relation
- For S-boxes: try all possibilities
- Walsh-Hadamard transform
- For (several rounds of) a block cipher: approximate

For (several rounds of) a block cipher:
individual components and combine

Example: 1-Round DES

- S-box 5: $x_{1}=y_{1}+y_{2}+y_{3}+y_{4}$ with prob. $12 / 64$
- f: $x_{16}=y_{3}+y_{8}+y_{14}+y_{25}$ with prob. 12/64
- 1 round: $\mathrm{x}_{48}=\mathrm{x}_{3}+\mathrm{y}_{3}+\mathrm{x}_{8}+\mathrm{y}_{8}+\mathrm{x}_{14}+\mathrm{y}_{14}+\mathrm{x}_{25}+\mathrm{y}_{25}$ with prob. 12/64

Example: 3-Round DES

$\mathrm{P}_{3}+\mathrm{P}_{8}+\mathrm{P}_{14}+\mathrm{P}_{25}+\mathrm{P}_{48}+\mathrm{K}_{1}$ $=X_{35}+X_{40}+X_{46}+X_{57}$
$X_{35}+X_{40}+X_{46}+X_{57}$
$=Y_{3}+Y_{8}+Y_{14}+Y_{25}$
$Y_{3}+Y_{8}+Y_{14}+Y_{25}+K_{2}$ $=\mathrm{C}_{3}+\mathrm{C}_{8}+\mathrm{C}_{14}+\mathrm{C}_{25}+\mathrm{C}_{48}$ $\mathrm{P}_{3}+\mathrm{P}_{8}+\mathrm{P}_{14}+\mathrm{P}_{25}+\mathrm{P}_{48}+\mathrm{K}_{1}+\mathrm{K}_{2}=\mathrm{C}_{3}+\mathrm{C}_{8}+\mathrm{C}_{14}+\mathrm{C}_{25}+\mathrm{C}_{48}$ With probability?

Piling-up Lemma

- Let X, Y, Z be independent stochastic binary variables - $\operatorname{Pr}(\mathrm{X}=\mathrm{Y})=\mathrm{p}_{1}$
- $\operatorname{Pr}(X=1+Y)=1-p_{1}$
- $\operatorname{Pr}(Y=Z)=p_{2}$
- Then $\operatorname{Pr}(X=Z)=p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)$

Proof:

- $\operatorname{Pr}(X=Y$ and $Y=Z)=p_{1} p_{2}$
- $\operatorname{Pr}(X=Y$ and $Y=1+Z)=p_{1}\left(1-p_{2}\right)$
- $\operatorname{Pr}(X=1+Y$ and $Y=Z)=\left(1-p_{1}\right) p_{2}$
- $\operatorname{Pr}(X=1+Y$ and $Y=1+Z)=\left(1-p_{1}\right)\left(1-p_{2}\right)$

Block ciphers and cryptographic hash functions

With biases

- $\operatorname{Pr}(X=Z)=p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)$
- Replace p_{1} by $\varepsilon_{1}+1 / 2, p_{2}$ by $\varepsilon_{2}+1 / 2$

$$
=2 \operatorname{Pr}(f(x)=g(x))-1
$$

- $\operatorname{Pr}(\mathrm{X}=\mathrm{Z})=1 / 2+2 \varepsilon_{1} \varepsilon_{2}$
- For t independent variables:

$$
\varepsilon_{1 \ldots t}=2^{t-1} \Pi_{i} \varepsilon_{\mathrm{i}}
$$

Correlation

- Correlation between two Boolean functions $f(x), g(x)$

$$
C(f, g)=\operatorname{Pr}(f(x)=g(x))-\operatorname{Pr}(f(x) \neq g(x))
$$

- Correlation $=2 \times$ bias
- Correlation theorem:

$$
\mathrm{C}\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right)=\mathrm{C}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \times \mathrm{C}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)
$$

- More elegant and more standard (outside cryptography)

Using approximations: Algorithm 1

- We have a relation

$$
P[i]+C[j]=K[k] \text { with prob. } p
$$

- With
- P[i]: sum of some plaintext bits
- C[j]: sum of some ciphertext bits
- K[k]: sum of some key bits
- Collect N plaintext-ciphertext pairs
- Count how many times $K[k]=0,1$ is suggested
- For $N>(p-1 / 2)^{-2}$, with high probability the correct value equals the most often suggested value

Finding good approximations

- We need approximations with high bias
- Surprisingly similar to the problem of finding good characteristics in differential cryptanalysis
- Linear characteristics
- Linear probability $=(2 p-1)^{2}$

Algorithm 2

- Guess round key bits of last round
- Apply Algorithm 1 on first r-1 rounds
- Relation between plaintext, key and guess-decrypted ciphertext
- Observation: Algorithm 1 will be successful only if the guessed key bits are correct
- We can obtain many more bits
- Need to approximate one round less
- Extension: guess also first round key

Further concepts of linear cryptanalysis

- Differential \rightarrow Linear hull
- $\operatorname{ELP}(\mathrm{a}, \mathrm{b})=\Sigma_{\mathrm{Q}} \operatorname{ELP}(\mathrm{Q})=\Sigma_{\mathrm{Q}} \Pi_{\mathrm{i}} \operatorname{ELP}$ (round i)
- For "iterative cipher with key addition":

$$
L P[k](Q)=E L P(Q)
$$

- Hypothesis of S.E. holds for linear characteristics
- (Assuming independent round keys)
- LP[k](a,b) remains a problem

Comparison

Linear cryptanalysis

- Known plaintexts
- Statistics on large set of texts
- Needs more texts
- Less texts (exception: DES)

Differential cryptanalysis

- Chosen plaintexts
- 1 Pair of texts (repeated)

Variations on Differential Cryptanalysis

Vincent Rijmen

Attacks are remarkably similar in most points

Overview

- Impossible differentials
- Attack on Feistel ciphers
- Saturation attack

Impossible differentials

- Differential with probability 0 means that there are no right pairs
- If we think we see a right pair, then we made a wrong assumption
If f is injective function,
Then $E D P_{f}\left(B^{\prime} \rightarrow 0\right)>0 \Leftrightarrow B^{\prime}=0$
But if $B^{\prime}=0$
Then $\operatorname{EDP}_{\mathrm{f}}\left(\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}\right)>0 \Leftrightarrow \mathrm{~A}^{\prime}=0$
Hence, if $A^{\prime} \neq 0$, then the 5 -round differential has probability 0

Data complexity

- One attempt will detect a wrong key with probability 2^{-n}
- Encrypt the $2^{\text {n/2 }}$ texts with right half constant
$-2^{n / 2}\left(2^{n / 2}-1\right) / 2 \approx 2^{n-1}$ pairs
- This will suffice to detect 50% of the wrong keys
- Repeat z times to eliminate all wrong keys
- $z=$ round key length

Computational complexity

- We need to try out each round key at least once:
- (Academic) attack only if round key is shorter than master key
- Typically OK with Feistel ciphers
- Observation:
- ($A^{\prime}, 0$) after $5^{\text {th }}$ round can only happen if ($\mathrm{X}^{\prime}, \mathrm{A}^{\prime}$) after $6^{\text {th }}$ round
- Only for these pairs we need to try out the keys

Saturation attack

- First `Square attack' [Daemen, Rijmen \& Knudsen '98]

Saturation attack basics

- Focus on AES
- Later: SASAS, integral cryptanalysis, saturation
- Λ-set: set of 256 states a_{t} (4×4 byte arrays) such that for all indices i,j:
- Chosen plaintext attack
$\bullet \mathrm{a}_{\mathrm{t}}[\mathrm{i}, \mathrm{j}]=\mathrm{c} \forall \mathrm{t} \quad$ (passive, constant), or
- Texts chosen in larger groups
- $\mathrm{a}_{\mathrm{t}}[\mathrm{i}, \mathrm{j}] \neq \mathrm{a}_{\mathrm{s}}[\mathrm{i}, \mathrm{j}]$ if $\mathrm{t} \neq \mathrm{s} \quad$ (active, saturated), or
- $\Sigma_{t} a_{t}[i, j]=0$ (balanced)
- (active implies balanced, constant implies balanced)

Example 1

- Consider Λ-set where $\mathrm{a}_{\mathrm{t}}[0,0]=t$, and for other $\mathrm{i}, \mathrm{j}: \mathrm{a}_{\mathrm{t}}[\mathrm{i}, \mathrm{j}]=0$.

Example 2

- Λ-set where $a_{t}[0,0]=a_{t}[1,1]=t$, and for other $i, j: a_{t}[i, j]=0$.
- What do we know about $b_{t}=A K_{k}\left(a_{t}\right)$?
- About $\mathrm{c}_{\mathrm{t}}=\mathrm{SB}\left(\mathrm{b}_{\mathrm{t}}\right)$?
- About $\mathrm{d}_{\mathrm{t}}=\mathrm{SR}\left(\mathrm{c}_{\mathrm{t}}\right)$?
- About $e_{t}=M C\left(d_{t}\right)$?

Action of AES step transformations on a Λ-set

- ShiftRows: only changes the indices [i,j]
- SubBytes:
- Saturated bytes remain saturated
- Constant bytes remain constant
- Balanced bytes become undetermined
- AddRoundKey:
- Saturated bytes remain saturated
- Constant bytes remain constant
- Balanced bytes remain balanced

Action of MixColumns on a Λ-set

- Action depends on all 4 bytes of the column:

$$
b_{t}[i, j]=c[i, 0] a_{t}[0, j]+c[i, 1] a_{t}[1, j]+\cdots
$$

- [CCCC] \rightarrow [CCCC]
- [CCCS] \rightarrow [SSSS]
$\sum_{t} b_{t}[i, j]=\sum_{t}\left(c[i, 0] a_{t}[0, j]+c[i, 1] a_{t}[1, j]+\cdots\right)$
$=c[i, 0] \sum_{t} a_{t}[0, j]+c[i, 1] \sum_{t} a_{t}[1, j]+\cdots$
$\cdot[\mathrm{BBBB}] \rightarrow[\mathrm{BBBB}]$

A 3-round distinguisher for AES

Attacking 4 rounds

- AES-4 = AK + 3 rounds + final round
- Initial AK doesn't matter
- Final round: no MixColumns
- Attack:
- Encrypt a Λ-set with one saturated position
- Guess 1 byte of last round key
- Decrypt 1 byte of output of 3rd round
- Verify Balance property
- For correct guess of the key, property must hold
- For incorrect guess, property holds with prob. 1/256
- Presence of MixColumns in last round wouldn't help

Adding a round at the end

- AES-5 = AK + 3 rounds +1 round + final round

Conclusions

- Block cipher design is still a craft rather than a science
- Plenty of interesting open questions
- Guess 1 column of key in $5^{\text {th }}$ round
- Decrypt one byte of output of $4^{\text {th }}$ round
- Apply previous attack
- Would benefit from more attention by mathematicians with one eye open for practice
- We need approx. 6Λ-sets and 2^{40} steps

